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Photoelectron distribution of nonresonant two-photon ionization of neutral atoms
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Photoelectron angular distributions following the nonresonant two-photon K-shell ionization of neutral atoms
are studied theoretically. Using the independent particle approximation and relativistic second-order perturbation
theory, the contributions of screening and relativistic effects to the photoelectron angular distribution are evaluated.
A simple nonrelativistic expression is presented for the angle-differential cross section in dipole approximation for
two-photon ionization by elliptically polarized photons, and its limitations are analyzed numerically. Moreover,
we show that screening effects of the inactive electrons can significantly affect the photoelectron distributions
and can also lead to a strong elliptical dichroism. Numerical results are presented for the case of two-photon
K-shell ionization of neutral Ne, Ge, Xe, and U atoms.
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I. INTRODUCTION

Two-photon ionization is a fundamental nonlinear pro-
cess which became an important benchmark for studying
the interaction of intense light with matter. The study of
nonlinear high-order processes has been driven by the recent
development of free-electron lasers [1], intense-light sources
operating in the ultraviolet and x-ray energy domains. In past,
two-photon double ionization of Ne has been studied, and
successfully detected at FLASH by performing a complete
experiment [2–4]. With today’s high photon energies and beam
intensities of free electron lasers, even two-photon ionization
of the deep K-shell electron of medium and heavy elements
has become possible. In recent years, free-electron lasers have
already been used to detect the two-photon K-shell ionization
of neutral Ge, Cu, and Zr atoms [5–7]. In these experiments,
the Kα fluorescence was detected as a direct signature for
producing a K-shell vacancy. However, two-photon ionization
process can be also studied by a direct detection of the
ejected photoelectrons. The total photoelectron yield has been
measured in the case of two-photon ionization of the 4d

subshell of Xe atom [8], while the angular distributions have
been measured for the two-photon ionization of ground state
helium [9,10].

While the analysis of the total cross section enables one
to obtain the amplitude ratios between the (two) dominant
ionization channels, the photoelectron angular distribution
additionally provides the information about their relative
phases. Within nonrelativistic theory and dipole approxima-
tion, just these two atomic parameters are sufficient to fully
characterize the photoelectron angular distribution [11]. This
approximate formulation, however, is expected to become
insufficient for medium and heavy atoms, or when using
high photon energies. The limitations of these approximations
have been investigated especially in Refs. [12–14], where
two-photon ionization of H-like ions was considered. A
different approach to calculate the amplitudes of two-photon
ionization of H-like ions was taken in Ref. [15], where the
variational method was used to calculate total as well as
differential cross sections. Recently the total cross section of
two-photon ionization of xenon has been calculated using the
time-dependent configuration-interaction-singles method and

was compared to the random-phase-approximation method
[16]. In a recent work [17], moreover, we investigated the
two-photon ionization of neutral atoms and demonstrated that
the screening of the active electron by all other electrons can
significantly alter the total cross section of light elements such
as O, F, Ne, Na, or Mg. This decrease is a direct consequence of
a drop of the dominant ionization channel. As shown below, the
behavior of the dominant channel has an even stronger impact
upon the photoelectron angular distributions. In Ref. [18],
it was shown that the relativistic wave function contraction
makes the strongest (relativistic) effect in calculating the total
two-photon ionization cross sections.

In this contribution, we investigate the photoelectron
angular distributions of the nonresonant two-photon K-shell
ionization of neutral atoms. In Sec. II, we describe our
theoretical approach and provide a first intuitive view of the
problem. In Sec. III, we first present typical photoelectron
angular distributions for ionization of atoms by circularly,
linearly, elliptically, and unpolarized light. Then, we demon-
strate that significant deviations from the typical distributions
can arise due to the screening or relativistic effects. We
show, in particular, that the screening effects can lead to an
elliptical dichroism, and discuss the possibility of performing a
complete experiment which would test this prediction. Finally,
a summary is given in Sec. IV.

Relativistic units (h̄ = c = m = 1) are used throughout the
paper, unless stated otherwise.

II. THEORETICAL BACKGROUND

We study here the process of the nonresonant two-photon
K-shell ionization of neutral atoms. For the sake of sim-
plicity, we shall start directly from a single-active-electron
representation; cf. see Refs. [17,18] for further details. In
particular, we here derive a relativistic angle-differential cross
section in which the geometry (of possible observations) is
clearly separated from the physical interaction. In Sec. II B,
this expression is simplified by applying the nonrelativistic
limit and electric dipole approximation in order to obtain
a simple formula for the photoelectron angular distribution,
suitable also for parametrization. In Sec. II C, we present the
computational approach which was used to obtain our results.
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A. General theory

We employ the independent particle approximation, in
which we assume that only one of the K-shell electrons
interacts with the two photons. This electron-photon inter-
action is treated within the second-order perturbation theory,
while the effect of all other (inactive) electrons of the neutral
atom are accounted for by a screening potential included in
the Hamiltonian of the Dirac equation. In this single-active-
electron representation, the two-photon ionization process can
be represented as

|naκama〉 + γ (k1,λ1) + γ (k2,λ2) → | peme〉. (1)

Since we consider the ionization of a K-shell electron, the
principle quantum number na , Dirac quantum number κa and
the projection of the total angular momentum ma of the initial
bound electron take the values na = 1, κa = −1, and ma =
± 1

2 . The Dirac quantum number κ is defined by the total
and orbital angular momenta j and l as κ = ∓(j + 1

2 ) for
j = l ± 1

2 . In a typical experiment, the two photons in process
(1) originate from the same source and have equal wave vectors
k1 = k2 = k. The polarization of the photons is conveniently
described in the helicity (λ) representation, where it can be
fully characterized by its density matrix 〈kλ|ρ̂|kλ′〉 in terms
of the linear P1,P2, and circular P3 Stokes parameters [19].
Due to the interaction of the initially bound electron with the
two photons, the electron is promoted into a continuum state
| peme〉, with a well-defined asymptotic momentum pe, and
spin projection me. In lowest order perturbation theory (and
within the independent particle approximation), the transition
element for the interaction of the neutral atom with two photons
can be written as

Mλ1λ2
mema

=
∫∑
n

〈 peme|α · Aλ2 |n〉〈n|α · Aλ1 |naκama〉
Enaκa

+ ω − Ennκn

, (2)

where α · Aλ represents the electron-photon interaction opera-
tor, ω is the photon energy, and a summation over the complete
spectrum of intermediate states |n〉 ≡ |nnκnmn〉 needs to be
carried out. In order to calculate the cross section, it is
necessary, moreover, to carry out the multipole expansion
of the free electron wave function and the electron-photon
operator; see Ref. [18] for details. Making use of these
expansions, we obtain

Mλ1λ2
mema

= 4π
∑
J1p1
J2p2

∑
qmq

∑
κmj ml

∑
κn

(−1)j+q−mj iJ1+J2−lei	κ

×〈jn1/2J20|j1/2〉〈ja1/2J10|jn1/2〉Ylml
( p̂e)

×〈lml1/2me|jmj 〉〈j − mjjama|qmq〉
× [J1,J2,jn,ja]1/2
la,J1,ln,p1
ln,J2,l,p2

×
{

j ja q

J1 J2 jn

}
T p1p2

qmq
(λ1,λ2)Uκaκnκ , (3)

where the typical notations {. . .
. . .} and 〈....|..〉 are used to

represent the six-j symbols and Clebsch-Gordan coefficients,
[x1,x2, . . .] = (2x1 + 1)(2x2 + 1)...., J ′s are the multipoles of
the two photons, and the index p describes the electric (p = 1)
or magnetic (p = 0) component of the electromagnetic field.

Furthermore, l and j arise from the partial-wave expansion of
the free electron wave function and represent its orbital and
total angular momenta, 	κ is the corresponding phase factor
[20], Ylm are the spherical harmonics, and Uκaκnκ represents
the radial part of the transition amplitude (2) for a specific
ionization channel κa → κn → κ; see, e.g., Eqs. (6.129) in
Ref. [21] for an explicit expression of the radial integrals.
We also introduced an intermediate angular momentum q,
which represents the transfer of angular momenta between
the initial ja and final j states. The momentum q then
also corresponds to the momentum transfer from the two
photons with multipoles J1 and J2 to the electron. The
functions 
 are defined as 
l1,l2,l3,p = 1 if the sum l1 +
l2 + l3 + p is odd, and 
l1,l2,l3,p = 0 otherwise. Finally, the
irreducible tensors T

p1p2
q (λ1,λ2) are defined similarly as in

Refs. [22,23]:

T p1,p2
q (λ1,λ2) = (−i)p1+p2

{[
ε̂λ1 · Y (p1)

J1

] ⊗ [
ε̂λ2 · Y (p2)

J2

]}
q
,

(4)

with ε̂λ being the unit polarization vectors and Y (p)
J repre-

senting the vector composed by rank-J tensors of spherical
harmonics. The angle-differential cross section for two-photon
ionization of an unpolarized atom is then given by

dσ

d�
= 8π3α2

ω2

∑
λ1λ2
λ′

1λ′
2

〈kλ1|ρ̂|kλ′
1〉〈kλ2|ρ̂|kλ′

2〉
∑
mema

Mλ1λ2
mema

M
λ′

1λ
′
2∗

mema
.

(5)

After coupling of the angular momenta q and q ′ of the
two transition amplitudes of the above equation with the
momentum L, and further tensor manipulation [22,24], it
is possible to separate the geometrical and the structural
characteristics of the cross section. For the sake of simplicity,
we introduce the notation where the dependence on q implies
the dependence on J1 and J2. Then we can write the cross
section as

dσ

d�
= 8π3α2

ω2

∑
L

∑
p1p′

1
p2p′

2

∑
{J1J2}q
{J ′

1J ′
2}q′

G
p1p

′
1p2p

′
2

qq ′;L F
p1p

′
1p2p

′
2

qq ′;L . (6)

Here, the GL represents the “geometrical part” of the cross
section, which completely defines the photon polarization,
as well as all angular characteristics of the two-photon
ionization process; i.e., it contains both, the photon and the
photoelectron angular dependencies. The explicit form of
this term is given by

G
p1p

′
1p2p

′
2

qq ′;L = (−1)p
′
1+p′

2

∑
λ1λ2
λ′

1λ′
2

〈kλ1|ρ̂|kλ′
1〉〈kλ2|ρ̂|kλ′

2〉

× [{
T p1p2

q (λ1,λ2) ⊗ T
p′

1p
′
2

q ′ (λ′
1,λ

′
2)

}
L

· YL( p̂e)
]
.

(7)

It is worth noting that up to now, no choice of geometry has
been made, hence the geometrical part is generally applicable
for any choice of the quantization axis. The “structural part” FL

of the cross section encapsulates the properties of the electron-
photon interaction, and depends on the details of the (radial)
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wave functions. It is given by

F
p1p

′
1p2p

′
2

qq ′;L =
∑
κκ ′

(4π )3/2(−1)ja+1/2+L+q [L]−1/2〈l0l′0|L0〉

×
{

l L l′
j ′ 1/2 j

}{
q L q ′
j ′ ja j

}
Rκaκ;qR

∗
κaκ ′;q ′ ,

(8)

where

Rκaκ;q =
∑
κn

(−1)j [ja,l,q,j,jn,J1,J2]1/2iJ1+J2+lei	κ

×
la,J1,ln,p1
ln,J2,l,p2〈jn1/2J20|j1/2〉

×〈ja1/2J10|jn1/2〉
{

j ja q

J1 J2 jn

}
Uκaκnκ . (9)

By looking at the expression above as well as Eq. (3),
and using the properties of Clebsch-Gordan coefficients, we
deduce the restrictions on the coupling parameters q = 0,2
and L = 0,2,4.

B. Nonrelativistic limit of the differential cross section

Expressions (6)–(9) describe the angle-differential cross
section of the two-photon ionization and are general within the
framework of the independent-particle model. In the derivation
of these expressions, no assumptions were made with regard
to the choice of a quantization axis or photon polarization, but
for the price of obtaining a rather complex expression. For
many atoms and ions, however, a nonrelativistic description
is completely sufficient [11], i.e., for systems where the
relativistic effects are negligible or small. In Ref. [11], the
two-photon above threshold ionization was studied within
nonrelativistic theory, and a parametrized expression for the
angle-differential cross section was derived. However, this
cross section expression is valid only for ionization of atoms
by fully polarized photons. In this section, we will show that
a similar expression can be obtained for a general photon
polarization by applying a number of reasonable assumptions
to the cross section from Eq. (6).

The general cross section expression can be simplified
if we choose some appropriate geometry. For example, we
take the quantization z axis along the photon propagation
direction k̂ and choose the linear component of the photon
polarization to be aligned with the x axis, then we characterize
the propagation direction of the photoelectron p̂e by the
polar and azimuthal angles θ and φ, respectively; see Fig. 1.
Furthermore, we shall restrict ourselves to the electric-dipole
approximation, i.e., taking J1 = J2 = p1 = p2 = 1 in Eq. (6).
As we are considering the two-photon ionization of an s-state
electron, only two possible ionization paths are possible
within this approximation: s → p → s and s → p → d. In
a relativistic framework, in contrast, the fine structure splits
these two paths into five paths. In the nonrelativistic limit,
however, the transition amplitudes as well as phase factors
remain unaffected by the fine structure splitting; thus the five
relativistic paths Uκaκnκ reduce to two nonrelativistic ones: Us

and Ud . Since phase factors depend on angular momenta of
the final photoelectron state only, the three relativistic phases
	κ reduce to 	s and 	d . With these assumptions in mind and

FIG. 1. Geometry of the considered two-photon ionization pro-
cess within the considered geometry. An initially K-shell bound
electron of a neutral atom absorbs two photons and is subsequently
promoted into the continuum. The quantization z axis is defined by
the propagation direction of the photons, and the x axis is chosen to
be aligned with the linear component of the photon polarization. For
the ionization by circular or unpolarized light, the cross section does
not depend on the choice of the x axis. The photoelectron is emitted
into a direction given by the polar and azimuthal angles θ and φ,
respectively.

by performing all summations in Eq. (6), we obtain

dσ (nonrel.)

d�
= 9π2α2

2ω2

[
|Us |2P + |Ud |2

{
P − 3sin2θ [P

+ 2Plcos(2φ)] + 9

2
sin4θ [1 + Plcos(2φ)]2

}

+ 2Re

(
UsU

∗
d ei(	s−	d )

{
P − 3

2
sin2θ [P

+ 2Plcos(2φ) + 2iPlPcsin(2φ)]

})]
, (10)

where the degree of linear polarization Pl can be represented in

terms of Stokes parameters as Pl =
√

P 2
1 + P 2

2 , the degree of

circular polarization is Pc = P3, and P = 1 + P 2
l − P 2

c . For
the case of completely polarized photons, i.e., P 2

l + P 2
c = 1,

the above formula reduces to the one derived in Ref. [11].
The indexes of the radial integrals Us and Ud as well as the
corresponding nonrelativistic phases 	s and 	d refer to the
corresponding photoelectron s- and d-partial waves.

If we integrate Eq. (10) over the angles θ and φ, we obtain
the total cross section for ionization of atoms by two photons
of general polarization

σ (nonrel.) = 18π3α2

5ω2

[
5P|Us |2 + (

7 + P 2
l + 5P 2

c

)|Ud |2
]
.

(11)

This compact expression depends solely on the two radial
matrix elements Us and Ud . In the case of fully polarized
photons, this equation reduces to the well-known expressions
of Ref. [25]. It can be seen that in order to obtain the
information about the photoelectron phase, one needs to
measure the corresponding angular distribution, as the total
cross section does not depend on the phase.
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C. Computation

The evaluation of the cross section (6) requires an infinite
summation over all multipole orders of the electron-photon
interaction operator as well as over the complete energy
spectrum of intermediate states. The infinite summation over
higher multipoles converges at the fifth order; therefore
summation over more terms was not necessary. To sum over
the infinite number of intermediate states, a finite basis set
[26] constructed from B- splines by applying the dual-kinetic-
balance approach [27] was employed. This technique allows
us to reduce the infinite summation over the intermediate
states to a finite sum over a pseudospectrum. This approach
has been previously successfully applied, for example, in the
calculations of two-photon decay processes of helium-like
ions [28,29] or cross sections of x-ray Rayleigh scattering
[30]. The continuum-state wave functions were obtained by
numerical solutions of the Dirac equation with help of the
RADIAL package [31]. In order to account for the screening
effects, we solve the Dirac equation with a screening potential,
which partially accounts for the interelectronic interaction.
We use the core-Hartree potential, which corresponds to a
potential created by all bound electrons except of the active
electron. In Ref. [17], it has been shown that the choice
of a screening potential does not significantly affect the
total cross section of the observed behavior of the process.
Our current results confirm, that the same statement holds
true for the photoelectron angular distribution. The screening
potential accounts for the major part of the many-electron
contributions, while contributions beyond the independent
particle approximation are expected to be negligible, similarly
as for the case of Rayleigh scattering [30].

III. RESULTS AND DISCUSSION

In the two-photon K-shell ionization, the photoelectron
angular distribution shows more often than not the same
behavior, quite independent of the atomic target and the
coupling of the valence-shell electrons. Figure 2 displays such
typical distributions for four different photon polarizations:
circular, linear, and elliptical as well as for unpolarized pho-

tons. For the ionization by circularly or unpolarized photons,
obviously, the photoelectron angular distributions are always
axially symmetric and, thus, independent of the azimuthal
angle φ. We also note that there is no photoelectron emission
along the photon propagation direction for the ionization of
unpolarized atoms by two completely circularly polarized
photons. Indeed, the emission along this axis is forbidden
by the conservation of projection of angular momentum.
Since the helicity of the two photons is λ1 + λ2 = ±2, the
change in the projection of angular momentum cannot be
compensated by the photoelectron emitted along the photon
propagation direction. However, for ionization by photons with
a lower degree of circular polarization (Pc < 1), the electron
emission along the quantization axis becomes possible, and the
distribution will become similar to the one for the unpolarized
case. This can be also seen analytically from Eq. (10). For
the completely circularly polarized case (Pc = 1), we have
P = 0 and Pl = 0. Therefore, the photoelectron distribution
is given solely by the sin4θ distribution, which corresponds
to l = 2,m = ±2 partial wave of the photoelectron. If we
decrease the polarization purity, however, other partial waves
will also contribute to the photoelectron distribution, and
the emission into forward direction will increase. For the
case of two-photon ionization of atoms by linearly polarized
light, the photoelectrons are dominantly emitted along the
photon polarization direction. From Eq. (10), we see that
the distribution now depends also on the azimuthal angle
φ, and that it contains contributions from both ionization
channels.

Although the distributions of Fig. 2 generally provide a
good description of the photoelectron emission direction, we
will present cases where significant deviations from these
distributions occur due to screening or relativistic effects.
While the screening effects are taken into account also in the
nonrelativistic cross section (10), which can be characterized
by two parameters, the expression is insufficient to describe
relativistic processes. It is the aim of this section to critically
evaluate the validity of this nonrelativistic description and
show its limitations. Below, we shall assess also the importance
of the screening potential and compare these exact calculation
with a calculation, where no account for the inactive electrons
was made. Although the formulas (6) and (10) are generally

FIG. 2. Typical photoelectron angular distributions for the nonresonant two-photon K-shell ionization of neutral atoms for incident photons
polarized circularly (Pc = 1), linearly (Pl = 1), elliptically (Pc = 1/

√
2, Pl = 1/

√
2), or unpolarized (Pc = 0, Pl = 0).
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FIG. 3. Screening and multipole contributions to the two-photon K-shell ionization of neutral Ne, Ge, Xe, and U atoms, using linearly
polarized photons with ε = 1.05 (upper row) and ε = 1.40 (lower row) excess energies. An exact relativistic computation of two-photon
ionization of neutral atoms (solid black) is compared with a nonrelativistic calculation for ionization of H-like ions (dashed green) is presented.
At ε = 1.05 excess energy, the photoelectron emission from a neon atom (upper-left figure) significantly decreases along the polarization axis
due to the screening effects. For uranium ε = 1.40 (lower-right figure), the emission into the incident photon direction is highly promoted due
to relativistic effects. In order to compare the results for neutral atoms and H-like ions, the distributions have been scaled in the given plane.
All plots were obtained for φ = 0, i.e., in the ε̂k̂ plane.

applicable for any two-photon ionization process, detailed
calculations have been carried out just for the two-photon
K-shell ionization of neutral neon, germanium, xenon, and
uranium atoms, and for photon energies below the 1s-2p

resonance. In order to compare the results for different
elements, we shall present our data in terms of excess energy
ε, i.e., the ratio of the energies of the (two) incident photons
and the K-shell binding energy (Eb), ε = 2ω/Eb.

A. Relativistic and screening effects

Figure 3 presents the photoelectron angular distributions
of the two-photon K-shell ionization of neutral and H-like
atoms for two excess energies (ε = 1.05,1.40) and for four
elements (Ne, Ge, Xe, U). The solid black figures correspond
to the relativistic calculations of two-photon ionization of
neutral atoms, while the dashed green figures correspond to the
nonrelativistic calculations of two-photon ionization of H-like
ions. The results of the latter serve as reference distributions,
since they are neither affected by the relativistic nor screening
effects. Therefore, the comparison of the corresponding results
for these two calculations gives us the necessary insight
how the relativistic and multipole contributions affect the
angular emission of photoelectrons in the two-photon K-shell
ionization of atoms and ions.

There are various relativistic contributions to the cross
sections. For the total cross section, the relativistic contraction
of the wave function may result in a reduction of up to 30%,
while the higher multipoles give rise to rather small changes
only [18]. For the photoelectron angular emission, in contrast,
the different multipole contributions may significantly alter
the distribution. These contributions sensitively depend on the
nuclear charge and the energy of the incident photons. For
ionization of medium and heavy atoms with high energetic
photons, a forward emission of the photoelectron is enhanced,
and the backward emission decreases. This distortion of the
angular distribution can be clearly seen in Fig. 3, together with
the nuclear charge and photon energy dependencies. Although
we present results for incident linearly polarized light, an
identical change of the distributions is found for all types
of polarization. A similar behavior was found in relativistic
calculations of H-like atoms [12]. Interestingly, the distortion
of the distribution due to the multipole effects in two-photon
ionization of neutral atoms is comparable with the one for
H-like ions. This can be understood from Fig. 3. Since the
importance of multipole contributions depends more strongly
on the photon energy, the results do not significantly differ if
the nuclear potential is partially screened by the electrons in
higher shells.

From the analysis of relativistic effects, it may seem that
neglecting the screening effects of inactive electrons would
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FIG. 4. Elliptical dichroism in nonresonant two-photon K-shell ionization of neutral neon. The angular distributions are presented for the
polar angle θ = π/2 for two-photon excess energies; ε = 1.05 (left) and ε = 1.40 (right). The sensitivity of the dichroism is clearly visible
from the distributions as well as from the relative dichroism parameter 	ed (middle).

not yield a significantly different results, as long as we include
higher multipole orders of the photon field. However, from
Fig. 3, it can be seen that this simplification could lead to large
errors. This is because the screening effects are significant for
nonrelativistic systems, more specifically, for photon energies
near the ionization threshold and light elements. The influence
of the screening effects was found strongest for the two-photon
ionization of neon, where the electron emission along the
photon propagation axis exceeds the emission along the linear
polarization axis. This result can be best understood in the
simplified electric dipole picture, where there are only two
ionization channels present: s-channel and d-channel, where
s- and d- refer to the partial waves of the emitted electron.
The contribution of the s-channel to the cross section is
angle-independent and is therefore spherically symmetric. On
the other hand, the contribution of the d-channel is similar to
the distribution of two-photon ionization by linearly polarized
light with most photoelectrons emitted along the photon
polarization direction; see Fig. 2. Generally, the ionization
channel with higher angular momentum is dominant, hence,
only a small contribution to the distribution arises from the
s-channel. However, in Ref. [17], we have shown that due to the
screening effects, the dominant d-channel drops down for light
elements in near-threshold ionization, while the amplitude
of the s-channel increases. This is exactly what we can see
in Fig. 3. The emission along the polarization axis sharply
decreases (d-channel contribution) and the emission into all
direction slightly increases (the spherical contribution of the
s-channel). Instead, if we consider the case of ionization by
completely circularly polarized light, i.e., Pc = ±1, only the
d-channel contributes to the cross section. More specifically,
only the d-channel with projection of orbital angular momenta
me = ±2 contributes. This leads to the typical doughnut
shape distribution. Since there is only one active channel, the
screening effect leads solely to the decrease of the magnitude
of the cross section. As none of the described behavior has
been observed in two-photon ionization of H-like ions, it must
therefore arise from the additional screening potential created
by the inactive electrons.

B. Elliptical dichroism

Dichroism of matter represents an asymmetry in the
light-matter interaction upon a sign change of a symmetric
property of the light or matter, e.g., handedness of photon
polarization or chirality of a molecule. This behavior raises
an interest in number of different fields such as material
science [32], biochemistry [33], and fundamental research
[34]. Circular dichroism, for example, has been measured in
the multiphoton ionization of He ions [34] as well as molecular
O2 [35]. In these experiments, the dichroism arises from the
target polarization. We here present the prediction of elliptical
dichroism of the photoelectron angular distribution in a two-
photon ionization process. Unlike the circular dichroism from
the above references, the elliptical dichroism arises from the
interference of ionization paths. In the past, elliptical dichroism
has been studied theoretically for the multiphoton ionization of
outer shell electrons [36,37] and was experimentally observed
for two-photon ionization of atomic rubidium [38]. The direct
analytical origin of the dichroism can be seen in Eq. (10), where
only the interference term depends on the handedness of circu-
lar polarization. A convenient way to characterize the elliptical
dichroism is by defining the relative dichroism parameter

	ed = dσ+/d� − dσ−/d�

dσ+/d� + dσ−/d�
, (12)

where the index of σ refers to the sign of Pc. The dichroism
parameter describes the magnitude of the elliptical dichroism
and can take maximal values of ±1. Figure 4 presents the
electron distributions for two-photon ionization of Ne at
excess energies of ε = 1.05 (left) and ε = 1.40 (right) as
well as the dichroism parameter for both cases (middle). This
figure clearly shows the energy dependence of the elliptical
dichroism. While for low energies, the difference between
Pc = 1/

√
2 and Pc = −1/

√
2 is large and the dichroism

parameter nearly reaches unity for four given values of φ, the
dichroism for the higher energy is much weaker. A similar
behavior applies to the dependence on nuclear charge, with the
dichroism being strongest for the Ne atom. This happens again
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due to the screening effects. Since the dominant d- ionization
channel decreases, and the s-channel increases, the relative
amplitude of the interference term of Eq. (10) increases, and
hence, the sensitivity to the handedness of light increases. As
shown in Ref. [17], the screening effects are strongest for neon,
therefore, even the dichroism is largest for ionization of the
neon atom. Since the screening effects are fully encapsulated
in the transition amplitudes and since the relativistic effects
are low for light elements, the elliptical dichroism can be
described well with the nonrelativistic expression (10).

Let us briefly discuss the experimental possibility of
detecting the elliptical dichroism. With photon energies in
the order of keV, today’s free electron facilities reach (and
exceed) the energy limits to ionize a K-shell electron of
light atoms. While early free electron lasers were restricted to
linear beam polarization, recently, the photon polarization of
these beams has been controlled. The polarization control has
been achieved, for example, by the Delta undulator at LCLS
[39] or Apple II at FERMI [40]. While the Delta undulator
operates at 0.5–1.2 keV, the Apple II can produce photon
energies up to 120 eV. For detecting the elliptical dichroism,
the two-photon energy should be close to the ionization
threshold. In practice, therefore, slow photoelectron would
be produced from the two-photon K-shell ionization and fast
photoelectrons from other processes. The slow electrons could
be successively detected by a angle-resolving time-of-flight
spectrometer. Similar angle-resolved studies of multiphoton
ionization processes at free electron facilities have been carried
out, for example, in Refs. [34,35]. However, although these
experimental conditions seem to be fulfilled, the ionization
yields for nonresonant two-photon K-shell ionization at
photon energies in the orders of few hundred eV are very low,
making it challenging to measure the dichroism. However,
the dichroism is not a unique feature of K-shell two-photon
ionization. It will be the subject of further initiative to study

two-photon ionization of higher electronic shells, for which
the experiment would be more feasible.

IV. SUMMARY AND OUTLOOK

We have theoretically studied the photoelectron angular
distribution of the two-photon ionization of neutral atoms.
We presented an exact relativistic expression, as well as
nonrelativistic expression in electric dipole approximation
for the angle-differential cross section. The latter fully
characterizes the photoelectron angular distribution by two
parameters: transition amplitude ratio and phase difference
of the two dominant channels. Unlike the nonrelativistic
cross section of Ref. [11], our nonrelativistic cross section
is applicable for any degree of photon polarization. We have
shown that the nonrelativistic expression is insufficient for
describing two-photon ionization by highly energetic photons.
In such cases, the relativistic effect becomes important, and
photoelectron emission into the forward direction dominates.
For photon energies on the other side of the spectra, i.e., near
ionization threshold, screening effects become important. For
light atoms, the electron screening significantly influences
the photoelectron angular distributions, and it leads to a
strong elliptical dichroism. As this behavior arises from the
transition amplitude ratios and corresponding phases, it can
be therefore fully described by the nonrelativistic formula.
For an appropriate choice of an atomic system, the elliptical
dichroism could be experimentally verified by carrying out a
complete experiment.
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