PHYSICAL REVIEW A 96, 012514 (2017)

Theoretical study of the hyperfine-interaction constants and the isotope-shift factors
for the 352 'Sy-3s3p >'P/ transitions in Al*

Tingxian Zhang,"> Luyou Xie,' Jiguang Li,>" and Zehuang Lu?
'College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
2Institute of Applied Physics and Computational Mathematic, Beijing 100088, People’s Republic of China
SMOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and
Technology, Wuhan 430074, People’s Republic of China
(Received 13 April 2017; published 21 July 2017)

We calculated the magnetic dipole and the electric quadrupole hyperfine interaction constants of 3s3p *!Py
states and the isotope shift, including mass and field shift, factors for transitions from these two states to the ground
state 3s2!S, in AlI' ions using the multiconfiguration Dirac-Hartree-Fock method. The effects of the electron
correlations and the Breit interaction on these physical quantities were investigated in detail based on the active
space approach. It is found that the core-core and the higher order correlations are considerable for evaluating
the uncertainties of the atomic parameters concerned. The uncertainties of the hyperfine interaction constants in
this work are less than 1.6%. Although the isotope shift factors are highly sensitive to the electron correlations,
reasonable uncertainties were obtained by exploring the effects of the electron correlations. Moreover, we found
that the relativistic nuclear recoil corrections to the mass shift factors are very small and insensitive to the electron
correlations for Al*. These atomic parameters present in this work are valuable for extracting the nuclear electric
quadrupole moments and the mean-square charge radii of Al isotopes.
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I. INTRODUCTION

The exotic nuclei and the nuclei close to the drip line
have some peculiar structures and properties, such as larger
nuclear radii and reaction cross section, etc. Investigating
the properties of these nuclei, especially for the evolutionary
trend of the nuclear properties along the isotope chain, is
helpful for understanding the many-body interactions within
the nucleus and improving the nuclear structure theory [1].
To characterize the nuclear properties quantitatively, nuclear
electric quadrupole moment Q and mean-square charge radius
(r?) are required. In the chain of aluminum isotopes, the
proton-rich isotope Al has the proton-halo structure [2,3],
the neutron-rich isotopes >'3Al are in the vicinity of the
“island of inversion”, and the 2°Al is a self-conjugate nucleus
[4]. To date, the Q and (r?) values have been available only
for a few isotopes of aluminum, and the accuracies are not
high enough except for 2’ Al [5-7]. For example, the Q value
of 2°Al, with an uncertainty of about 12%, was deduced
from the experimental hyperfine structures measured using
atomic laser spectroscopy [8] in assistance of the relation
2%60/?70Q = 2°B/? B (B is the electric quadrupole hyperfine
interaction constants). For the A1, 28A1 and 333 Al1 isotopes,
the nuclear electric quadrupole moments were measured by
the B-ray-detected nuclear magnetic resonance (8-NMR) or -
ray-detected nuclear quadrupole resonance (8-NQR) method
[3,9-13]. However, the error bars, about 20% for 2>Al and
3T Al are so large that the nuclear deformation parameter f8
cannot be determined. Compared with the nuclear quadrupole
moment, the nuclear charge mean square root is scarce. The
(r?) value of these interesting nuclei has not been reported. As
a consequence, it is indispensable to determine accurately the
Q and (r?) values of aluminium isotopes for exploring their
nuclear properties.
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The nuclear-model-independent data Q and (r?) can be
extracted by combining the measured hyperfine structures
and isotope shifts with theoretical prediction of the electric
field gradient and the isotope shift factors. The collinear laser
spectroscopy technique has been developed to measure the
isotope shifts and the hyperfine structures of the exotic or ra-
dioactive nuclei with short lifetime and low production [1,14].
In addition, the high-precision measurements of hyperfine
structures and isotope shifts of Al' ions can be obtained
based on the Al™ ion optical clock [15] and thus can be used
to verify the calculation. For these reasons, the Al" ion can
be considered as a good candidate for extracting the nuclear
electric quadrupole moment Q and mean-square charge radius
(r?) of Al isotopes.

Most of the earlier theoretical works related to the
3s3p 13 PY-35% 1S transitions in Al ions focused on tran-
sition energies and probabilities [16-30]. For the hyperfine
interaction constants, we only found theoretical reports by
Kang er al. and Andersson et al. In their works, the off-
diagonal magnetic dipole and electric quadrupole hyperfine
interaction constants of the 3s3p -3 Py states were calculated
for investigating the effect of hyperfine interaction on the
lifetime of metastable states 3s3 p3P(j”2 [28,30]. While the
isotope shift factors of the transitions 3s3p '3 P/-3s21S, for
Al" ions have not been reported.

In this work, we calculated the hyperfine interaction
constants of 3s3p>!P; states and the mass shift and field
shift factors of the 32!Sy-3s3p>!P? in AI' using the
multiconfiguration Dirac-Hartree-Fock (MCDHF) method.
The active space approach was adopted to investigate the
effects of electron correlations on the hyperfine interaction
constants and the isotope shift factors in detail. Based on
this, we built a computation model which can capture electron
correlations effectively and allow us to obtain high-precision
atomic parameters concerned. In addition, the relativistic
nuclear recoil corrections to the isotope shift factors were
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discussed. We hope this work could support the experimental
investigations about the Al" ion optical clock and the studies
about the nuclear properties of Al isotopes.

II. THEORETICAL METHOD
A. MCDHF method

In the MCDHF method, an atomic state wave function
(ASF) W is a linear combination of configuration state
functions (CSFs) ® with the same parity P, total angular
momentum J, and its component along the z direction M
(311,

Ncsr

W(yPIM)) =) ci®(y;PIM)). (1)

i=1

In Eq. (1), ¢; is the mixing coefficient and y represents other
appropriate labeling of the CSF. The CSFs are the linear
combinations of products of one-electron Dirac orbitals. In
the self-consistent field (SCF) calculation, both the mixing
coefficients and the orbital are optimized. After the virtual
orbital set is obtained, more electron correlations can be
included in the relativistic configuration interaction (RCI)
calculations by further expanding the configuration space. In
the RCI calculations, all orbitals are kept frozen, and only the
mixing coefficients are variable. The Breit interaction in the
low-frequency approximation,

(a; -rij)(a; 'rij)i|, @)

1
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is also taken into account in the RCI computation [32].

B. Hyperfine interaction

The hyperfine interaction is caused by the interaction
between the electrons and the electromagnetic multipole mo-
ments of the nucleus, and its Hamiltonian can be represented
using the spherical tensor operators T® and M® [33],

Hy =Y T® . M. (3)

k=1

Here, k =1 and k = 2 represent the magnetic dipole and
electric quadrupole interactions, respectively, and the higher
order terms are tiny and neglected in this work. For an
N-electron atom, the electronic tensor operators T and T?
are the sums of the one-electron operators,

N N
TO =3 "tV(j) =" —iale; - L,CONI? @
j=1 j=1
and
N N
T =% 19 =) -0, 5)

Jj=1 Jj=1

Here, i is the imaginary unit, ¢ is the fine-structure constant,
C™ and C? are spherical tensor operators, and I is the orbital
angular momentum operator. The nuclear tensor operators
M® and M are related to magnetic dipole moment z; and
electronic quadrupole moment Q of the nucleus with spin /
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through [34]

wr = (IM{(=D|M’|IM(= D) (6)
and

0 = (IMi(= D|MP|IM;(= D). (7)

In the first-order perturbation approximation, the magnetic
dipole and the electric quadrupole hyperfine interaction con-
stants A and B are [34]

A= WP HITO P ®
I[J{J+ D)2
and
B, = ZQ[M}UZ(\IJ(PJ)HT(Z)II\IJ(PJ)>. ©
(J +DQJ +3)

C. Isotope shifts
The isotope shift is composed of the mass shift (MS) and the
field shift (FS). The former is caused by the motion of nucleus
with finite mass and the latter by the nuclear distribution. For
a transition, the isotope shift is

AELY = AESY + AESY (10)
_(L_ L AKrms + AFS(rH)A4 (11)
M M

In the formulas above, the M and M’ are the nuclear masses
of the isotopes A and A’, respectively. In addition, § (r?)* 4" =
(r’)A — (r>)*'. The mass shift (MS) can be separated into
the normal mass shift (NMS) and the specific mass shift
(SMS). The relativistic nuclear recoil Hamiltonians Hgnwms
and Hrnwms correspond to one-body and two-body relative
mass shift operators, respectively [35,36],

Hrms = Hrawms + Hrsms (12)
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(14)

For a given level, the normal mass shift factors Krnys and the
specific mass shift factors Krgms are defined as [37]

Krnms = M (W[ Hrnms| W) (15)
and
Krsms = M (V| Hrsms | V). (16)

For a transition, the AK is the difference of the mass
shift factors between the upper (#) and lower (/) levels, and
AKrms = AKgrnms + AKgsums-

The field shift (FS) factor for a given transition is expressed
as [38]

21 [ Zée? 2
AF = — A (0)|7, (17)
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where A|W(0)|? is the change of the total electronic probability
density at the origin

AIWO)F = Ap*(0) = p5(0) — p{ (0). (18)

III. COMPUTATIONAL MODEL

Generally the precision of the calculated atomic parameters
mainly depends on description of electron correlations in the
atomic system. In the frame of the MCDHF method, one
can consider electron correlations systematically, adopting the
active space approach. According to the perturbation theory,
the electron correlations can be divided into the first-order
and the higher-order correlations. The first-order correlation
effects are captured by the CSFs generated through the single
(S) and double (D) excitations from the occupied orbitals in
the single reference configuration (SR) sets. In order to capture
the electron correlations efficiently, the occupied orbitals in the
reference configuration are separated into the valence and the
core orbitals. Therefore, the first-order correlation is composed
of the correlation between the valence electrons (VV corre-
lation), the correlation between valence and core electrons
(CV correlation), and the correlation between core electrons
(CC correlation). The one beyond the first-order correlation
is defined as the higher-order correlation and captured by
the configuration space expanding from the multireference
(MR) configurations set, i.e., the MR-SD model. It was shown
that this method is capable of accounting for the electron
correlation for the complex ions and atoms [32,39-43].

A. Capture of the first-order correlations

In our calculations, the atomic state wave function of even
3s% and odd 3s3 p states were optimized separately. We treated
the 1s, 2s, and 2p orbitals as the core, and the others as the
valence orbitals. The VV and CV correlations were taken into
account in the SCF calculations. As shown in the second
column of Tables I and II, the active orbitals (AO) were
enlarged layer by layer in order to monitor the convergence
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of the physical quantities concerned. These steps were labeled
by CV,-nl, where the subscript 1s means the CV correlation
between the 1s core and the valence orbitals was involved.
n and / are the maximum principal quantum number and the
maximum angular quantum number of the outermost active
orbitals at each step, respectively. In our test calculations,
it was found that the contributions from orbitals with large
orbital angular momentum / (such as 7i, 7h, 8g orbitals, etc.)
are fractional to the atomic parameters concerned, so these
orbitals were not included in the set of active orbitals. The
final set of active orbitals in our calculations was composed of
eleven layers of orbitals with / < 2, seven layers with [ = 3,
three layers with / = 4, and one layer with / = 5. The number
of CSFs for 352 and 3s3 p states in each step are also presented
in Tables I and II. The SCF calculations started from the Dirac-
Hartree-Fock approximation (labeled as DF in the table), in
which the occupied orbitals in the reference configurations
were optimized as spectroscopic. Subsequently, these orbitals
were kept frozen, and only the added orbitals in the active
set were variable. At last, the orbitals sets formed in the step
CV,-13d were fixed in subsequent RCI calculations in which
the CCy, and the higher-order correlations were included.

The correlation in the n =2 core (labeled as CCyy)
was taken into account by allowing the single and double
excitations from the 2s and 2p core orbitals to the largest
active set. So far, all the first-order correlations were included
in our calculations except the correlation between the core
orbitals 1s (CCy, correlation). In fact, the CC correlation is
negligible and will be discussed in section below.

B. Capture of the higher-order correlations

The higher-order correlation can be captured in two ways.
One is to add the CSFs generated by the triple (T) and quadru-
ple (Q) substitutions from the single reference configuration,
and the other is to include those produced through the SD sub-
stitutions from the multireference configurations. The first way
is impracticable for complex atoms, since the configuration

TABLE L. The number of CSFs for the ground state 3s” in various correlation models. AO represents the active orbitals in different

calculation models, and NCSF is the number of CSFs.

NCSF
Reference configurations AO(Mpax!) Model JP =0°
25 22p 0352 DF 1
4s,3p,3d,4f CVy-4f 61
5s,4p,4d,5f,5¢g CV,-5¢ 254
6s,5p,5d,6f,6g,6h CVy,-6h 616
7s,6p,6d,7f,7g,6h CVy,-7g 1098
8s,7p,7d,8f,7g, 6h CVy-8f 1603
9s,8p,8d,9f,7g, 6h CVy,-9f 2211
10s,9p,9d, 10f, 7g, 6h CVy,-10f 2922
11s, 10p, 10d, 10 f, 7g, 6h CVy-11d 3509
125, 11p, 11d, 10 f, 7g, 6h CV-12d 4163
13s,12p, 12d, 10, 7g, 6h CVy,-13d 4884
135, 12p, 12d, 10 f, 7g, 6h CCy 14988
+2522p°3p? 8s,8p,7d,8f,7g, 6h MR;-8 23358
+2522p*3524p?; 2522p*3523d?; 25 22p 335 3p 3d 6s,7p,6d,6f,6g,6h MR,-6 229659
+2522p*3s23pdp; 25 22p*3s523d4d; 25 2p33s *4sdp; 25 22p 43524 pSp 5s,6p,5d,4f,5¢g MR;3-5 357223
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TABLE II. The number of CSFs for the excited states 3s3p in various correlation models. AO represents the active orbitals in different

calculation models, and NCSF is the number of CSFs.

NCSF

Reference configurations AO(Mmaxl) Model Jr=1°
25 22p%3s3p DF 2

4s,4p,3d,4f CV-4f 600

S5s,5p,4d,5f,5g CVs-5¢ 2326

6s,6p,5d,6f, 6g,6h CV,-6h 5573

7s,7p,6d,7f,7g, 6h CV,-7g 9860

8s,8p,7d,8f,7g, 6h CV -8 f 14292

9s,9p,8d,9f,7g, 6h CV,-9f 19594

10s, 10p, 9d, 10f, 7g, 6h CVy,-10f 25766

11s, 11p, 10d, 10f, 7g, 6h CV,,-11d 30696

125, 12p, 11d, 10 f, 7g, 6h CVy,-12d 36146

13s, 13p, 12d, 10 f, 7g, 6h CV,-13d 42116

13s,13p, 12d, 10f, 7g, 6h CCy 223468

+2522p©3p3d 8s,8p,8d,8f,7g,6h MR;-8 352702
+2522p©3s5p; 25 22p %354 p; 25 22p ©3d5p 5s,7p,5d,5f,5¢g MR;-5 400690
+25 22p*353pdp?; 25 22p 4353 p4d® 4s,6p,5d,4f MR;-4 1327012

space will be expanded too rapidly. Moreover, itis unnecessary
to capture all TQ substitutions in practical calculations,
because the contributions from most of them are tiny. Actually,
the SD excitations from the multireference configuration
set is equivalent to the restricted TQ excitations from the
single reference configuration, but reserve the important TQ
excitations by properly selecting the reference configurations.
Therefore, the most important higher order correlation can
be captured by using the MR-SD model. From the physical
viewpoint, the multireference configuration set is composed
of the CSFs with large mixing coefficient in the first-order
configuration space. In this case, we selected the dominant
CSFs in the configuration spaces obtained with the CCyy
model to form the multireference configuration set, since the
contributions of the CC; correlations to the mixing coefficient
of the dominant CSFs are negligible. The dominant CSFs can
be identified according to the weight factor that is defined as

1/2
0= <ch.2> ) (19)

Here, the sum extends over the CSFs that belong to the same
configuration [41]. Table III shows the weight of the selected

configurations. It should be noted that the weight factors in
this table were obtained by summing the configuration with
¢; > 0.01, because the mixing coefficients ¢; < 0.01 only have
tiny effects on the calculated weight factor of the configuration.

In order to explore the convergency of the higher order
correlation effect, we expanded the multireference configura-
tion set in terms of the conditions w > 0.05, w > 0.02, and
w > 0.01, i.e., the MR, MR,, and MRj sets in Table III,
respectively. It should be emphasized that only the higher
order correlation between valence orbitals (3s and 3p) and
the n = 2 core orbitals (2s and 2p) was considered in our
calculations. In addition, in order to ensure the convergency
of the atomic parameters concerned for a given MR set, the
orbitals in the active set were added layer by layer as mentioned
earlier. For example, five layers of correlation orbitals were
added for capturing adequately the higher order correlation
under the condition of w > 0.05. This was marked as MR -8,
in which 8 is the maximum principal quantum number of the
active s orbitals for the corresponding MR; model. Similar
regulation was used for the MR, and MR3 models as well.
Moreover, we should point out that in the selection of the
multireference configurations, we balanced the weights of the
given configurations for * P{ and ' P{ states since these levels

TABLE III. The weight factors w of the configurations in multireference configurations (MR) for the 352 S, and 353 p 31P? states.

Model 35218, 3s3p3pPy 3s3plpy
Configurations w Configurations w Configurations w
MR, 25 22p 6352 0.9810 25 2p%3s3p 0.9896 25 22p%3s3p 0.9781
2522p ©3p? 0.1382 2522p ®3p3d 0.0557 2522p ®3p3d 0.1439
MR, 2522p*3523d? 0.0385 25 2p%3s5p 0.0175 2522p%3s5p 0.0360
25 22p 435 24p? 0.0300 25 22p%3s4p 0.0209 25 22p%3s4p 0.0270
25 22p33s3p3d 0.0204 2522p®3d5p 0.0085 2522p%3d5p 0.0262
MR; 25 2p*3s23pdp 0.0179 25 22p 4353 p4d? 0.0194 25 22 p*3s3 pad® 0.0188
25 22p *3523d4d 0.0162 25 22p 4353 p4p? 0.0160 2522p*3s3p4p? 0.0111
252p33s24s4p 0.0162
25 22p*3524pSp 0.0158
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FIG. 1. The hyperfine interaction constants (in MHz) A (a) and B (b) of 353 p > P/ states in the Al* ion as functions of the computational

models.

were optimized on a common orbital basis set. It means that
the 25 22p %3s5p and 25 22p ©3d5p were added in the MR,
set, since their weights for ! P} state satisfy w > 0.02. At last,
the contribution of the Breit interaction was evaluated in the
DF model. The calculations in this work were carried out by
using the GRASP2K code [44,45].

IV. RESULTS AND DISCUSSION
A. Hyperfine interaction constants of 3s3p >'P?

Figure 1 shows the magnetic dipole (A) and the elec-
tric quadrupole (B) hyperfine interaction constants of the
3s3p 1P/ states in Al ions as functions of the configuration
spaces. It can be seen that seven layers of correlation orbitals
are enough to capture the VV and CV electron correlation
effects in the SCF calculations. The extra three layers were
augmented for adequately describing the core-core correlation
in the subsequent RCI computation. In addition, the relatively
large oscillation for the electric quadrupole hyperfine interac-
tion constants of the 3s3p IPI” state occurs because the scale
in this figure is small. The contributions of CCy; correlations
to the A and B constants are —4% and —9% for the * P?
state, respectively, and 9% and 5% for the 1P1” state. The
higher-order correlation on the hyperfine interaction constants
were accounted for by the MR3-4 model. These contribute
to the magnetic dipole and the electric quadrupole hyperfine

TABLE IV. The off-diagonal hyperfine interaction constants
(in MHz) between 3s3p 3"Pl" and 3P0" (Azp, Ajp), and between
3s3p3!P7 and *PY (A3 Bsy, A2 Bip). The results of Kang et al.
and Andersson et al. in this table are converted from the hyperfine
matrix elements W3, and Wy in the work of Kang et al. [28] and the
reduced hyperfine interaction constants of the 3s3p in the work of
Andersson et al. [30], respectively. The nuclear spin, the magnetic
dipole, and the electric quadrupole moments of VAL =5 /2, i =
3.6415069y, O = 0.1466b were taken from the table by Stone [48].

Author Aso A Az, A, By By,
This work 1309 1027 —-537 826 7.50 —0.0121
Andersson [30] 1349 1071 —555 861 8.05 —0.0098
Kang [28] 1162 928

interaction constants of the > P} state by 0.6% and 3%,
respectively, and of the lPl” state by —8% and —5%. It is worth
noting that the higher order correlation effects counteract the
core-core correlation effects. For instance, the effects of the
CCy, correlation on the magnetic dipole hyperfine interaction
constants of the lPl” states are offset by the higher order corre-
lation, so the final results obtained with the MR3-4 model are
in good agreement with the one from the CV |;-13d models. In
fact, Engles [46] and Jacek et al. [47] found this phenomenon
in their works; that is, the CC correlations always make the
agreement worse between the calculated hyperfine interaction
constants and the experimental values, and these discrepancies
can be offset by the higher order correlation. Hence, for the
calculation asked for high precision, the CC correlation and the
higher order correlation are indispensable, which also allows
us to evaluate the uncertainties in the calculation.

Kang et al. and Andersson et al. [28,30] calculated the
off-diagonal hyperfine interaction constants using the MCDHF
method in order to investigate the influence of hyperfine
interaction on the lifetime of metastable states 3s3p 3 PJ,. To
confirm our computation models are reliable, we made com-
parisons for the off-diagonal hyperfine interaction constants
between our and their results in Table IV. As can be seen from
this table, excellent agreement was found between our results
and those of Andersson ef al. The less good agreement with
results of Kang et al. is caused by the fact that the core-valence
correlation between the 1s orbitals and the valence orbitals, the
core-core correlation, and the higher-order correlation were
not considered in their calculation.

Table V shows the calculated hyperfine interaction con-
stants corresponding to the MR3-4 model and their uncertain-
ties (in the parentheses) of the 3s3p 3'lPl" states in Al ions.

TABLE V. The hyperfine interaction constants (in MHz) A and
B of 3s3p 1Py states in Al™ ions. The results in the parentheses are
the uncertainties for our results.

Model 353p3 Py

A B A B

3s3p Py

MR;-4 1327.3(10.2) —15.1(0.2) 197.1(2.8) 22.1(0.3)
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FIG. 2. The relativistic nuclear recoil corrections of the NMS (a) and SMS (b) factors for the transitions 3s2 ! Sp~3s3p *! P in the Al" ion

as functions of the computational models.

Generally, the uncertainties result from electron correlations
neglected in the computational models and physical effects. In
this work the VV, CV, CCy,, and the main part of higher
order correlations were taken into account systematically.
According to the convergence trend illustrated in Fig. 2, there
are around 0.8% uncertainties in the calculations. The CCj;
correlation and the higher order correlation involving the 1s
orbital were neglected in our computational models. From
our test, we found that the effects of the CC;, correlations
on the hyperfine interaction constants under investigation are
less than 1%. As discussed above, the effects of the core-core
correlation related to the n = 2 shell on the hyperfine interac-
tion constants almost counteract the higher order correlation
effects. We speculated that the cancellation also arises between
the CC;, and the related higher order correlation. Therefore,
the uncertainty due to the neglected CC;; and the higher
order effects should be less than 1%. Additionally, the Breit

TABLE VI. The AKRNMS (GHZ ll), AKRSMS (GHZ u), and AF
(GHz/fm?) factors for the transition 35 ' Sy-3s3p ! P{.

3Plu_IS0 1Pla_1 SU

Model AKRNMS AKRSMS AF AKRNMS AKRSMS AF

DF —614 —844 —-0.1944 —-615 —129 -0.1945
CVy,-4f =788 —1646 —0.1915 -911 —-732 —0.1921
CVy-5¢ —621  —967 —0.1965 —887 56  —0.1873
CVy,-6h —647 —943 —-0.2025 -—-957 86  —0.1928
CVy-7¢ —622 —972 —-0.2009 —-937 46  —0.1911
CVy,-8f —633 —-975 —-0.2029 -975 49  —0.1928
CVy,-9f —632 —975 —-0.2028 —978 48  —0.1930
CVy-10f —623 —-974 —-0.2026 -971 49  —0.1927
CVy-11d —-624  —-974 —-0.2026 -977 50  —0.1927
CVy-12d  —623 —974 —-0.2026 —-977 51 —0.1927
CVy-13d  —624  —974 —-0.2026 —-977 51 —0.1927
CCy =597 =596 —-0.2021 —-823 —152 —0.1930
MR;-8 —-617 =771 —-0.1928 —-841 —112 —0.1890
MR;-5 —718 —1154 —0.1982 —1064 —452 —-0.1916
MR;-4 —608 —989 —-0.1971 -931 —268 —0.1904

interaction was ignored in the present calculation, which gives
rise to 0.05% uncertainty. The total uncertainties of A and B
are 0.77% and 1.32% for the 3P/ state, and 1.42% and 1.55%
for the 'P{ state.

B. Isotope shift factors of transitions 35> !5,~3s3p >'P;

Table VI shows the isotope shift factors, including the
relativistic normal A Krnms and specific mass shifts factors
AKgrsms, and the field shift factors AF', for the transitions
3s2150-353p>!P{ as functions of computational models.
From this table we can see that the mass shift factors are
more sensitive to the electron correlations than the field shift
factors, especially for the specific mass shift factors. For
instance, from the model DF to CV -4 f, the change of the
AKgrnwms reaches 28% for the transition 3s% 'Sy —3s3p3 P?,
and 48% for 3s2'Sy—3s3p le’ . While the A Kgrsms reduced
by a factor of 2 for the transition 3s>!Sy-3s3p 3P/, and a
factor of 6 for the transition 3s*'Sp-3s3p 'Py, respectively.
In contrast, the change for A F is marginal, less than 2%. The
high sensitivity of the SMS factors to the electron correlations
is shown again when the CC,, correlations were included in
RCI computations. The influences of the CC,; correlation
on the AKgrnms is about 16%, and the change is about
three times for the AKggms of the transition 3s2'Sy—3s3p
"'P?. For the transition 352 ' Sy~3s3p 3 P? the effects of CCy,
correlation and related higherorder correlation on the isotope
shift factors are opposite, which is similar to the case of the
hyperfine interaction constants. However, the CC,, and related
higher-order correlations both decrease the AKgsms of the
transition 352 'Sy-3s3p ' PY.

We display the relativistic and nonrelativistic NMS
A Krnvs and A Knuvs, the SMS A Krsms and A Kqvs, the FS
AF factors and their uncertainties (in parentheses) in Table VII
for the transitions 3s%'Sy—3s3p *!P/. In the nonrelativistic
approximation, the NMS factors for a given transition are
proportional to its transition frequency v, i.e., the scaling law
AKnms = —v/1823 [49]. Using the experimental transition
energies, we obtained the nonrelativistic normal mass shift
factor AKnms = —615.67 (GHz u) for the 3s2'Sy—3s3p
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TABLE VII. The AKnus (GHz u), AKrnus (GHz u), AKgus (GHz u), AKsws (GHz u), and A F(GHz/fm?) factors for the transitions
352 18y-3s3p *!Py. The numbers in the parentheses are the uncertainties for our results.

Transition AKNMS AKRNMS AKSMS AKRSMS AF
1Sy =3Py —632(87) —608(86) —1003(150) —989(149) —0.1971(0.0059)
1Sy — Py —958(37) —931(36) —279(132) —268(127) —0.1904(0.0038)

3P? transition and AKnus = —983.86 (GHz u) for
the 3s2 1Sp-3s3p'Py transition, respectively. Compared with
our ab initio calculation, the discrepancies are less than 3%,
which due not only to the neglected CC,; and related higher
order correlations but also to the relativistic effect in the
atomic state wave functions. The linear correlation between
the convergency of the calculated transition energy and the MS
factors for a given transition has been found in the B™, C~, and
C1™ ions [41,50,51], which also occurs in the present case. We
deduced from the linear correlation that the SMS factors are
changed in a right direction with the MR calculations, since
the transition energies in MR3; model agree better with the
experimental value than those in MR; and MR, models. In
addition, from Table VII, it was found that for the transition
3s2180-3s3p 3 P! the contribution of the relativistic nuclear
recoil corrections to the NMS and SMS factors are 24 (GHz
u) and 13 (GHz u), respectively. For the other transition, it
has similar value. For the total MS factors of the transitions
3s21850-3s3p >1P?, the effects of the relativistic nuclear recoil
corrections are not more than 4%, which fits our expectation
that the relativistic nuclear recoil corrections for ions with
Z = 13 are small. In addition, we noticed that the effects of
the relativistic nuclear recoil corrections on the NMS and SMS
factors are insensitive to the electron correlations, which is
illustrated in Fig. 2.

For the isotope shift factors, the uncertainties from the
VV, CVy,, and CC,, correlations reach a satisfactory level.
Specifically, for the NMS factors of two transitions it is less
than 1%, and for the FS factors it is less than 0.1%. The
uncertainties of the SMS factors resulting from the VV, CV
and CC,, correlations were controlled less than 2% for the
transition 3s%1S,-3s3p3P? and 7% for 3s2'Sy-3s3p 'Py.
Since the limited computing resource, we cannot further
expand the configuration space. Therefore, it is difficult to
estimate accurately uncertainties of the mass shift factors in the
MR computations due to neglected higher order correlations.
Roughly, the uncertainties reach around 8% and 6% for the
NMS and SMS factors, respectively, in the 3s* ' Sy-3s3p 3 Py
transition. For the 35 ' Sy~3s3p ! P/ transition, the errors are
about 3% for the NMS and 17% for the SMS. Compared with
the mass shift factors, the FS factors are stable with expansion
of the configuration space. We estimated the uncertainties for
the FS factors in the MR calculations to be around 1% for these
two transitions. Additionally, we have tested the effects of the
CCy, correlation on the IS factors and found that for the NMS
factors the uncertainties are not more than 2%, but for the SMS
factors they are about 7% and 17% for the 3s% 1 Sy-3s3p 3 Py
and 3s%'Sp—3s3p lPl" transitions, respectively. Nevertheless,
the effect of the CC;, correlation on the FS factors is fractional
(less than 1%). The Breit interaction corrections to the isotope
shift factors, estimated in the DF calculation, are less than 3%

for all physical quantities under investigation except for the
SMS factors of the 35> ' Sy—3s3p lPl" transition to which it is
about 7%. To sum up, the total uncertainties are about 14% for
the NMS factors, 16% for the SMS factors, and 3% for the FS
factor in 352 1Sy-3s3p ! P{ transition, and 4%, 47%, and 2%
for the other transition. The calculated NMS, SMS, and FS
factors together with their uncertainties are listed in Table VII.

V. CONCLUSION

In summery, we calculated the hyperfine interaction con-
stants and the isotope shift factors involving the 3s2 'S, and
3s3p 31 PY states in AlT ions using the MCDHF method and
the active space approach. We have discussed the effects
of the electron correlations and the Breit interaction on the
atomic parameters concerned. In this case, we found that
for the hyperfine interaction constants the contribution of
the higher order correlation is opposite with CC correlation.
Based on the discussion about the contribution of the electron
correlations and the Breit interaction, we have obtained reliable
uncertainties for our calculated results. For the hyperfine
interaction constants, the uncertainties are less than 1.6%. For
the isotope shift factors, the uncertainties are 14% and 4% for
the NMS factors, 16% and 47% for the SMS factors, and 3%
and 2% for the FS factors in the transitions 3s*!Sp-3s3p 3 P!
and 3s218y-3s3p 'P?, respectively. Although the higher order
correlations change the level structure slightly, these effects
on the hyperfine interaction constants and the isotope shift
factors are indispensable. Therefore, it is necessary to include
the CC correlation and related higher order correlation in
computational models in order to achieve high accuracy of
atom parameters. In addition, for the AlT ion the effect of
the relativistic nuclear recoil correction on the mass shift
factor is small (less than 4%) and insensitive to the electron
correlations.

With respect to the fact that there are relatively large
uncertainties in the calculation of mass shift factors, the
partitioned correlation function interaction (PCFI) approach
[52] will be a promising method for calculating the isotope
shifts more accurately, which can capture the different electron
correlations flexibly and accurately.

During the review of our article, a paper about hyperfine-
mediated electric quadrupole shifts in Al* and In™ ion clocks
was published [53]. In this paper, the diagonal magnetic
dipole and electric quadrupole hyperfine interaction matrix
elements of the 353p 3Py state for AlT were calculated by
using the method of configuration interaction plus many-body
perturbation theory (CI4+-MBPT). For the diagonal magnetic
dipole hyperfine interaction matrix element, our value is in
perfect agreement with theirs. The consistency is less good for
the diagonal electric quadrupole hyperfine interaction matrix
element, and the difference is around 35%.
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