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We investigate roles of electron correlation effects in the determination of the gj factors of the 4s 2S1/2,
4p 2P1/2, 4p 2P3/2, 3d 2D3/2, and 3d 2D5/2 states, representing different parities and angular momenta, of the
Ca+ ion. Correlation contributions are highlighted with respect to the mean-field values evaluated using the
Dirac-Hartree-Fock method, relativistic second-order many-body theory, and relativistic coupled-cluster (RCC)
theory with the single- and double-excitation approximation considering only the linear terms and also accounting
for all the nonlinear terms. This shows that it is difficult to achieve results below 10−5 precision employing an
approximate perturbative approach. We also find that contributions through the nonlinear terms and higher-level
excitations such as triple excitations, estimated perturbatively in the RCC method, are found to be crucial to
attain precise values of the gj factors in the considered states of the Ca+ ion.
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I. INTRODUCTION

Spectroscopic studies of the singly ionized calcium (Ca+)
ion are of immense interest to both the experimentalists and
theoreticians in many scientific applications. In particular, this
ion is under consideration for a number of high-precision
experimental studies such as in the atomic clock [1,2], quantum
computation [3–5], and testing Lorentz symmetry violation
[6]. A number of theoretical investigations have also been
carried out in the determination of different physical quantities
by employing a variety of many-body methods [7–14], which
demonstrate the successful achievement of most of these
properties meticulously compared to the experimental results.

On the other hand, there have been attempts to determine
Landé gj factors in the atomic systems to ultrahigh accuracy
[7,15–17]. The main motivation of these studies was to test the
validity of both the theories and measurements. Mostly atomic
systems with few electrons are considered in these investiga-
tions, aiming to determine the role of higher-order quantum
electrodynamics (QED) effects [17]. In these systems, both
the QED and electron correlation effects contribute equally
to match the theoretical calculations with the experimental
results. Comparatively, only a few attempts have been made to
reproduce the experimental values of the gj factors to very high
precision in the many-electron systems [7,15]. In the neutral or
singly ionized heavy atomic systems, the electron correlation
effects play a dominant role in estimating accurately the gj

factors of the atomic states. However, none of the previous
studies have demonstrated the role of electron correlation
effects explicitly arising through various physical effects in the
determination of the total values of the gj factors of the heavy
atomic systems. Lindroth and Ynnerman have carried out such
a rigorous investigation of the role of electron correlation

*bijaya@prl.res.in

effects in the corrections over the Dirac value of the gj factors
of the ground states in the Li, Be+, and Ba+ atomic systems,
which have a valence electron in the s orbital. They employed
a relativistic coupled-cluster (RCC) method and incorporated
the Breit interaction in their calculations and found that
higher-order correlation effects and the Breit interaction play
significant roles in achieving precise results. However, they
observed that lower-order contributions are still dominant in
the evaluation of the corrections over Dirac value of the gj

factors. In particular, they observed that correlations due to
all-order core-polarization effects, arising through a random-
phase approximation type of diagrams, in these calculations
are crucial. A number of calculations have reported very
accurate values of this quantity using the multiconfiguration
Dirac-Fock (MCDF) method highlighting the importance of
including the higher excited configuration state functions
(CSFs) for their determinations [7,18]. A shortcoming of this
method is that it cannot explain the roles of different electron
correlation effects explicitly except giving a qualitative idea
of the importance of incorporating them to achieve precise
results. Another point to be noted is that the MCDF method
is a special case of the configuration-interaction (CI) method.
It is known that a truncated CI method has problems with
size consistency and size extensivity [19,20]. Moreover, in
practice, only the important contributing CSFs are selected
in this approach until the final results are achieved within
the intended accuracies. In contrast, the truncated many-body
methods formulated in the RCC theory framework are more
capable of capturing the electron correlation effects rigorously
than other existing atomic many-body methods and are also
free from the size-extensivity and size-consistency problems
owing to an exponential ansatz of the wave functions [19,20].
This is why RCC methods are generally referred to as golden
tools for investigating the role of electron correlation effects
in the spectroscopic studies. A number of properties in Ca+

have been calculated by employing the RCC methods in the
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coupled-cluster with single- and double-excitation approxi-
mation (CCSD method) [9–12,21,22]. From these studies, the
CCSD method and its equivalent level of approximated RCC
methods are proven to be capable of giving very accurate
results in the atomic systems having configurations similar to
Ca+. In fact, the gj factor of the ground state of Ca+ has
been measured up to an accuracy of the seventh decimal
place, which has also been supported by theory using the
MCDF method [7]. Another measurement of the gj factor
in the 3d 2D5/2 state of this ion is reported up to sixth decimal
precision [1]. However, there has not been any theoretical study
carried out in this state to reproduce the experimental value.
Thus, it would be interesting to evaluate gj factors and learn
the behavior of electron correlation effects in the ground and
excited states of Ca+. In the light of this interest, the present
work is intended to carry out calculations of the gj factors of
the 4s 2S1/2, 4p 2P1/2, 4p 2P3/2, 3d 2D3/2, and 3d 2D5/2 states in
the Ca+ ion.

II. THEORY

The interaction Hamiltonian of an atomic electron when
subjected to an external homogeneous magnetic field �B is
given by [23]

Hmag = ec
∑

i

�αi · �Ai

= −ec

2

∑
i

�αi · (�ri × �B), (1)

where e is the electric charge of the electron, c is the speed of
light, �α is the Dirac operator, and �A is the vector field experi-
enced by the electron located at r due to the applied magnetic
field. This interaction Hamiltonian can be expressed in terms
of a scalar product as

Hmag = −ec

2

∑
i

(�αi × �ri) · �B

= i
ec√

2

∑
i

ri{�αi ⊗ �C(1)}(1) · �B, (2)

with C(1) is the Racah coefficient of rank one.
Defining the above expression as Hmag = �M · �B with mag-

netic moment operator �M = ∑
i,q=−1,0,1 �μ(1)

q (ri), the Dirac
value of the Landé gj factor of a bound electron in an atomic
system can be given by

gD
j = − 1

μB

�M
�J , (3)

of a state with total angular momentum J for the Bohr
magneton μB = eh̄/2me with mass of electron me. Thus,
the gD

j value for the state |JM〉 can be evaluated using the
projection theorem as

gD
j = − 1

2μB

〈J‖M‖J 〉√
J (J + 1)(2J + 1)

, (4)

with the corresponding single-particle reduced matrix element
of μ(1) given by

〈κf ‖μ(1)‖κi〉 = −(κf + κi)〈−κf ‖C(1)‖κi〉

×
∫ ∞

0
dr r(Pf Qi + Qf Pi), (5)

where P (r) and Q(r) denote the large and small components
of the radial parts of the single-particle Dirac orbitals,
respectively, and the κ are their relativistic angular momentum
quantum numbers. It can be noted here that this expression is
similar to the expression for determining the magnetic dipole
hyperfine structure constant; in both properties the angular
momentum selection rule is restricted by the reduced matrix
element of C(1), which is given as

〈κf ‖C(k)‖κi〉 = (−1)jf +1/2
√

(2jf + 1)(2ji + 1)

×
(

jf k ji

1/2 0 −1/2

)
�(lκf

,k,lκi
), (6)

with

�(lκf
,k,lκi

) =
{

1 for lκf
+ k + lκi

even
0 otherwise

(7)

for the orbital momentum lκ of the corresponding orbital
having the relativistic quantum number κ .

The net Landé g factor of a free electron (gf ) with the
QED correction to the Dirac value (gD) can be approximately
evaluated as [24]

gf 	 gD ×
[

1 + 1

2

αe

π
− 0.328

(αe

π

)2
+ · · ·

]

≈ 1.001 160 × gD, (8)

where αe is the fine-structure constant. From this analysis,
the QED correction to the bound electron gj factor can
be estimated approximately by the interaction Hamiltonian
as [25]

�Hmag ≈ 0.001 160μBβ �� · �B, (9)

where β and �� are the Dirac matrix and spinor, respectively.
Following the above procedure, we can estimate the leading-
order QED correction to gj by defining an operator � �M =∑

i,q=−1,0,1 ��μ(1)
q (ri) = ∑

i βi
��i such as [18]

�g
Q
j = 0.001 160

〈J‖�M‖J 〉√
J (J + 1)(2J + 1)

. (10)

The corresponding reduced matrix element of the �μ(1)
q (ri) is

given by

〈κf ‖�μ(1)‖κi〉 = (κf + κi − 1)〈−κf ‖C(1)‖κi〉

×
∫ ∞

0
dr(Pf Pi + Qf Qi). (11)

Hence, the total gj value of an atomic state can be evaluated as
gj = gD

j + �g
Q
j and can be compared with the experimental

value wherever available.
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III. METHODS FOR CALCULATIONS

The considered states of Ca+ have a common closed
core [3p6] of Ca2+ with a valence orbital from different
orbital angular momenta and parity. We have developed a
number of relativistic many-body methods and have been
employing them to calculate wave functions of a variety
of atomic systems including Ca+ that have configurations
as a closed core and a valence orbital [9,11,21,22,26,27].
Applications of these methods have proved that they are
capable of giving rise to very accurate results comparable with
the experimental values. We apply some of these methods
considering various levels of approximations to demonstrate
how these methods are incapable of producing precise values
of the gj factors in Ca+. To determine the reason for the same,
the role of correlation effects at the lower- and higher-order
contributions is investigated systematically. Special efforts
have been made to estimate contributions from the leading
triply excited configurations in the RCC theory framework
adopting perturbative approaches to carry out calculations in
the available computational resources. For this purpose, we
briefly discuss here the considered many-body methods and
present results employing these methods to justify our above
assessment.

To demonstrate various relativistic contributions systemat-
ically, we first perform calculations with the Dirac-Coulomb
(DC) interaction and suppress contributions from the negative
orbitals. In this approximation, the atomic Hamiltonian is
given by

H DC =
∑

i

�+
i [c�αi · �pi + (βi − 1)c2 + VN (ri)]�

+
i

+
∑
i,j>i

�+
i �+

j

1

rij

�+
i �+

j , (12)

where VN (r) is the nuclear potential determined using the
Fermi-charge distribution, rij = |�ri − �rj | represents the in-
terelectronic distance between the electrons located at i and
j , and the �+ operator represents a projection operator on
the positive-energy orbitals. Worth mentioning here is that
the negative-energy orbitals may contribute significantly, but
it would be below the precision levels where the neglected
electron correlation effects can also play dominant roles. This
is why we have not put forth effort to account for these
contributions in the present work.

It was found in the previous calculation for the ground
state of Ca+ that the frequency-independent Breit interaction
contributes sizably for the evaluation of the gj factor [7]. We
also estimate contributions due to this interaction by adding
the corresponding interaction potential energy expression in
the atomic Hamiltonian as given by

VB(rij ) = −{�αi · �αj + (�αi · r̂ij )(�αj · r̂ij )}
2rij

, (13)

where r̂ij is the unit vector along �rij .
Apart from estimating �g

Q
j corrections to the gj factors

due to the QED effects, it can be expected that there would
be corrections to the gD

j values of the bound electrons
from the modifications of the wave functions due to the
QED effects. To estimate these corrections, we consider the

lowest-order QED interactions due to the vacuum potential
(VP) and self-energy (SE) effects in the calculations of the
wave functions of the bound electrons. The VP is considered as
the sum of the Uehling [VU (r)] and Wichmann-Kroll [VWK(r)]
potentials, while the SE potential is evaluated as the sum of the
contributions from the electric and magnetic form factors as
originally described in Ref. [28]. The considered expressions
with the Fermi charge distribution were given explicitly in our
previous work [27].

We first calculate the Dirac-Hartree-Fock (DHF) wave
function of the [3p6] configuration (|	0〉) using the above
interactions in the atomic Hamiltonian. Orbitals for the DHF
wave function are obtained using the Gaussian-type orbitals
that are given for Ca+ elsewhere [22]. Then the DHF wave
function of a state of Ca+ is constructed as |	v〉 = a†

v|	0〉
with the respective valence orbital v of the state. To show
higher relativistic contributions explicitly, we perform calcu-
lations considering the DC Hamiltonian, then including the
Breit interaction with the DC Hamiltonian, then with QED
corrections in the DC Hamiltonian, and finally incorporating
both the Breit and QED interactions simultaneously with the
DC Hamiltonian. The reason for carrying out calculations
considering individual relativistic corrections separately and
then including them together is that we had observed in our
previous study that sometimes correlations among the Breit
and QED interactions alter the results more when they are
incorporated independently.

To investigate the importance of electron correlation effects,
we include them in both the lower-order and all-order many-
body methods. In the lower-order approximations, we employ
the relativistic second-order many-body perturbation theory
[MBPT(2) method] and third-order many-body perturbation
theory [MBPT(3) method]. In these approximations, we
express the approximated atomic wave function as

|
v〉 = (
1 + �

(1)
0 + �(1)

v

)|	v〉 (14)

in the MBPT(2) method and

|
v〉 = (
1 + �

(1)
0 + �(1)

v + �
(1)
0 �(1)

v + �
(2)
0 + �(2)

v

)|	v〉
(15)

in the MBPT(3) method, where �0 and �v are known as
wave operators. Here �0 and �v act over |	0〉 and |	v〉,
respectively, to generate various CSFs in the perturbative
approach. Amplitudes of these operators are determined by
using the generalized Bloch’s equations [29] as〈

	∗
0

∣∣[�(k)
0 ,H0

]∣∣	0
〉 = 〈

	∗
0

∣∣Ves

(
1 + �

(k−1)
0

)∣∣	0
〉

(16)

and〈
	∗

v

∣∣[�(k)
v ,H0

]∣∣	v

〉 = 〈
	∗

v

∣∣Ves

(
1 + �

(k−1)
0 + �(k−1)

v

)∣∣	v

〉

−
k−1∑
m=1

〈
	∗

v

∣∣�(k−m)
v

∣∣	v

〉
E(m)

v , (17)

where H0 is the DHF Hamiltonian, Ves = H − H0 is the
residual potential, |	∗

0〉 and |	∗
v〉 are the excited configurations

over the respective |	0〉 and |	v〉 DHF wave functions,
and E(k)

v = 〈	v|Ves(1 + �
(k−1)
0 + �(k−1)

v )|	v〉 is the kth-order
energy of the |
v〉 state.

012511-3



B. K. SAHOO AND PRADEEP KUMAR PHYSICAL REVIEW A 96, 012511 (2017)

After obtaining amplitudes of the MBPT operators, the gj

factors are calculated using the expression

〈O〉 = 〈
v|O|
v〉
〈
v|
v〉 , (18)

where O stands for the respective M and �M operators for
the evaluations of the gD

j and �g
Q
j contributions, respectively.

In a similar framework and using the exponential ansatz of
RCC theory, atomic wave functions of the considered states
with the respective valence orbitals are expressed as

|
v〉 = eT {1 + Sv}|	v〉, (19)

where T and Sv are the RCC operators that excite electrons
from |	0〉 and |	v〉, respectively. We have approximated the
RCC theory to only the single and double excitations (CCSD
method). The single- and double-excitation processes carried
out by these RCC operators are described by denoting these
operators using the subscripts 1 and 2, respectively, as

T 	 T1 + T2, Sv 	 S1v + S2v. (20)

The amplitudes of these operators are evaluated by solving the
equations

〈	∗
0|HN |	0〉 = 0 (21)

and

〈	∗
v|(HN − �Ev)Sv|	v〉 = −〈	∗

v|HN |	v〉, (22)

where |	∗
0〉 and |	∗

v〉 are excited up to doubles, HN = (HNeT )l
represents for the linked terms only with the normal-order
Hamiltonian HN = H − 〈	0|H |	0〉, and �Ev is the attach-
ment energy for the state |
v〉, which is determined by

�Ev = 〈	v|HN {1 + Sv}|	v〉. (23)

To investigate the role of the electron correlation effects
through the nonlinear terms in the RCC theory, we also
perform calculations considering only linear terms in the
single- and double-excitation approximation in this theory
(which is termed the LCCSD method). In this approximation,
it yields

|
v〉 ≈ {1 + T + Sv}|	v〉, (24)

HN ≈ HN + HNT, (25)

and

HNSv ≈ HN + HNT + HNSv. (26)

After obtaining amplitudes of the RCC operators, the
expectation values as in Eq. (18) are evaluated as

〈
v|O|
v〉
〈
v|
v〉 = 〈	v|{1 + T † + S†

v}O{1 + T + Sv}|	v〉
〈	v|{1 + T † + S

†
v}{1 + T + Sv}|	v〉

(27)

in the LCCSD method and

〈
v|O|
v〉
〈
v|
v〉 = 〈	v|{1 + S†

v}eT †
OeT {1 + Sv}|	v〉

〈	v|{1 + S
†
v}eT †

eT {1 + Sv}|	v〉
(28)

in the CCSD method. Clearly, the expression for the LCCSD
method gives rise to a finite number of terms like in the

MBPT(2) and MBPT(3) methods. However, the expression
for the CCSD method has two nonterminating series in the nu-
merator and denominator as eT †

OeT and eT †
eT , respectively.

These nontruncative series give a large number of nonlinear
terms corroborating a large space of CSFs belonging to higher
level of excitations. To account for contributions from both
the nontruncative series, we adopt iterative procedures. This is
done by performing calculations through intermediate steps,
in which we compute and store first the O + OT + T †O +
T †OT terms from eT †

OeT and 1 + T †T terms from eT †
eT .

Then we operate a T operator and subsequently a T † operator
in the above intermediate calculations and replace them as the
new intermediate calculations. This procedure is repeated until
we attain contributions up to 10−8 precision level convergence
in the values from the higher nonlinear terms.

As we will see, the correlation effects coming through the
CCSD terms give much larger magnitudes to the gj factors
than the available experimental values for the ground [7] and
3d 2D5/2 [1] states of Ca+, even though this method was proven
to give reasonably accurate results for a number of properties
in the considered ion as stated in the Introduction. To find out
how the higher level excitations would circumvent this to bring
back the results close to the experimental values, we define
RCC operators in a perturbative framework to account for
contributions from the important triply excited configurations
from both |	0〉 and |	v〉 as

T
pert

3 = 1

6

∑
abc,pqr

(HNT2)pqr

abc

εa + εb + εc − εp − εq − εr

(29)

and

S
pert
3v = 1

4

∑
ab,pqr

(HNT2 + HNS2v)pqr

abv

�Ev + εa + εb − εp − εq − εr

, (30)

where {a,b,c} and {p,q,r} represent for the occupied and
virtual orbitals, respectively, and the ε are their single-
particle orbital energies. Contributions from the T

pert
3 and

S
pert
3v operators to the gj factors are estimated using Eq. (28)

by considering them as part of the T and Sv operators. In
this approach, we evaluate extra terms T

†
2 OT

pert
3 , T

†
2 OS

pert
3v ,

S
†
2vOS

pert
3v , S

†
1vT

†
2 OS

pert
3v , T

pert†
3 OT

pert
3 , S

pert†
3v OS

pert
3v , and their

complex conjugate (c.c.) terms. These terms are computa-
tionally very expensive and give more than 500 Goldstone
diagrams, but are found to be crucial in achieving reasonably
accurate results compared to the available experimental values.

IV. RESULTS AND DISCUSSION

In order to gauge correctness of the wave functions obtained
by employing many-body methods at different levels of
approximations, we first present electron attachment energies
to the considered states of Ca+ in Table I and compare them
with the experimental values listed in the National Institute of
Science and Technology (NIST) database [30]. We consider
only the 4s 2S1/2, 3d 2D3/2, 3d 2D5/2, 4p 2P1/2, and 4p 2P3/2

states of Ca+ as the representative states with different angular
momentum and parity for our investigation. As can be seen
from this table, the DHF results differ significantly from the
experimental values, while the MBPT(2) values are larger than
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TABLE I. Electron attachment energies (in cm−1) using relativistic many-body methods at different levels of approximations with the DC
Hamiltonian. Higher-order relativistic corrections from the Breit interaction and QED effects are quoted from the CCSD method considering
them separately and including them together (given in the row labeled “Breit + QED”). Our final CCSD results are compared with the
experimental values (in the row “Expt.”) listed in the NIST database [30].

Method 4s 2S1/2 3d 2D3/2 3d 2D5/2 4p 2P1/2 4p 2P3/2

DHF 91439.97 72617.49 72593.39 68036.82 67837.16
MBPT(2) 96542.41 83943.81 83372.99 71026.03 70654.06
LCCSD 96737.80 84564.90 84397.55 71101.05 70862.78
CCSD 95879.60 81695.19 81606.44 70603.50 70372.14

Relativistic corrections

Breit −7.42 37.98 53.15 −11.02 −3.70
QED −5.68 2.11 2.52 0.02 0.66
Breit + QED −13.09 40.08 55.67 −11.01 −3.05
Total 95866.51 81735.27 81662.11 70592.49 70369.09
Expt. 95751.87(3) 82101.68 82040.99 70560.36 70337.47

the experimental results. The LCCSD method does not seem
to improve the calculations and give even larger values than
the MBPT(2) results. However, the CCSD method reduces
these results close to the experimental values. Corrections
from the Breit and QED interactions are given separately in the
same table from the CCSD method. They are also estimated
by including both these interactions simultaneously. In this
case, we find that the sum of the individual corrections and
simultaneous account for these corrections, given as Breit +
QED in the above table, give almost the same contributions. In
our earlier work on the Cs atom, we had found similar behavior
for the attachment energies but different trends were exhibited
in the evaluation of the transition properties [27]. Nevertheless,
the higher-order relativistic corrections also remove slightly
the discrepancies among the CCSD results and experimental
values of the energies. It may be possible that the omitted
contributions from the triple excitations improve the CCSD
values further.

After understanding the role of the electron correlation
effects in the evaluation of the energies, we present the calcu-
lated gj values of the 4s 2S1/2, 3d 2D3/2, 3d 2D5/2, 4p 2P1/2,
and 4p 2P3/2 states of Ca+ in Table II from a number of
methods approximated at different levels. This also includes
all the methods that were considered to evaluate energies along
with the MBPT(3) method, which involves energies from the
MBPT(2) method. To highlight how the correlation effects
propagate in these methods, we present results systematically
from lower-order to all-order LCCSD and CCSD methods.
Final results are given as the CCSD values along with the
corrections from the approximated triple excitations along
with the uncertainties. Uncertainties are estimated mainly
by extrapolating contributions due to modifications of wave
functions of the CCSD method through the triple excitations.
We present both the gj and �g

Q
j results from the DHF method

in the beginning to appraise beforehand how much the electron
correlation effects may contribute to yielding results close to
the experimental values in the measured states. If we are able
to achieve results agreeing with the experimental values for
some states then it may be possible to predict these values for
other states using the employed many-body methods where
measurements are not carried out. From the analysis of the

behavior of the correlation effects in the determination of the
attachment energies, it was obvious to us that there were large
differences between the calculations obtained using the DHF
method and the experimental values. When we compare the
net gj values of the ground and 3d 2D5/2 states, after adding
up the gD

j and �g
Q
j values, with the experimental results [1,7]

quoted at the end of the above table, it gives the impression that
the electron correlation effects may not play a strong role in
attaining calculated values matching with the experimental
results. So it is natural to assume that employment of a
lower-order method can suffice the purpose. In an experimental
paper on the ground-state result, theoretical results were also
presented by carrying out a rigorous calculation employing the
MCDF method [7]. It was demonstrated there that a very large
configurational space was required to attain results matching
with their measured value. It was also highlighted in that
work that the Breit interaction contribution was essential in
achieving a high-precision theoretical result.

As we move on, we will explain the reasons why it
is strenuous to achieve results below the 10−5 precision
level by employing the RCC theory in the CCSD method
approximation. Thus, we prefer to not present the calculated
values of the gj factors beyond the sixth decimal places here.
The necessity of including higher-level excitations through the
RCC method to improve these results further is demonstrated
by investigating contributions from the leading-order triple-
excitation contributions involving the core and valence orbitals
in the MBPT(3) method and in the perturbative approach
using the RCC operators as defined in Eqs. (29) and (30). We
have also provided corrections to gj from the Breit and QED
corrections, considering them separately and also considering
both interactions together. The estimated �g

Q
j corrections

from the CCSD method are also listed explicitly. The signs
of these corrections are not the same for all the states owing to
the κf + κi − 1 factor in Eq. (11). It is obvious from Table II
that our CCSD results match only up to the third decimal
place with the available experimental values of the ground and
3d 2D5/2 states. Trends can also be noted from this work in the
results starting from the DHF method to the CCSD method:
Values from different approximated methods are vacillating in
all the states.
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TABLE II. Demonstration of trends of the calculated gj values in various relativistic methods using the DC Hamiltonian. Relativistic
corrections from the Breit and QED interactions using the CCSD method and contributions from the important triple excitations (triples) are
given separately. The estimated �g

Q

j contributions of the DHF and CCSD methods are also listed within the parentheses to learn about their
typical magnitudes. The final values along with the uncertainties are compared with the available experimental results for the 4s 2S1/2 and
3d 2D5/2 states.

Method 4s 2S1/2 3d 2D3/2 3d 2D5/2 4p 2P1/2 4p 2P3/2

DC contributions of the DHF method

DHF 2.002273 0.798994 1.200845 0.665090 1.334854
(�g

Q

j ) (0.002320) (−0.000464) (0.000464) (−0.000773) (0.000773)

DC contributions to gj from lower-order methods

MBPT(2) 2.001871 0.798176 1.197682 0.665684 1.333777
MBPT(3) 2.002313 0.781590 1.186383 0.669046 1.334676
LCCSD 1.999070 0.800532 1.198077 0.665901 1.333605

CCSD results for gj from different interactions

DC 2.002703 0.799047 1.200895 0.665912 1.334294
DC + Breit 2.002700 0.799085 1.200903 0.665916 1.334295
DC + QED 2.002703 0.799085 1.200903 0.665916 1.334295
DC + Breit + QED 2.002700 0.799085 1.200903 0.665917 1.334295
DC + Breit + QED + triples 2.002267 0.798554 1.200341 0.665636 1.333861
(�g

Q

j ) (0.002321) (−0.000465) (0.000465) (−0.000773) (0.000773)
Final 2.002267(30) 0.798554(25) 1.200341(30) 0.665636(15) 1.333861(25)
Experiment 2.00225664(9) [7] 1.2003340(25) [1]

Since the differences among the values of the gj factors
from various methods are very small, the role of electron
correlation effects is not realized distinctly. To make it more
pronounced, we plot the (gD

j − DHF)/(gj − DHF) values
considering gD

j values from different methods in Fig. 1 for
all the states. The trends of the electron correlation effects
incorporated in these methods are highlighted. As can be seen
from this figure, the correlation contributions do not follow
a definite trend and they are quite significant in view of
achieving high-precision values. Also, we give contributions

-30
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[(
g j

D
- 

D
H

F
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(g
j -

 D
H

F
)]

Methods 
[(0→DHF, 1→MBPT(2), 2→MBPT(3), 3→LCCSD, 4→CCSD]

4s2S1/2

3d2D3/2

3d2D5/2

4p2P1/2

4p2P3/2

FIG. 1. Trends of electron correlation effects among the 4s 2S1/2,
3d 2D3/2, 3d 2D5/2, 4p 2P1/2, and 4p 2P3/2 states for the evaluation
of gD

j values in Ca+. We plot the relative (gD
j − DHF)/(gj − DHF)

values to highlight the roles of correlation effects through different
many-body methods. We consider values from the DHF, MBPT(2),
MBPT(3), LCCSD, and CCSD methods in a sequence on the X axis
in an arbitrary unit distance.

to the gj values for all the considered states from the individual
terms of the CCSD method including the terms involving the
perturbed triple-excitation operators in Table III. This is to
show how some of the higher-order terms in the all-order
perturbative method contribute more than the lower-order RCC
terms. The DHF value gives here the largest contribution as it
includes the Dirac gD value. It has been found in earlier studies
on hyperfine-structure constants and quadrupole moments of
atomic states in 43Ca+ using the RCC method [11] that after the
DHF value, the dominant contributions come from the OS1v

and OS2v terms along with their c.c. terms due to the electron
correlation effects. It should be kept in mind that the OS1v term
accounts for the lowest-order electron pair-correlation effects,
while the OS2v term incorporates the lowest-order electron
core-polarization effects in the RCC framework [31,32]. The
other terms encompass higher-order correlation effects due
to nonlinearity in the RCC operators. Hence, it is generally
anticipated that the contributions from these nonlinear terms
are relatively small compared to the above two terms. However,
as seen here, many of the nonlinear terms give much larger
contributions, almost by an order, than the lower-order RCC
terms. Significantly contributing correlation effects are given
in bold in Table III. Those nonlinear terms from the CCSD
method are not listed in the table; their total contributions
are given in the row labeled “Extra”. It is obvious from this
table that these contributions are quite large, especially in
the 3d 2D5/2 state, which has been underlined. This suggests
that the core correlation contributions appearing through the
T operators in the nonlinear terms play active roles in the
evaluation of the gj values. Thus, it supports the consideration
that a perturbative method would completely fail to estimate
the gj factors accurately in an atomic system. We have
also seen in Table II that contributions from the estimated
triple excitations through the perturbed RCC operators are the
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TABLE III. Contributions from individual CCSD terms to the gD
j values in the 4s 2S1/2, 3d 2D3/2, 3d 2D5/2, 4p 2P1/2, and 4p 2P3/2 states.

Contributions given in the rows labeled “Extra” and “Norm” are obtained from the rest of the nonlinear terms of the CCSD method that are not
listed here and corrections due to normalization of the wave functions, respectively. Values up to only the sixth decimal place are given and
those values are finite but contribute below 10−6 precision level are quoted as ∼0.0. Unusually large contributions from the correlation effects
are given in bold. We have also underlined the “Extra” contribution to the 3d 2D5/2 state to draw attention to its very large value.

RCC terms 4s 2S1/2 3d 2D3/2 3d 2D5/2 4p 2P1/2 4p 2P3/2

O 1.999953 0.799922 1.199917 0.666636 1.333308

OT1 + c.c. ∼0.0 0.0 0.0 ∼0.0 ∼0.0

T
†

1 OT1 0.000001 0.0 0.0 0.000003 0.000007

T
†

1 OT2 + c.c. ∼0.0 0.0 0.0 ∼0.0 ∼0.0

T
†

2 OT2 −0.000912 −0.006104 −0.009066 −0.000234 −0.000525

OS1v + c.c. −0.000009 −0.000016 −0.000018 −0.000003 −0.000005

OS2v + c.c. 0.000001 −0.000004 0.000005 −0.000003 −0.000003

T
†

1 OS2v + c.c. −0.000984 −0.001526 −0.002282 −0.000144 −0.000284

T
†

2 OS2v + c.c. ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0

S
†
1vOS1v 0.005060 0.009181 0.013637 0.001606 0.003169

S
†
1vOS2v+c.c. ∼0.0 ∼0.0 0.000001 ∼0.0 ∼0.0

S
†
2vOS2v 0.016159 0.018597 0.000008 0.004210 0.007462

T
†

2 OT
pert

3 + c.c. ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0

S
†
2vOT

pert
3 + c.c. 0.0 0.0 0.0 0.0 0.0

T
†

2 OS
pert
3v + c.c. −0.001650 −0.000907 −0.001104 −0.000440 −0.000804

S
†
2vOS

pert
3v + c.c. ∼0.0 ∼0.0 ∼0.0 ∼0.0 ∼0.0

T
pert†

3 OT
pert

3 0.000136 0.000159 0.000235 0.000050 0.000098

S
pert†
3v OS

pert
3v 0.000728 0.000238 0.000366 0.000130 0.000255

S
†
1vT

†
2 OS

pert
3v + c.c. −0.000076 −0.000021 −0.000007 −0.000021 −0.000038

Extra 0.002951 −0.001207 0.026959 −0.000313 0.000411

Norm −0.021567 −0.019331 −0.028730 −0.005073 −0.010019

decisive factors in attaining the results close to the available
experimental values. Following the perturbative analysis, it
can be perceived that the T

†
2 OT

pert
3 , S

†
2vOT

pert
3 , T

†
2 OT

pert
3 ,

and S
†
2vOS

pert
3v RCC terms account for the lowest-order terms

involving the triply excited perturbed excitation operators.
Since the S

pert
3v operator involves the valence orbital, the

term including this operator usually gives larger contributions
than the counterterms with the T

pert
3 operator. However, a

comparison between the contributions obtained through the
T

†
2 OT

pert
3 , S

†
2vOS

pert
3v , and S

pert†
3v OS

pert
3v terms in Table III

suggest that the correlation contributions do not manifest this
trend. Analyzing in terms of level of excitations associated with
all these operators, as defined in Ref. [19], it can be understood
that the Goldstone diagrams involving the particle-particle and
hole-hole excitations through the M operator are important
physical processes and the hole-particle and particle-hole
excitations do not play much of a role in determining the
gj values.

Again, we have observed that similar types of Goldstone
diagrams exhibit completely different trends of correlation
effects for the lowest-order and all-order methods. To demon-
strate this more prominently, we find the leading-order
contributing diagrams from the T

†
2 OT

pert
3 and S

†
2vOS

pert
3v RCC

terms and compare the contributions from these diagrams
with their corresponding lowest-order Goldstone diagrams
appearing through the MBPT(3) method. We have shown some

of these diagrams in Fig. 2 and quote their contributions in
Table IV from the MBPT(3) and RCC methods. As can be

FIG. 2. Some of the important contributing Goldstone diagrams
appearing through the T

†
2 OS

pert
3v RCC term. Lines going up and down

represent the virtual and occupied orbitals of Ca+. Lines with double
arrows correspond to the valence orbital, dashed horizontal lines
denote Coulomb interaction, and solid horizontal lines correspond to
the all-order Coulomb interactions appearing through the T2 and S2v

operators.
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TABLE IV. Contributions to gD
j values of different states from the individual diagrams shown in Fig. 2. Values are given after multiplying

with 103 to highlight their contributions prominently and those values that are unusually large are in bold. This clearly demonstrates the
importance of considering an all-order perturbative method for the determination of the gj factors in the atomic systems.

4s 2S1/2 3d 2D3/2 3d 2D5/2 4p 2P1/2 4p 2P3/2

Diagram MBPT(3) RCC MBPT(3) RCC MBPT(3) RCC MBPT(3) RCC MBPT(3) RCC

Fig. 2(a) 0.4425 0.9141 0.3852 0.8401 0.5758 1.2575 0.0874 0.1820 0.1732 0.3613
Fig. 2(b) −0.1108 −0.1652 −0.1864 −0.2811 −0.2800 −0.4228 −0.03306 −0.0565 −0.0668 −0.1143
Fig. 2(c) 0.2023 0.3247 0.4086 0.6099 0.6107 0.9123 0.0426 0.0742 0.0848 0.1477
Fig. 2(d) 12.6380 20.5263 7.7036 12.2213 11.5434 18.3284 3.5011 5.5020 6.9796 10.9658
Fig. 2(e) −0.2017 −0.2983 −0.5771 −0.9463 −0.8665 −1.4226 −0.03446 −0.0488 −0.0689 −0.0976
Fig. 2(f) −0.2015 −0.2976 0.7874 1.3197 0.0436 0.0882 0.0518 0.0766 −0.0256 −0.0344
Fig. 2(g) −0.0913 −0.1323 0.0596 0.0845 −0.0843 −0.1372 0.0060 0.0090 −0.0385 −0.0670
Fig. 2(h) 0.2316 0.3907 −0.1859 −0.2984 0.0250 0.0662 0.0088 0.0027 0.0939 0.1601
Fig. 2(i) −0.2204 −0.3402 −0.4415 −0.6485 −0.6600 −0.9701 −0.0459 −0.0770 −0.0915 −0.1533
Fig. 2(j) −12.7009 −20.6074 −7.8297 −12.3756 −11.7321 −18.5594 −3.5141 −5.5182 −7.0057 −10.9981
Fig. 2(k) 0.1408 0.2022 0.5118 0.8461 0.7691 1.2728 0.0270 0.0350 0.0544 0.0709
Fig. 2(l) 0.1322 0.1910 0.4986 0.8294 0.74897 1.2473 0.0256 0.0332 0.0516 0.0672
Fig. 2(m) 0.1403 0.2013 −0.8225 −1.3819 −0.1216 −0.2143 −0.0442 −0.0620 0.0183 0.0213
Fig. 2(n) −0.4488 −0.6347 0.0055 0.0536 −0.9322 −1.2610 −0.0238 −0.0225 −0.1680 −0.2248
Fig. 2(o) 0.1409 0.2023 0.5057 0.8341 0.7651 1.2648 0.0024 0.0315 0.05293 0.0692
Fig. 2(p) 0.1323 0.1911 0.4847 0.8071 0.7399 1.2323 0.0202 0.0268 0.0489 0.0641
Fig. 2(q) −0.2309 −0.4032 0.1170 0.1908 −0.0707 −0.1466 0.0206 0.0371 −0.0793 −0.1334
Fig. 2(r) 0.0914 0.1369 −0.0665 −0.1048 0.0801 0.1306 −0.0237 −0.0471 0.0294 0.0501
Fig. 2(s) 0.0962 0.1688 −0.0104 −0.0180 0.0496 0.0379 −0.0289 −0.0342 −0.0012 −0.0093
Fig. 2(t) 0.0087 0.2768 −0.0025 −0.0058 −0.0032 0.0927 0.0023 −0.00553 0.0018 −0.0784
Fig. 2(u) 0.4482 0.6543 −0.1303 −0.1868 0.8479 1.2160 −0.0046 −0.0068 0.1536 0.2175

seen from this table, there are huge differences in some of
the results obtained from the MBPT(3) method and from the
level of RCC calculations. Several contributions are shown in
bold to call attention to the unusually large contributions at
the lower- and all-order level calculations. Again, it is obvious
from this table that some diagrams contribute predominantly
to the lower angular momentum states while other diagrams
contribute significantly in higher angular momentum states.
Some changes in the correlation trends are also observed
among the states belonging to different parities.

Nonetheless, unusually large contributions arising through
the perturbed triple-excitation RCC operators imply that the
RCC theory in the CCSD method approximation is not capable
of producing values below 10−5 precision of the gj factors in
Ca+. Also, contributions arising through some of the nonlinear
terms that are higher than the linear terms in the CCSD method
suggest that consideration of full triple excitations may be
imperative to achieve gj factors below the above precision
level. Moreover, either estimating the gD

j − gD value as in
Ref. [15] or developing alternative RCC theories, such as
biorthogonal RCC theory [19], to avoid the appearance of
nontruncative series as in Eq. (28) to determine the gj factor
of a state in this ion would be inevitable.

V. CONCLUSION

We have employed a number of relativistic many-body
methods to investigate role of the electron correlation effects
in the determination of the gj factors of the first five low-
lying atomic states in the singly charged calcium ion. To
validate these methods, we presented the electron attachment

energies by employing these methods and compared them
against the experimental values listed in the National Institute
of Science and Technology database. This demonstrated
the gradual improvement in the accuracy of the results
from lower many-body methods to the all-order relativistic
coupled-cluster method with the single- and double-excitation
approximation. However, when these methods were employed
for the determination of the gj factors of the considered atomic
states, the trends of the correlation effects were found to be
very peculiar in nature. In fact, the results obtained employing
the mean-field theory in the Dirac-Hartree-Fock approach were
found to be in better agreement with the experimental values
than the lower-order many-body perturbation theories and
relativistic coupled-cluster theory approximation with linear
terms. We also found that triple-excitation contributions are
the decisive factors in achieving very precise values for the
gj factors and their contributions through the lower-order and
all-order correlation effects behave in a completely different
way. Nonetheless, the overall observation from this study
is that it is very challenging to attain highly accurate gj

factors (below 10−5 precision) in many-electron systems by
employing a truncated many-body method as the contributions
from the electron correlation effects do not converge with the
higher-order approximations. Thus, it is reliable to determine
the gj − gD value instead of the net gj value of an atomic state.
Also, it is imperative to develop more powerful relativistic
many-body methods circumventing the problem of appearing
nontruncative series so that trends of the correlation effects
can be systematically investigated and calculations can be
improved gradually in the determination of the gj factors in a
many-electron atomic system. Since unique correlation effects
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are associated with the determination of gj factors, it suggests
that a relativistic many-body method can be indeed scrutinized
by producing high-precision values for these factors in heavy
atomic systems. This test would be of immense interest in a
number of applications such as investigating parity nonconser-
vation and frequency standard studies in atomic systems more
reliably.
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