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Angle-dependent time delay in two-color XUV+IR photoemission of He and Ne
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We solve the time-dependent Schrödinger equation for a noble gas atom (He and Ne) driven by an ionizing
XUV and dressing IR fields. From this solution we deduce an angular dependence of the photoemission time delay
as measured by the RABBITT (reconstruction of attosecond beating by interference of two-photon transitions)
technique. We use a recent angle-resolved RABBITT measurement on helium [S. Heuser et al., Phys. Rev. A
94, 063409 (2016)] to test and calibrate our theoretical model. Based on this calibration, we find no significant
difference between the time delay in He measured in the angle-integrated RABBITT experiments [C. Palatchi
et al., J. Phys. B 47, 245003 (2014) and D. Guénot et al., ibid. 47, 245602 (2014)] and measured or calculated
in the polarization axis direction. The angular dependence of the photoemission time delay of Ne is shown to be
qualitatively different from He because of the different orbital character of the valence 2p orbital. The angular
momentum projection dependence of the time delay in Ne is also investigated.
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I. INTRODUCTION

A measurable time delay in laser-driven atomic ionization
has been discovered recently [1,2]. Since the first pioneering
experiments, the time-delay spectroscopy of laser-induced
atomic ionization (attosecond chronoscopy) has become a
rapidly developing field [3]. In a recent report, Heuser et al.
[4] investigated an angular dependence of the photoemission
time delay in helium as measured by the RABBITT (recon-
struction of attosecond beating by interference of two-photon
transitions) technique. The RABBITT technique builds on
the interference of two ionization processes leading to the
same photoelectron state by (i) absorption of ω2q−1 and ω or
(ii) absorption of ω2q+1 and stimulated emission of ω. Both
ionization processes lead to the appearance of a sideband (SB)
of the order of 2q in between the one-photon harmonic peaks in
the photoelectron spectrum. The sideband magnitude oscillates
with the relative phase between the XUV and IR pulses [5,6]

S2q(τ ) = A + B cos[2ωτ − C], C = �φ2q + �θ2q, (1)

where τ = ϕ/ω denotes the phase delay of the IR field.
The term �φ2q = φ2q+1 − φ2q−1 denotes the phase difference
between two neighboring odd harmonics 2q ± 1 that is related
to the finite-difference group delay of the attosecond pulse as
τ

(GD)
2q = �φ2q/2ω. The additional term �θ2q = θ

(−)
2q+1 − θ

(+)
2q−1

arises from the phase difference of the atomic ionization ampli-
tude for emission (−) and absorption (+) paths, respectively.
This phase difference can be converted to the atomic delay

τa = �θ2q/2ω = τW + τCC, (2)

which contains the two distinct components [7]. Here τW is the
Wigner-like time delay associated with the XUV absorption
and τCC is a correction due to the continuum-continuum (CC)
transitions in the IR field. The latter term, τCC, can also be
understood as a coupling of the long-range Coulomb ionic
potential and the laser field in the context of streaking [8,9].

In the case of helium with only one 1s → Ep photoemis-
sion channel, the Wigner time delay τW does not depend on

the photoelectron detection angle relative to the polarization
vector. The early investigations of the τCC correction [7]
showed no dependence over various angular momentum paths
in hydrogen, e.g., the transitions s → p → s and s → p → d

showed τCC in excellent agreement. This would imply that
the RABBITT measured time delay in He should be angle
independent. This assumption was challenged in a recent
experiment by Heuser et al. [4] in which the RABBITT
technique was supplemented with the COLTRIMS (cold
target recoil ion momentum spectroscopy) apparatus. This
combination made it possible to relate the time delay to a
specific photoelectron detection angle relative to the joint
polarization axis of the XUV and IR pulses. The finding of
Heuser et al. [4] is significant because the helium atom is often
used as a convenient reference to determine the time delay in
other target atoms. If the RABBITT measurement is not angle
resolved, like in the experiments by Palatchi et al. [10] and
Guénot et al. [11], the angular dependence of the time delay
in the reference atom may compromise the accuracy of the
time-delay determination in other target atoms. However, in
the present work, we demonstrate that the magnitude of the
RABBITT signal drops off very rapidly as cos4 θ where θ is
the angle relative to the polarization direction and hence the
angle-integrated RABBITT measurement on He would return
the time delay very close to that calculated or measured in the
polarization direction.

In the case of Ne and heavier noble gases, both components
of the measured time delay τa = τW + τCC are angle depen-
dent. Indeed, for a one-photon transition from a bound np

orbital, there are two competing s and d continua which can
lead to the angle-dependent Wigner time delay τW [12–14].
Because of the propensity rule [15], the d channel is strongly
dominant except in the vicinity of its Cooper minimum. Such
a minimum is absent in Ne. So the Wigner time delay should
depend on the emission angle very weakly. Therefore any
measurable angular variation of the time delay in Ne should
be attributed almost entirely to the τCC component. The latter
arises due to the competition of the CC transitions d → p or
d → f . This competition is analyzed in the present work.
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II. THEORY AND NUMERICAL IMPLEMENTATION

We solve the time-dependent Schrödinger equation (TDSE)
for a target atom described within the single active electron
(SAE) approximation

i∂	(r)/∂t = [Ĥatom + Ĥint(t)]	(r), (3)

where Ĥatom is the Hamiltonian of the field-free atom with an
effective one-electron potential [16]. The Hamiltonian Ĥint(t)
describes the interaction with the external field and is written
in the velocity gauge as

Ĥint(t) = A(t) · p̂, A(t) = −
∫ t

0
E(t ′) dt ′. (4)

As compared to the alternative length gauge, this form of the
interaction has a numerical advantage of a faster convergence.

The vector potential of the APT is modeled as the sum of
11 Gaussian pulses of altering polarity shifted by half of the
IR period T = 2π/ω:

Ax(t) =
5∑

n=−5

(−1)nAn exp

(
−2 ln 2

(t − nT/2)2

τ 2
x

)

× cos [ωx(t − nT/2)] . (5)

The amplitude of each pulse is defined as

An = A0 exp

(
−2 ln 2

(nT/2)2

τ 2
T

)
,

where A0 is the vector potential amplitude related to the field
intensity I = (ω2/c2)A2

0. The XUV central frequency is ωx =
1.378 a.u. = 37.5 eV. The time constants τx = 0.14 fs and
τT = 4.83 fs determine the length of an XUV pulse and the
attosecond pulse train (APT), respectively. The field intensity
of the APT is chosen at 5×108 W/cm2 and the XUV frequency
ωx � 25ω.

The vector potential of the IR pulse is modeled by the
cosine-squared envelope

A(t) = A0 cos2

(
π (t − τ )

2τIR

)
cos[ω(t − τ )], (6)

with an intensity of 3×1011 W/cm2 and pulse duration of
τIR = 14.5 fs. The IR pulse is shifted relative to the APT
by a variable delay 0 � τ � 0.5T . A positive delay, τ > 0,
corresponds to the IR pulse being delayed with respect to the

center of the XUV pulse train. Further, the laser photon energy
is ω = 0.05841 a.u. = 1.59 eV, which corresponds to a period
of T = 2π/ω = 107 a.u. = 2.60 fs. The laser pulse duration
is τ = 5.58T = 14.5 fs.

To solve the TDSE, we follow the strategy tested in our
previous works [17,18]. The solution of the TDSE is presented
as a partial-wave series

	(r,t) =
Lmax∑
l=0

|m|�l

fl(r,t)Ylm(θ,φ) (7)

with only m = m0 momentum projections retained for the
linearly polarized light. Here m0 refers to the target orbital:
m0 = 0 for He 1s and m0 = 0, ± 1 for Ne 2p. The radial
part of the TDSE is discretized on the grid with the step size
δr = 0.05 a.u. in a box of the size Rmax = 2000 a.u. The
number of partial waves in Eq. (7) was limited to Lmax = 5
which ensured convergence in the velocity gauge calculations.

Substitution of the expansion (7) into the TDSE gives a
system of coupled equations for the radial functions flμ(r,t),
describing evolution of the system in time. To solve this
system, we use the matrix iteration method [19]. The ionization
amplitudes a(k) are obtained by projecting the solution of the
TDSE at the end of the laser pulse on the set of the ingoing
scattering states of the target Hamiltonian. Squared amplitudes
|a(k)|2 give the photoelectron spectrum in a given direction k̂
determined by the azimuthal angle θk .

After collecting the photoelectron spectra from the TDSE in
a given direction, the SB intensity oscillation with the variable
time delay between the APT and IR fields is fitted with the
cosine function (1) using the nonlinear Marquardt-Levenberg
algorithm. The quality of the fit is very good with the errors in
all three parameters not exceeding 1%.

III. RESULTS

A. Helium

The angular dependence of the parameters A, B, and C in
Eq. (1) for SB 20 is shown in Fig. 1. It follows from the soft
photon approximation (SPA) [20] that the angular dependence
of the A = |M(−)

k |2 + |M∗(+)
k |2 and B = 2Re[M(−)

k M∗(+)
k ]

parameters are simple cos4 θ functions for an initial s state,

A,B ∝ |J1(α0 · k)|2|〈f |z|i〉|2 ∝ cos4 θk. (8)
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FIG. 1. Angular dependence of the fitting parameters A, B, and C for SB 20 in He as calculated by the TDSE. The insets show the variation
of the A and B parameters near 90◦. The cos4 θk fit to the A and B parameters is also displayed.
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TABLE I. Atomic time delay τa and its various components τW

and τCC in the ẑ direction for various sidebands. Under τCC, (i) is the
atomic delay minus Wigner delay, and (ii) is the fit to exact hydrogen
calculation [7].

SB nω E τa (as) τW (as) τCC (as)
n eV eV TDSE RPAE (i) (ii)

18 27.9 3.3 −85 231 −316 −315
20 31.0 6.4 −61 60 −121 −129
22 34.1 9.5 −46 30 −76 −83
24 37.2 12.6 −37 16 −53 −57

Here M(±)
k are complex amplitudes for angle-resolved pho-

toelectrons produced by adding or subtracting an IR photon,
respectively. In Eq. (8) we made a linear approximation to
the Bessel function as the parameter α0 = F0/ω

2 is small in a
weak IR field. This simple dependence fits very well both the
A and B parameters. The only deviation occurs at large angles
where the B parameter becomes negative while cos4 θ always
remains positive (see insets of Fig. 1). The SPA also predicts
no angular variation of the time delay. So angle-dependent
time delay and alteration of sign of the B parameter are both
signs of breakdown of the SPA.

The group delay τGD of the APT is zero in our approach
since we consider Fourier limited attosecond pulses by setting
φ2q+1 = 0, for all integers q in the frequency comb. Hence
the parameter C can be converted directly into the atomic
time delay as τa = C/2ω according to Eq. (1). The atomic
time delay obtained in this fashion is given in Table I for
the direction along the polarization axis, which we refer to
as the zero angle for photoemission. To connect with Eq. (2)
we also show the breakdown of the atomic delay into the
Wigner time delay τW , which was computed separately by
the one-photon random phase approximation with exchange
(RPAE) [21], and the extracted continuum-continuum delay
τCC which we compare with an earlier calculation [7]. The
discrepancy between the two CC quantities is reasonably
small, less than 10 as, even though the present result is obtained
for He whereas the calculation [7] was performed for H. This
reflects a universal nature of the CC correction which is not
sensitive to the target ns orbital. The variation of the atomic
time delay relative to the zero angle polarization direction
�τ = τa(θk) − τ (0◦) is displayed in Fig. 2 for SBs 18–24. In
the same figure, we plot the experimental data and the lowest

order perturbation theory (LOPT) calculation from Heuser
et al. [4].

In the experimentally accessible angular range of 0−65◦,
the angular variation of the time delay is rather small. It
progressively decreases from about 60 as in SB 18 to less than
30 as in SB 24. It is expected that for higher sidebands it will
be even smaller as the CC phases for the s and d waves become
indistinguishable in the high photon energy limit. Given the
rapid drop of the magnitude A and B parameters in Eq. (1)
with the detection angle as cos4 θk , the angle-averaged time
delay τ̄a will be very close to that recorded in the polarization
direction of light at the zero degree angle τa(θ = 0). This
allows the use of the helium atom as a convenient standard both
in the angle-specific streaking and angle-averaged RABBITT
time-delay measurements.

B. Neon

The angular dependence of the parameters A, B, and C in
Ne for SB 20 is shown in Fig. 3. This variation is qualitatively
similar to that in He as displayed in Fig. 1. However, unlike
in He, where the cos4 θk dependence fits both the A and
B parameters very well, in Ne this dependence deviates
noticeably from the TDSE calculation. This is so because the
squared dipole matrix element |〈f |z|i〉|2 ∝ 1 + βP2(cos θk)
deviates from cos2 θk for β 
= 2 which is the case of the Ne
2p shell where for SB 20 β ≈ 0.3 [22]. In this case a more
accurate fit is provided by the second Legendre polynomial
expression as shown in Fig. 3.

Even though the A and B parameters decrease rather
quickly with the detection angle, this decrease is not as rapid
in Ne as prescribed by the soft photon approximation. The C

parameters both in Ne and He experience the drop of one unit
of π . However, in Ne, this drop is more gradual than in He.

Angular variations of time delay in neon for SBs 18–24 are
shown in Fig. 4. The analogous set of He data is also plotted for
the sake of comparison. The angular dependence of the time
delay in Ne is more pronounced at small angles where the He
data are virtually flat. The flattening of the angular dependence
in Ne is also happening toward the higher order sidebands, but
not as quickly as in He.

As mentioned in the Introduction, both components of the
atomic time delay in Ne can be angle dependent. However,
because of the lack of the Cooper minimum, the angular
dependence of the Wigner time delay τW should be weak.
This dependence is shown in Fig. 4 in comparison with
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FIG. 2. Variation of the time delay relative to the zero angle �τa = τa(θk) − τa(0◦) for SBs 18, 20, 22, and 24. The TDSE results, LOPT
calculations, and experimental data from Heuser et al. [4] are shown.
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FIG. 3. Angular dependence of the fitting parameters A, B, and C for SB 20 in Ne showing the TDSE calculation, the cos4 θk fit to the A

and B parameters, and the fit with actual anisotropy parameter β = 0.3. The TDSE result for He is also shown for parameter C.

the angular variation of the total atomic time delay τa . The
Wigner time delay, calculated in the relativistic random-phase
approximation [14] varies noticeably only in the lowest
sideband and this variation is significantly smaller that that of
the total time delay in all the sidebands. This indicates that the
angular variation of the measured time delay in Ne should be
attributed almost solely to the τCC component. The latter arises
due to the competition of the CC transitions d → p or d → f .
Unlike in helium, where the two CC transitions compete
strongly only beyond the magic angle, this competition seems
to be noticeable in Ne even at small angles.

To quantify this competition, we consider the case of
the m = 0 projection in the target orbital and adapt the
parametrization of the ionization amplitudes similar to that
suggested in Heuser et al. [4]:

M(±)
k ∝ Y10(n) + c

(±)
fp eiφ

(±)
fp Y30(n), (9)

where c
(±)
fp and φ

(±)
fp are the magnitude ratio and phase

difference between the f and p partial-wave components of
the absorption (+) and emission (−) amplitudes, respectively.
Fitting the angular dependence of the time delay in the SB 18
for m = 0 is shown in Fig. 5. The values of the fitting parame-
ters are c±

fp = 0.39,1.68 and φ±
fp = 1.65,0.54. In comparison

in SB 20 of He, c±
ds = 0.67,1.17 and φ±

ds = 0.082,0.076. In the
high energy limit of He, c+

ds = 1/c−
ds = √

4/5 ≈ 0.89 whereas
for Ne this limit is

√
4/7 ≈ 0.75. The case of Ne seems to be

farther away from the asymptotic limit in which no angular
dependence should be observed. Even more contrasting is the
phase difference in Ne which is an order of magnitude larger
than in He.

Quite remarkably, the m = 0 angular dependence of the
atomic time delay is very different from that summed over all
the m = projection. It is dominated by the sharp drop near the
kinematic node of the Y30 spherical harmonic. This drop all but
disappears in the angular dependence summed over all the m

projections because Y3±1 fill the node. Despite this difference,
the parametrization (9) is still meaningful to quantify the
competition of the CC transitions d → f and d→p because
their strengths depend only on the radial integrals.

IV. CONCLUSION

In the present work we studied angular variation of the
atomic time delay in the RABBIT measurement on helium and
neon. We employed a numerical solution of the time-dependent
Schrödinger equation for a single atomic electron driven by
a combination of the XUV and IR fields with parameters
similar to those used in a recent RABBITT measurement
by Heuser et al. [4]. Our results for He compare favorably
with this measurement. Based on this agreement, we make
further predictions for neon which is yet to be measured in an
angle-resolved RABBITT experiment.

In comparison to He, the angular variation of time delay in
Ne is more pronounced at small ejection angles relative to the
polarization axis where the He time delay is essentially flat.
This can be explained by a larger phase difference between
the d → f and d → p CC transitions in the absorption and
emission channels. The analogous phase difference between
the p → d and p → s CC transitions in He is an order of
magnitude smaller.
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We also analyze the magnitude of the RABBITT signal
in both targets and find it dropping off very rapidly away
from the polarization direction. In He, the RABBITT signal
drops as cos4 θk , much faster than the usual dipole factor
cos2 θk . The difference between these two factors becomes
particularly noticeable at large ejection angles: at θk = 70◦ the
one-photon angular factor leaves ∼10% magnitude relative
to the maximum whereas the two-photon factor leaves only
∼1%. It is for this reason that Heuser et al. [4] were not able to

extend their measurements beyond the ejection angle of 65◦.
However, for the same reason, the angle-integrated RABBITT
measurements on He and Ne in [10,11] could be compared
directly with the time delay calculated along the polarization
axis. In contrast, the angular variation of the atomic time
delay in Ar was found noticeable in [10] as the angle-averaged
calculations were found much closer to the experiment than
that in the polarization direction.

The angular dependence of the RABBITT time delay in
molecules becomes even more pronounced because of an
additional anisotropy relative to the molecular axis. This can be
seen from a recent theoretical study on the hydrogen molecular
ion [23]. Angle-integrated RABBITT experiments have been
reported on other molecules [24] and work is underway to
make this measurement angle resolved. So extension of the
theory to complex molecules is warranted.
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