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Effect of nuclear quadrupole moments on parity nonconservation in atoms
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Nuclei with spin I � 1 have a weak quadrupole moment which leads to tensor contribution to the parity
nonconserving interaction between nuclei and electrons. We calculate this contribution for atoms of current
experiment interest Yb+, Fr, and Ra+. We have also performed order of magnitude estimates and found strong
enhancement of the weak quadrupole effects due to the close levels of opposite parity in many lanthanoids
(e.g., Nd, Gd, Dy, Ho, Er, Pr, Sm) and Ra. Another possibility is to measure the parity-nonconservation (PNC)
transitions between the hyperfine components of the ground state of Bi. Since nuclear weak charge is dominated
by neutrons this opens a way of measuring quadrupole moments of neutron distribution in nuclei.
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I. INTRODUCTION

Studying parity-nonconservation (PNC) in atoms is a way
of testing the standard model at low energy as well as
searching for new physics beyond the standard model (see,
e.g., [1,2]). The most precise measurements of the PNC in Cs
[3] supported by accurate atomic calculations [4–9] show no
significant deviation from the standard model. Atomic PNC
experiments may also measure the nuclear anapole moments
[3,10–13] and the ratio of PNC amplitudes for different
isotopes which is not sensitive to the accuracy of atomic
calculations [14,15].

Atomic PNC measurements can also be used to study the
neutron distribution in nuclei. Several studies looked at the
effect of neutron skin (the difference in radius of the proton and
neutron distributions) on the PNC in atoms and demonstrated
that it can give a small but measurable contribution to the
PNC amplitude (see, e.g., [16]). The study of the neutron
distribution should help to establish the equation of state for
the nuclear matter and properties of neutron stars including the
mass boundary for the stability of neutron stars (the neutron
repulsion at short distances prevents collapse of a neutron star
to a black hole).

In the present paper we provide a theory for a different
method to study the neutron distribution in atomic PNC
experiments. It was noted in Ref. [17] (see also [1]) that
the nuclear quadrupole moment induces a tensor PNC weak
interaction between the nucleus and electrons in atoms and
molecules. In Ref. [18] it was shown that the combined
action of the weak charge and the quadrupole hyperfine
interaction produces a similar effect but of a significantly
smaller amplitude. Note however, that such effect may be
enhanced if there are close levels mixed by the quadrupole
hyperfine interaction.

In Ref. [19] it was argued that the tensor effects of the
weak quadrupole moments are strongly enhanced for deformed
nuclei and may get a significant additional enhancement due to
the close atomic and molecular levels of opposite parity with
a difference of the electron angular momenta |J1 − J2| � 2.
These selection rules are similar to that for the effects of the
time reversal (T) and parity (P) violating nuclear magnetic
quadrupole moment (MQM). Therefore, nuclei, molecules,
and molecular levels suggested for the MQM search in
Ref. [20], for example, |�| = 1 doublets in the molecules

177HfF+, 229ThO, 181TaN, will also have enhanced effects of
the weak quadrupole.

Differences in the selection rules for the scalar weak charge
(J1 − J2 = 0), vector anapole moment (|J1 − J2| � 1), and
the tensor weak quadrupole moment (|J1 − J2| � 2), or the
difference in the dependence of the PNC effect on the hyperfine
components of an atomic transition if more than one operator
contribute, allows one to separate the contribution of the weak
quadrupole.

The weak charge of the neutron (−1) exceeds the weak
charge of the proton (0.08) by more than an order of magnitude.
Therefore, the measurements of the PNC effects produced
by the weak quadrupole moment allows one to measure the
quadrupole moments of the neutron distribution in nuclei.

In present paper we perform the relativistic many-body
calculations of the weak quadrupole effects in atoms of
current experiment interest Yb+, Fr, and Ra+. We have also
performed order of magnitude estimates and found strong
enhancement of the weak quadrupole effects due to the close
levels of opposite parity in many lanthanoids (e.g., Nd, Gd,
Dy, Ho, Er, Pr, Sm) and Ra. Finally, we have calculated the
weak quadrupole effects in the PNC transitions between the
hyperfine components of the ground state of Bi.

II. THEORY

An effective single-electron interaction operator that is
responsible for parity nonconservation (PNC) in atom is given
by

hPNC = −GF√
2
γ5[ZC1pρ0p(r) + NC1nρ0n(r)]

− GF√
2
γ5Y20[ZC1pρ2p(r) + NC1nρ2n(r)], (1)

where GF ≈ 2.2225 × 10−14 in atomic units (a.u.) is the Fermi
constant, the Dirac matrix γ5 is defined as in Ref. [1], Z and
N are the number of protons and neutrons, the coefficients
2C1p = (1 − 4 sin2 θW ) ≈ 0.08, 2C1n = −1 are the proton
and neutron weak charges, ρp(r) ≈ ρ0p(r) + ρ2p(r)Y20(θ,φ)
and ρn(r) ≈ ρ0n(r) + ρ2n(r)Y20(θ,φ) are proton and neutron
densities in a nucleus normalized to unity,

∫
ρ(r)d3r = 1. We

have taken into account that if the nuclear spin has the maximal
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(or any fixed) projection on the z axis the quadrupole part of
the density is proportional to Y20(θ,φ).

Below we will concentrate on the neutron contribution since
the proton contribution to the weak charge is small and may be
treated as a correction. Therefore, to simplify the formulas we
assume that the spherical part of the proton density distribution
is equal to that for neutrons: ρ0p = ρ0n = ρ0. Anyway, the
neutron skin is small.

If we assume that ρ2n(r) = Knρ0(r), the propor-
tionality constant can be expressed in terms of the
quadrupole moment Qn = Qzz = N

∫
(3z2 − r2)ρ(r)d3r:

Kn = √
5Qn/(4N

√
π

∫
ρ0r

4dr) and the tensor part of the
weak interaction is

hQ = − GF

2
√

2
γ5Y20ρ0

√
5πQTW

〈r2〉 , (2)

where QTW = 2C1nQn + 2C1pQp = −Qn + 0.08Qp is the
weak quadrupole moment, 〈r2〉 = 4π

∫
ρ0r

4dr ≈ 3R2
N/5 is

the mean squared nuclear radius, RN is the nuclear radius.
The quadrupoles Qp of the proton distribution in nuclei
are measured and tabulated in the literature. The neutron
quadrupoles Qn have never been measured. In deformed nuclei
Qn ≈ (N/Z)Qp.

In the electromagnetic transitions between the hyperfine
components the nuclear spin projection changes, and we
should present the PNC interaction Hamiltonian in terms of
the irreducible tensor components:

hQ = − 5GF

2
√

2〈r2〉
∑

q

(−1)qT (2)
q QTW

−q , (3)

where T (2)
q = C(2)

q γ5ρ0(r) is the electronic part of the operator,

C(2)
q = √

4π/5Y2q and for the second rank tensor QTW =
2QTW

0 .
The PNC electric dipole amplitude between states (|i〉 →

|f 〉) with the same parity due to the tensor weak interaction is

E
i→f

PNC =
∑

n

[ 〈f |d|n〉〈n|hQ|i〉
Ei − En

+ 〈f |hQ|n〉〈n|d|i〉
Ef − En

]
, (4)

where |a〉 ≡ |JaFaMa〉 is a hyperfine sate and d = −e
∑

i ri

is the electric dipole operator, F = J + I is the total angular
momentum of an atom, J is the electron angular momentum,
and I is the nuclear spin. More detailed formulas are presented
in the Appendix.

In performing numerical calculations we follow our earlier
work [21] on spin-dependent PNC in single-valence-electron
atoms. We include the nuclear anapole moment contribution as
well, so that in most of cases the total PNC amplitudes consist
of three terms: the spin-independent contribution due to weak
nuclear charge, the anapole moment contribution, and the weak
quadrupole moment contribution. This allows us to fix the
relative sign of all three terms. Random-phase approximation
(RPA) is used for all operators of external fields, including
the PNC operators and the electric dipole operator. Brueckner
orbitals are used to include the core-valence correlations (see
[21] for details).

We also use analytical estimations to check numerical
results and their uncertainty. To do this we use the radial wave
functions near the nucleus from Ref. [1]:

fnκ = κ

|κ| (κ − γ )

(
Z

a3
0ν

3

)1/2 2


(2γ + 1)

( a0

2Z

)1−γ

rγ , (5)

gnκ = κ

|κ|Z
(

Z

a3
0ν

3

)1/2 2


(2γ + 1)

( a0

2Z

)1−γ

rγ , (6)

where γ = √
κ2 − Z2α2, a0 is Bohr radius, ν2

n = −1/(2εn) is
the effective principle quantum number, εn is the orbital energy
in a.u., and 
(x) is the 
 function.

Analytical and numerical results agree on the level of 30%
or better. The accuracy of the numerical results is few percent
for Fr and Ra+ and ∼30% for Yb+. A detailed analysis of
accuracy of the calculations can be found in Ref. [21]. We
believe that the accuracy of our present calculations is the
same as in Ref. [21].

III. RESULTS AND DISCUSSION

A. s-s and s-d transitions

Calculated PNC amplitudes between different hfs com-
ponents of s and d states of 173Yb+, 223Fr, and 223Ra+

are presented in Table I. The amplitudes consist of three
contributions, the spin-independent contribution due to nuclear
weak charge QW , the contribution of the nuclear anapole
moment , and the contribution of the neutron quadrupole
moment q. We have chosen these atoms because they are
considered for the PNC measurements (see, e.g., [21–27]) and
because some isotopes of these atoms have deformed nucleus
and therefore large quadrupole moments for both proton and
neutron distributions. Electric quadropole moments (Qp) are
known and tabulated [28]. The values for considered iso-
topes are Qp(173Yb) = 2.80(4)b, Qp(223Fr) = 1.17(2)b, and
Qp(223Ra) = 1.25(7)b. Using the estimate Qn ≈ (N/Z)Qp

we see that the largest contributions of the neutron quadrupole
term to the PNC amplitude is ∼10−4 of the spin-independent
contribution. This is a relatively small value which probably
means that one should look for enhancement factors, such
as, e.g., close states of opposite parity. The atoms considered
above do not have such enhancement. They were originally
chosen for the measurements of the spin-independent PNC.
They have large Z (PNC scales as ∼Z3) and relatively simple
electron structure (one electron above closed shells) which
allow for accurate interpretation of the measurements. The
study of neutron quadrupole moments needs different criteria
for choosing the objects for measurements. One could search,
e.g., for close states of opposite parity with �J = 2. Such
states can be only mixed by the neutron quadrupole moment
and PNC amplitudes involving such states can be enhanced
to the measurable level by small energy intervals. Note also
that high accuracy of the calculations is not needed at this
stage. Therefore, promising candidates can probably be found
in atoms with dense spectra such as atoms with open d or f

shells. Molecules can be good candidates too.
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TABLE I. PNC amplitudes 〈a,F1|EPNC
z |b,F2〉 (z components) for

the s-s and s-d transitions in 173Yb+ (I = 7/2, QW = −96.84), 223Fr
(I = 3/2, QW = −128.25), and 223Ra+ (I = 3/2, QW = −127.2).
Weak nuclear charge (QW ), nuclear anapole moment (), and neutron
quadrupole moment (Qn) contributions are presented. The unit for
Qn is barn (1 b = 10−24 cm2).

Isotope/ PNC amplitude
transition F1 F2 10−10iea0

173Yb+ 1 2 −0.41 × [1 − 0.022 − 7.5 × 10−6Qn]
5d3/2-6s 2 2 −0.53 × [1 − 0.016 − 2.7 × 10−6Qn]

2 3 −0.17 × [1 − 0.005 + 1.4 × 10−5Qn]
3 2 0.28 × [1 + 0.007 − 1.1 × 10−5Qn]
3 3 −0.48 × [1 + 0.004 + 2.1 × 10−6Qn]
4 3 0.37 × [1 − 0.016 + 2.7 × 10−6Qn]

173Yb+ 1 2 −6.8 × 10−4 + 4.8 × 10−6Qn

5d5/2-6s 2 2 −1.4 × 10−3 + 1.1 × 10−5Qn

2 3 −4.6 × 10−4 − 3.1 × 10−6Qn

3 2 9.4 × 10−4 − 8.8 × 10−6Qn

3 3 −1.6 × 10−3 − 8.5 × 10−6Qn

4 3 1.2 × 10−3 + 4.1 × 10−6Qn
223Fr 1 1 −0.31 × [1 − 0.023 + 3.4 × 10−5Qn]
7s-8s 1 2 0.54 × [1 + 0.17 + 6.7 × 10−6Qn]

2 1 0.54 × [1 − 0.16 + 6.7 × 10−6Qn]
2 2 0.63 × [1 − 0.014 − 6.7 × 10−6Qn]

223Fr 1 0 −4.5 × [1 − 0.026 − 1.1 × 10−5Qn]
7s-6d3/2 1 1 −5.0 × [1 − 0.026 − 4.3 × 10−6Qn]

1 2 3.9 × [1 + 0.026 − 8.9 × 10−6Qn]
2 1 −1.7 × [1 + 0.016 + 7.8 × 10−6Qn]
2 2 −4.5 × [1 + 0.016 + 4.8 × 10−6Qn]
2 3 4.5 × [1 − 0.015 + 2.2 × 10−6Qn]

223Fr 1 1 4.9 × 10−3 + 1.0 × 10−4Qn

7s-6d5/2 1 2 −5.8 × 10−3 − 1.2 × 10−4Qn

2 1 1.7 × 10−3 − 9.1 × 10−6Qn

2 2 6.7 × 10−3 − 4.0 × 10−5Qn

2 3 −7.2 × 10−3 + 5.0 × 10−5Qn
223Ra+ 1 0 −3.0 × [1 − 0.025 − 9.5 × 10−6Qn]
7s-6d3/2 1 1 −3.4 × [1 − 0.022 − 5.2 × 10−6Qn]

1 2 2.6 × [1 + 0.016 − 8.9 × 10−6Qn]
2 1 −1.2 × [1 + 0.0003 + 1.4 × 10−5Qn]
2 2 −3.0 × [1 + 0.0062 + 2.4 × 10−6Qn]
2 3 3.0 × [1 − 0.015 + 1.9 × 10−6Qn]

223Ra+ 1 1 1.4 × 10−3 + 6.2 × 10−5Qn

7s-6d5/2 1 2 −1.6 × 10−3 − 7.8 × 10−5Qn

2 1 4.7 × 10−4 − 1.0 × 10−5Qn

2 2 1.8 × 10−3 − 3.5 × 10−5Qn

2 3 −1.9 × 10−3 + 2.9 × 10−5Qn

B. Hyperfine transitions

Similar to the anapole moment contribution, the neutron
quadrupole moment can lead to PNC transition between
different hyperfine components of the same state. We found
that to have a nonzero contribution of the weak quadrupole
moment the minimal value of the electron angular momentum
in a single-valence-electron atom is J = 3/2.

This means that the effect is zero in the ground state of all
atoms considered above. Therefore, we consider the Bi atom
instead for which first measurements of atomic PNC were
performed [29]. The results of the calculations are presented

TABLE II. Nuclear anapole and neutron quadrupole contributions
to the PNC transition between hfs components of the ground state of
209Bi (I = 9/2, QW = −118.65).

PNC amplitude
F1 F2 10−10iea0

3 4 −2.0 × 10−4 + 2.6 × 10−6Qn

4 5 −2.4 × 10−4 + 7.6 × 10−7Qn

5 6 −2.1 × 10−4 − 1.8 × 10−6Qn

in Table II. Using estimations Qn ≈ (N/Z)Qp ≈ −0.9b,
and (Bi) ∼ 0.1 [11] we see that the neutron quadrupole
contribution is only about one order of magnitude smaller
than the anapole contribution.

C. Close levels of opposite parity in lanthanoids

As we discussed above the quadrupole PNC contributions
is at least four orders of magnitude smaller than the scalar
one. This makes it hard to measure and one should look for
enhancement factors. Strong enhancement can take place when
a pair of states of opposite parity is separated by a small energy
interval. Such pairs can be found in lanthanoid atoms. For the
atoms considered above the typical energy denominator [see
formula (4)] is ∼10 000 cm−1. Therefore, for the quadrupole
contribution being similar in value with the scalar one we need
to look for energy intervals between states of opposite parity,
∼1 cm−1. We shall consider close states with the difference
in the value of the total angular momentum �J = 1,2. The
opposite parity states with �J = 2 can only be mixed by
weak quadrupole making it the only contribution to the PNC
amplitude. This is a clear case for the weak quadrupole study.
In contrast, the states with �J = 1 can be mixed by both weak
quadrupole and nuclear anapole. We consider these two cases
separately.

1. Close states with �J = 2

Table III shows some examples of the pairs of states for
lanthanoid atoms separated by energy interval �E � 10 cm−1

and having the values of the total angular momentum J

which differ by 2. The data have been obtained by analyzing
the NIST databases [30]. We include only states which
seem to be promising for the study of the PNC caused by
neutron quadrupole moment. We excluded atoms where all
stable isotopes have small nuclear spin (I < 1) and thus no
quadrupole moment. We excluded highly excited states and
pairs of close states if an electron configuration for at least one
state is not known.

Neither scalar nor anapole PNC interactions can mix
the states with �J = 2. The weak quadrupole is the only
contribution to the PNC involving the states. This makes
them good candidates for the study of the neutron quadrupole
moments. If one of the states is connected to the ground state by
an electric dipole transition (E1) one can study the interference
between Stark-induced and PNC-induced amplitudes of the
transition to the ground state similar to what was measured in
Cs [3]. Otherwise, one can study the interference between the
hyperfine or Stark-induced and the PNC-induced amplitudes
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TABLE III. Ground states and pairs of close states of opposite parity with �J = 2 in some lanthanoid atoms and corresponding PNC
amplitudes.

Atom/ E �E hQ |EPNC|
Qp(b) States J (cm−1) τ (cm−1) m.e. (a.u.)

143Nd 4f 4.6s2 5I 4.0 0.0
−0.61(2) 4f 3.(4I ∗).5d2.(3F ) (6L∗).6s 7L∗ 5.0 11108.813 1 μs 〈4f 6s|hQ|5d2〉 1.1 × 10−13

4f 4.6s2 5F 3.0 11118.466 338 μs 9.652
4f 4.(5I ).5d.6s.(3D) 7G 2.0 11990.020 273 μs 〈4f |hQ|6s〉 5.4 × 10−13

4f 3.(4I ∗).5d.6s2 * 4.0 11992.388 1 μs 2.368
155Gd 4f 7.(8S∗).5d.6s2 9D∗ 2.0 0.0
1.27(3) 4f 7.(8S∗).5d2.(3P ) (10P ∗).6s 9P ∗ 3.0 15173.639 407 ns 〈5d|hQ|6p〉 3.9 × 10−11

4f 7.(8S∗).5d (9D∗).6s.6p.(3P ∗) 11F 5.0 15174.000 2 μs 0.361
4f 7.(8S∗).5d2.(1D) (8D∗).6s 9D∗ 6.0 17906.736 655 ns 〈5d|hQ|6p〉 4.3 × 10−12

4f 7.(8S∗).5d (9D∗).6s.6p.(3P ∗) 11F 8.0 17909.943 7 μs 3.207
161Dy 4f 10.6s2 5I 8.0 0.0
2.51(2) 4f 10.(5I〈8〉).5d.6s.(3D) 3[9] 10.0 18462.650 11 μs 〈4f |hQ|5d〉 2.0 × 10−12

4f 9.(6H ∗).5d2.(3F ) (8G∗).6s 9G∗ 8.0 18472.711 819 ns 10.061
165Ho 4f 11.6s2 4I ∗ 7.5 0.0
3.58(2) 4f 11.(4I ∗).5d.6s.(3D) * 6.5 20493.770 771 ns 〈4f |hQ|5d〉 5.8 × 10−12

4f 10.(5I ).5d2.(3F ) (7H ).6s 8H 8.5 20498.730 1 μs 4.961
4f 11.(4I ∗〈13/2〉).6s.6p.(3P ∗〈1〉) (13/2,1) 6.5 22157.859 512 ns 〈6p|hQ|5d〉 1.9 × 10−9

4f 11.(4I ∗).5d.6s.(3D) * 4.5 22157.881 3 μs 0.021
167Er 4f 12.6s2 3H 6.0 0.0
3.57(3) 4f 11.(4I ∗).5d.6s.6p 7.0 25861.232 567 ns 〈6p|hQ|5d〉 1.8 × 10−11

4f 11.(4I ∗).5d2.(3P ) (6I ∗).6s 7I ∗ 9.0 25863.453 507 ns 2.221

of the transition between these two states similar to what was
done for Dy [31]. In the latter case one needs metastable
states. Therefore, we performed estimations of the lifetimes
of each state in the table. The estimations are approximate. We
consider only E1 transitions, using experimental energies and
assuming that all E1 amplitudes are equal to 1 a.u. The results
are presented in Table III.

The EPNC amplitude is estimated using the formula

EPNC
ag ∼ c0

〈a|hQ|b〉〈b|D|g〉
�E

Qn. (7)

Here a and b is a pair of the close-energy states, state g is the
ground state, D is an operator of the electric dipole transition
(E1), c0 is angular coefficient [see formula (A3)], Qn is the
neutron quadrupole moment. For the estimations we assume
〈b|D|c〉 = 1 a.u., c0 = 0.1, Qn = (N/Z)Qp. The values of
the electric quadrupole moment Qp are taken from Ref. [28].

Estimations of the 〈a|hQ|b〉 matrix elements are more
complicated. Calculations show that all of them apart from
only the s-p3/2 matrix elements are very sensitive to many-
body effects. This is a well-known feature of any short-
range interaction of atomic electrons with the nucleus. The
wave functions of states with angular momentum l > 1 are
negligibly small on the nucleus and s states of other electrons
must come into play via many-body effects to make a dominant
contribution. Table III indicates that we need to deal with the
s-f , p-d, and d-f weak matrix elements which are sensitive
to many-body effects. Table IV shows the values of the weak
matrix elements calculated in the relativistic Hartree-Fock
(RHF) and RPA approximations (we use Gd atom as an
example). Taking into account the core polarization via the
RPA calculations increases the value of most matrix elements

by many orders of magnitude. Further increase can be found if
the configuration mixing is taken into account. Configuration
mixing brings into play configurations which make possible
the 6s-np3/2 contribution to the weak matrix element. Sample
diagrams are presented in Fig. 1. Note that the configuration
mixing is due to the Coulomb interaction. Therefore, we call
corresponding corrections to the weak matrix elements the
Coulomb corrections. For example, the Coulomb corrections
to the 〈5d|hQ|6p〉 and 〈5d|hQ|4f 〉 matrix elements in Gd, Ho,
and Er are given by the diagram in Fig. 1(a) and the correction
to the 〈6s|hQ|4f 〉 matrix element is given by the diagram in
Fig. 1(b). Note that the weak matrix element between first pair
of states in Nb is zero in the single-electron approximation

TABLE IV. Matrix elements of the neutron quadrupole operator
hQ and Coulomb corrections to them (a.u.). RHF stands for relativistic
Hartree-Fock, RPA is the random-phase approximation. Numbers in
square brackets stand for powers of 10.

〈a|HQ|b〉
Transition RHF RPA 〈6̃s,a| e2

|r1−r2| |6s,b〉
4f5/2–6s1/2 2.24[−19] 2.50[−19] 7.78[−17]
4f5/2–5d3/2 5.83[−25] 2.95[−19] 2.14[−16]
4f5/2–5d5/2 −1.89[−25] 2.54[−18] −5.50[−17]
4f7/2–5d5/2 5.57[−30] 4.60[−18] 2.54[−16]
6p3/2–6s1/2 2.11[−16] 5.62[−16] 4.40[−16]
6p1/2–5d3/2 5.00[−18] 1.46[−17] −3.46[−16]
6p3/2–5d3/2 4.30[−19] −1.72[−17] 1.39[−16]
6p3/2–5d5/2 4.27[−23] −4.15[−17] 4.27[−16]
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6s 6snp

a b

3/2

k=1

6s 5dnp

5d 4f

3/2

k=1

6s 5dnp

4f 5d

3/2

k=1

(c)(b)(a)

FIG. 1. Coulomb corrections to the weak matrix elements. Cross stands for the weak quadrupole interaction; summation over complete
set of np3/2 states is assumed. (a) The 6p-5d or 5d-4f matrix elements. (b) The 6s-4f matrix element. (c) The two-electron matrix element
between the 4f 6s and 5d2 states (e.g., in Nb).

since the states differ by two electron orbitals. In this case the
diagram in Fig. 1(c) is the lowest-order contribution.

We estimate the diagrams (Fig. 1) by calculating Coulomb
integrals in which one 6s wave function is replaced by a
correction induced by the hq operator. The correction is
calculated in the RPA approximation

(H RHF − ε6s)δψ6s = −(hQ + δV RHF)ψ6s . (8)

Corresponding Coulomb integrals are

〈6̃s,a|r</r2
>|6s,b〉 Fig. 1(a),

〈6̃s,5d|r</r2
>|5d,4f 〉 Fig. 1(b),

〈6̃s,4f |r</r2
>|5d,5d〉 Fig. 1(c).

Here r< = min(r1,r2), r> = max(r1,r2), and |6̃s〉 ≡ δψ6s .
Calculated values of the Coulomb integrals are presented in
the last column of Table IV. Substituting these numbers into
(7) we get estimations for the PNC amplitudes. The results are
presented in Table III. Note that in contrast to the amplitudes
considered in Secs. III A and III B the amplitudes here are
relatively large. In most cases they are larger than the PNC
amplitude in Cs [3]. In the case of the second pair of close
states in Ho, the amplitude is as large as in Yb, the largest
PNC atomic amplitude which has been measured so far [15].

In all cases considered above one can measure the transition
rate between the two close states of opposite parity and
study the interference between the PNC amplitude (7) and the
electric dipole transition induced by the hyperfine interaction.
In addition, when one of the states is connected to the ground
state by the magnetic dipole (M1) transition (first pairs of states
in Nd, Gd, Ho, and Er) or an electric quadrupole (E2) transition
(second pair of states in Nd) one can study the interference
between these M1 or E2 amplitudes and the PNC amplitude
(7) to the ground state.

2. Close states with �J = 1

Close states of opposite parity with �J = 1 are also
important. Here both the anapole moment and the weak
quadrupole moments contribute to the PNC effect. Measuring
both these moments are equally important. The anapole
moment has been measured for Cs only [3]. The limit on

the anapole moment of Tl obtained in the PNC measurements
[12] has also been obtained. Measuring more anapole moments
may help to extract constants of the weak interaction between
nucleons and to get better understanding of nuclear structure.
Measuring the PNC effect which has both anapole and
quadrupole contributions may have some advantages. The
effect is expected to be larger while different dependence
of two contributions on the quantum numbers (e.g., on total
angular momentum F , F = J + I) allows one to separate the
contributions.

Table V shows pairs of opposite parity states of lan-
thanoids separated by the energy interval �E < 10 cm−1

with values of the total angular momentum J which differ
by 1. The pairs have been found by analyzing the NIST
database [30]. We also included Ra which was studied in
Ref. [32].

It is clear that many of the systems listed in Table V are as
good as those considered in the previous section. Estimations
can be also done in a similar way. The most important
parameters defining the value of the PNC amplitude are the
energy interval between states of opposite parity and the type
of the weak matrix element. The values for different types of
weak matrix elements are presented in Table IV. The energy
intervals are presented in Table V. More detailed study of
the PNC amplitudes for all systems listed in Table V goes
beyond the scope of present work. The analysis can be done
for a particular system which is of the greatest interest to
experimentalists. In our view there are many systems which
look very promising but require careful consideration from the
experimental point of view.

IV. CONCLUSION

We argue that the measuring PNC in atoms can be used
to study the neutron distribution in nuclei via measuring the
parity-nonconserving weak quadrupole moment. The effect is
small in atoms which have been already used to study PNC.
However, a strong enhancement due to close states of opposite
parity can be found in lanthanoids and in Ra. Here the neutron
quadrupole moments can be studied together with the nuclear
anapole moments. There are many systems where the weak
quadrupole moment is the only enhanced contribution to the
PNC effect. The enhancement is sufficiently strong to make
the prospects of the measurements very realistic.
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TABLE V. Ground states and pairs of close states of opposite parity with �J = 1 in some lanthanoid atoms and Ra.

Atom States J E (cm−1) τ �E (cm−1)

Pr 4f 3.6s2 4I ∗ 4.5 0.0
Pr 4f 2.(3H ).5d.6s2 4H 5.5 9675.010 6 μs

4f 3.(4I ∗).5d.6s.(3D) 6K∗ 6.5 9684.240 5 μs 9.230
Pr 6.5 10423.680 306 μs

4f 3.(4I ∗).5d.6s.(3D) 4K∗ 5.5 10431.750 3 μs 8.070
Pr 4f 2.(3H ).6s2.6p 4I ∗ 4.5 19339.859 113 ns

5.5 19343.250 356 ns 3.391
Nd 4f 4.6s2 5I 4.0 0.0
Nd 4f 3.(4I ∗).5d2.(3F )(6L∗).6s 7L∗ 5.0 11108.813 1 μs

4f 4.(5I ).5d.6s.(3D) 7K 6.0 11109.167 29 μs 0.354
Nd 4f 4.(5I ).5d.6s.(3D) 7I 6.0 12917.422 7 μs

4f 3.(4I ∗).5d.6s2 5I ∗ 7.0 12927.232 2 μs 9.811
Sm 4f 6.6s2 7F 0.0 0.0
Sm 4f 6.(7F ).6s.6p.(3P ∗) 9G∗ 5.0 16344.770 753 ns

4f 6.(7F ).5d(8D).6s 7D 4.0 16354.600 1 ms 9.830
Gd 4f 7.(8S∗).5d.6s2 9D∗ 2.0 0.0
Gd 4f 7.(8S∗).5d(9D∗).6s.6p.(3P ∗) 7D 3.0 19399.840 252 ns

4f 7.(8S∗).5d2.(1G)(8G∗).6s 9G∗ 2.0 19403.104 164 ns 3.264
Gd 4f 7.(8S∗).5d2.(3F )(6F ∗).6s 5F ∗ 3.0 20299.869 121 ns

2.0 20303.801 169 ns 3.932
Tb 4f 9.6s2 6H ∗ 7.5 0.0
Tb 4f 8.(7F 〈6〉).6s2.6p〈1/2〉 (6,1/2)* 5.5 13616.270 430 ns

6.5 13622.690 1 μs 6.421
Dy 4f 10.6s2 5I 8.0 0.0
Dy 4f 10.(5I 〈8〉).6s.6p.(3P ∗〈2〉) (8,2)* 10.0 17513.330 metastable

4f 10.(5I 〈8〉).5d.6s.(3D) 3[8] 9.0 17514.500 5 μs 1.170
Dy 4f 9.(6H ∗).5d2.(3P )(8I ∗).6s * 9.0 23271.740 697 ns

4f 10.(5I 〈7〉).5d.6s.(3D) 8.0 23280.461 556 ns 8.721
Dy 4f 10.(5I 〈7〉).5d.6s.(3D) 6.0 23333.920 526 ns

4f 9.(6H ∗).5d2.(3F )(8G∗).6s * 7.0 23340.119 263 ns 6.199
Dy 4f 9.(6H ∗).5d2.(3F )(8F ∗).6s * 6.0 23359.820 359 ns

4f 10.(5I 〈7〉).5d.6s.(3D) 7.0 23360.660 435 ns 0.840
Ho 4f 11.6s2 4I ∗ 7.5 0.0
Ho 4f 10.(5I 〈6〉).5d〈3/2〉.6s2 (6,3/2) 6.5 18564.900 935 ns

4f 10.(5I 〈8〉).6s2.6p〈1/2〉 (8,1/2) 7.5 18572.279 1 μs 7.3
Ra 7s2 1S 0.0 0.0
Ra 7s6d 3D 2.0 13993.94 metastable

7s7p 3P ∗ 1.0 13999.3569 500 ns 5.42
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APPENDIX: MATRIX ELEMENTS

The projection M dependence of the amplitude can be
factorized by using the Wigner-Eckart theorem:

E
i→f

PNC = (−1)Ff −Mf

(
Ff 1 Fi

−Mf q Mi

)
〈Jf Ff ‖dPNC‖JiFi〉.

(A1)

By means of the standard angular momentum technique, the
matrix element of hQ between the hyperfine states |(JI )FM〉

and |(J ′I )F ′M ′〉 can be written as a product of the reduced
matrix elements of the electronic part and the nuclear part of
the interaction:

〈(J ′I )F ′M ′|hQ|(JI )FM〉 ∝ δF ′F δM ′M (−1)F+J+I

×
{
J ′ J 2

I I F

}
〈J ′‖T‖J 〉〈I‖ QTW‖I 〉. (A2)

The formula for the reduced matrix element of the PNC
amplitude induced by the weak quadrupole QTW can
be derived similar to the derivation of the nuclear-spin-
dependent (SD) PNC amplitude in Refs. [33] and [34].
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The result is

〈Jf Ff ‖dQ‖JiFi〉 =
√

(2I + 3)(2I + 1)(I + 1)

I (2I − 1)

√
[Fi][Ff ]

∑
n

[
(−1)Jf −Ji

{
Jn Jf 1

Ff Fi I

}{
Jn Ji 2

I I Fi

}

× 〈Jf ‖d‖nJn〉〈nJn‖he
Q‖J i〉

En − Ei

+ (−1)Ff −Fi

{
Jn Ji 1

Fi Ff I

}{
Jn Jf 2

I I Ff

} 〈Jf ‖he
Q‖nJn〉〈nJn‖d‖J i〉

En − Ef

]
.

(A3)

Here

he
Q = −5GF QTW

4
√

2〈r2〉 C (2)γ5ρ0(r)

is the electronic tensor part of the weak interaction and the notation [Fa] ≡ 2Fa + 1 is used.
For comparison we present two other contributions to the PNC amplitudes in atoms, namely the nuclear spin independent

(SI) weak charge QW contribution and the nuclear spin dependent (SD) contribution dominated by the magnetic interaction
of atomic electrons with the nuclear anapole moment (AM) [10,11]. They have been measured and calculated in many atomic
systems—see, e.g., [3,5–9,12,15,21,35–47]. The reduced matrix elements of SI and SD PNC amplitudes are presented, e.g., in
Ref. [48]:

〈Jf Ff ‖dSD‖JiFi〉 =
√

(2I + 1)(I + 1)

I

√
[Fi][Ff ]

∑
n

[
(−1)Jf −Ji

{
Jn Jf 1

Ff Fi I

}{
Jn Ji 1

I I Fi

}

× 〈Jf ‖d‖nJn〉〈nJn‖hSD‖J i〉
En − Ei

+ (−1)Ff −Fi

{
Jn Ji 1

Fi Ff I

}{
Jn Jf 1

I I Ff

} 〈Jf ‖hSD‖nJn〉〈nJn‖d‖J i〉
En − Ef

]
,

(A4)

where the vector operator is the electronic part of the SD interaction hSD = (GF /
√

2)καρ0(r) and the Dirac matrix is defined by

α =
(

0 σ

σ 0

)
.

The dimensionless parameter κ determines the strength of the SD PNC interaction. The three major contributions to κ come
from the electromagnetic interaction of the atomic electrons with the nuclear anapole moment [10,11], the electron-nucleus SD
weak interaction [46], and the combined effect of the SI weak interaction and the magnetic hyperfine interaction [49].
For the SI PNC reduced amplitude we have

〈Jf Ff ‖dSI‖JiFi〉 = (−1)I+Fi+Jf
√

[Fi][Ff ]

{
Ji Jf 1

Ff Fi I

} ∑
n

[ 〈Jf ‖d‖nJn〉〈nJn|HSI|J i〉
En − Ei

+ 〈Jf |HSI|nJn〉〈nJn‖d‖J i〉
En − Ef

]
,

(A5)

where the weak interaction is HSI = −GF QW/(2
√

2)γ5ρ0(r)
and QW is the nuclear weak charge. Note that the weak matrix
elements 〈nJn|HSI|J i〉 are not reduced ones in Eq. (A5).

The single-electron orbitals used to calculate the matrix
elements are

ϕnκm(r) = 1

r

(
fnκ (r)�κm(θ,φ)

ignκ (r)�−κm(θ,φ)

)
, (A6)

where n is the principle quantum number and κ = ∓(j + 1/2)
(for j = l ± 1/2) is the angular quantum number for the Dirac
spinor. The relativistic single-particle matrix elements of the
PNC operators are

〈κ1‖he
Q‖κ2〉 = i

5GF QTW

4
√

2〈r2〉 〈κ1‖C(2)‖ − κ2〉

×
∫

(f1g2 − g1f2)ρ0dr (A7)

〈κ1‖hSD‖κ2〉 = −i
GF κ√

2
〈κ1‖C(1)‖κ2〉

∫
[(κ1 − κ2 + 1)

× g1f2 − (κ2 − κ1 + 1)f1g2)ρ0dr (A8)

〈κ1|HSI|κ2〉 = i
GF QW

2
√

2
δ−κ1,κ2

∫
(f1g2 − g1f2)ρ0dr. (A9)

Note that all weak matrix elements have imaginary values. The
reduced matrix element of C (k) is given by

〈κ1‖C (k)‖κ2〉 = (−1)j2+1/2
√

[j1][j2]

× ξ (l1 + l2 + k)

(
j2 j1 k

−1/2 1/2 0

)
,

(A10)

where ξ (L) = 1 if L is an even number, otherwise it is 0.
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