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Calculation of the magnetic hyperfine structure constant of alkali metals and alkaline-earth-metal
ions using the relativistic coupled-cluster method
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The Z-vector method in the relativistic coupled-cluster framework is used to calculate the magnetic hyperfine
structure constant (AJ ) of alkali metals and singly charged alkaline earth metals in their ground state electronic
configuration. The Z-vector results are in very good agreement with the experiment. The AJ values of Li,
Na, K, Rb, Cs, Be+, Mg+, Ca+, and Sr+ obtained in the Z-vector method are compared with the extended
coupled-cluster results taken from Phys. Rev. A 91, 022512 (2015). The same basis and cutoff are used for the
comparison purpose. The comparison shows that the Z-vector method with the single and double approximation
can produce a more precise wave function in the nuclear region than the ECC method.
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I. INTRODUCTION

The interaction of an electromagnetic field of electrons
with the nuclear moments of the nucleus, known as hyperfine
structure interaction, causes a small shift and splitting of
energy levels [1]. Therefore, it is very important for the
accurate description of energy levels of the atom, molecule,
and ion. The precise measurements of the energy levels of
alkali metals play an important role in various areas of atomic
and nuclear physics as they are extensively used in high-
precision spectroscopy, laser cooling and trapping of atoms,
ultracold collision studies, photo-association spectroscopy,
Bose-Einstein condensation, and more recently, tests for
parity and time reversal violation. Currently, the hyperfine
transition of the Cs atom [[Xe]6S(2S1/2,F = 3,mF = 0) ↔
[Xe]6S(2S1/2,F = 4,mF = 0)] is used as the frequency stan-
dard, which is accurate up to 1 per 1015 [2]. Singly ionized
alkaline earth metal ions are insensitive to the perturbation
of the environment arising form collisions and Doppler shift
and thus, have been considered as potential candidates for
the optical frequency standard [3–6]. The 2S1/2 ground state
of these ions is regarded for quantum information processing
studies to encode quantum bits into hyperfine levels because
of their long phase coherence due to their small energy gap
and relatively large spontaneous decay lifetime [7,8].

Recently, experiments for parity nonconservation (PNC)
have become a cutting-edge topic as it can test the accuracy
of fundamental physics and explore new physics beyond the
standard model. However, the PNC amplitudes, which are very
essential to determine the value of PNC constants, cannot
be measured experimentally and thus, have to be obtained
theoretically. Therefore, it is extremely important to have a
reliable way of determining the accuracy of such theoretical
calculations. The PNC amplitudes are very sensitive to the
accuracy of the wave function in the near nuclear region
[9,10]. The same is true for HFS constants [11]. Therefore,
one can assess the accuracy of PNC amplitudes by comparing
theoretically obtained HFS constants with corresponding
experimental values [12–14].
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Relativistic effects are very important for the precise
calculation of the wave function in the near nuclear region.
For a single determinant theory, the best way to include
the relativistic effect is to solve the four-component Dirac-
Hartree-Fock (DHF) equation. However, the DHF method
misses the instantaneous interaction of opposite spin electrons.
Coupled-cluster (CC) [15–17] is the most elegant method to
include this dynamic electron correlation.

The coupled-cluster equation can be solved either variation-
ally or nonvariationally. Although the nonvariational coupled
cluster, also known as the normal coupled cluster (NCC), is
the most familiar, the variational coupled cluster (VCC) has
several advantages over the NCC. The VCC, being variational,
has upper boundedness in energy and satisfies the generalized
Hellmann-Feynman (GHF) theorem, which simplifies the
calculations for higher order properties. The unitary coupled
cluster (UCC) [18–23], expectation value coupled cluster
(XCC) [24–27], and extended coupled cluster (ECC) [28,29]
are the most familiar VCCs [30] in the literature. Recently,
ECC has been extended to the relativistic regime to calculate
magnetic HFS constants of atoms and molecules [31]. ECC
uses dual space of right and left vectors in a double linked
form where the left vector is not complex conjugate of the
right vector. Although the ECC functional is a terminating
series, the natural termination leads to very expensive terms.
Thus, for practical purposes, one needs to use some truncation
scheme to avoid computationally expensive terms.

On the other hand, the NCC is nonvariational and, thus,
does not satisfy the GHF theorem. Therefore, the expectation
value and first order energy derivative yield different results
[32,33]. However, the energy derivative method is superior
than the expectation value method as the property value
obtained in the energy derivative method can be expressed
as the corresponding expectation value plus some additional
terms which make it closer to the full configuration interaction
property value. The NCC energy is not optimized with respect
to determinantal coefficients (Cd ) in the expansion of many
electron wave function [32]. Thus, the derivative of energy
with respect to external perturbation requires the derivative
of energy with respect to Cd times the derivative of Cd with
respect to external perturbation. The derivative terms involving
Cd can be included in the Z-vector [34,35] method by
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introducing a perturbation independent de-excitation operator
where the equation for this operator is linear. Thus, for any
number of property calculation, one needs to calculate only
one set of coupled-cluster amplitudes. The advantage of the
Z-vector method over the ECC method is that unlike ECC,
the equations for excitation operators are decoupled from the
de-excitation operators. This saves enormous computational
cost. Recently the Z-vector method has been extended to the
relativistic region for the calculation of ground state properties
of atomic and molecular systems [36].

In this paper, we have calculated the magnetic HFS constant
of alkali metal atoms and singly charged alkaline earth metal
cations using the Z-vector technique in the relativistic coupled-
cluster framework. We have compared the Z-vector values
with the ECC values calculated in Ref. [31] to show that
the Z-vector method with single and double approximation
can produce a much better wave function in the nuclear
region of the atomic nucleus than the ECC method with the
approximation stated in the paper and, thus, is capable of
providing the precise value of the types of property like PNC
amplitudes, which are prominent in the nuclear region. The
paper is organized as follows. A brief introduction and the
workable equations for the Z-vector method are given in Sec. II
followed by the matrix elements for the magnetic HFS constant
of the atomic system. The computational details are given in
Sec. III. In Sec. IV we present our results and discuss these
before making our final remarks in Sec. V.

II. THEORY

A. Z-vector method

The study of hyperfine interaction helps us to understand
the nuclear structure of an atom and its impact on the
electronic wave function in the nuclear and near nuclear
region. Therefore, for the accurate calculation of magnetic
HFS constant, which demands a very precise wave function
in the short range of the nucleus, we need to incorporate both
relativistic and electron correlation effects. In this work, the
four-component Dirac-Hartree-Fock (DHF) method is used
to include the effect of relativity where the electron-electron
repulsion term is approximated as a Coulomb interaction. The
Dirac-Coulomb Hamiltonian is given by

HDC =
∑

i

⎡
⎣−c(�α · �∇)i + (β − 14)c2

+ V nuc(ri) +
∑
j>i

1

rij

14

⎤
⎦, (1)

where α and β are the usual Dirac matrices, c is the speed of
light, 14 is the 4 × 4 identity matrix, and V nuc(ri) is the nuclear
potential function; the Gaussian charge distribution is used in
this work. The DHF method misses the instantaneous dynamic
correlation of opposite spin electrons. Among various many-
body theories, the single reference coupled cluster (SRCC) is
the most elegant technique to incorporate dynamic correlation.
The SRCC wave function is given as

|�cc〉 = eT |�0〉, (2)

where �0 is the DHF wave function and T is the coupled-
cluster excitation operator, which is given by

T = T1 + T2 + · · · + TN =
N∑
n

Tn (3)

with

Tm = 1

(m!)2

∑
ij ...ab...

t ab...
ij ... a†

aa
†
b · · · ajai . (4)

Here i,j (a,b) are the hole (particle) indices and tab...
ij ... are the

cluster amplitudes corresponding to the cluster operator Tm. In
the coupled-cluster single and double (CCSD) approximation,
T = T1 + T2. The equations for T1 and T2 are given as〈

�a
i

∣∣(HNeT )c|�0〉 = 0,〈
�ab

ij

∣∣(HNeT )c|�0〉 = 0, (5)

where HN is the normal ordered DC Hamiltonian and the
subscript c means only the connected terms exist in the
contraction between HN and T . Size extensivity is ensured
by this connectedness. The coupled-cluster correlation energy
can be obtained as

Ecorr = 〈�0|(HNeT )c|�0〉. (6)

However, the SRCC energy is not optimized with respect
to the determinantal coefficients and the molecular orbital
coefficients in the expansion of the many electron correlated
wave function [32]. Therefore, the calculation of the SRCC
energy derivative with respect to external perturbation requires
one to include these derivative terms. The equation for
these terms is linear but, in general, perturbation dependent.
However, in the Z-vector method, the derivative terms con-
taining the determinantal coefficients can be incorporated by
the introduction of a perturbation-independent operator �

[35]. Thus, in the Z-vector method, any number of property
calculations can be done by solving only one set of T and
� amplitudes. � is a deexcitation operator, and the second
quantized form is given by

� = �1 + �2 + · · · + �N =
N∑
n

�n, (7)

where

�m = 1

(m!)2

∑
ij..ab..

λ
ij..

ab..a
†
i a

†
j · · · abaa. (8)

Here λ
ij..

ab.. are the cluster amplitudes corresponding to the
cluster operator �m. In the CCSD approximation, � = �1 +
�2. The explicit equations for the amplitudes of �1 and �2

operators are given by

〈�0|[�(HNeT )c]c
∣∣�a

i

〉 + 〈�0|(HNeT )c
∣∣�a

i

〉 = 0, (9)

〈�0|[�(HNeT )c]c
∣∣�ab

ij

〉 + 〈�0|(HNeT )c
∣∣�ab

ij

〉
+〈�0|(HNeT )c

∣∣�a
i

〉〈
�a

i

∣∣�∣∣�ab
ij

〉 = 0. (10)

The energy derivative is given by

�E′ = 〈�0|(ONeT )c|�0〉 + 〈�0|[�(ONeT )c]c|�0〉. (11)
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TABLE I. Basis and cutoff used for the atomic calculation.

Atom Basis Virtual cutoff (a.u.)

Li aug-cc-pCVQZ
Na aug-cc-pCVQZ
K dyall.cv4z 500
Rb dyall.cv3z 500
Cs dyall.cv4z 40
Fr dyall.cv3z 50
Be+ aug-cc-pCVQZ
Mg+ aug-cc-pCVQZ
Ca+ dyall.cv4z 500
Sr+ dyall.cv3z 100
Ba+ dyall.cv4z 40
Ra+ dyall.cv3z 50

Here ON is the derivative of a normal ordered perturbed
Hamiltonian with respect to an external field of perturbation.
It is clear from the above formulation that the derivative terms
containing only the determinantal coefficients are included
here, i.e., the orbital relaxation terms that are required to make
energy functional stationary with respect to molecular orbital
coefficients are not considered here. It is worth mentioning
that recently Saue and coworkers [37] have implemented the
orbital-unrelaxed analytical method in the four-component rel-
ativistic SRCC framework based on the Lagrangian multiplier
method of Helgaker and coworkers [38], which is similar to
the Z-vector method for the ground state first order properties.

B. Magnetic hyperfine structure constant

The magnetic HFS interaction arises due to the coupling of
the nuclear magnetic moment with the angular momentum of
electrons and, thus, can be treated as a one-body interaction
from the electronic structure point of view. The magnetic

vector potential due to a nucleus is given by

�A = �μk × �r
r3

, (12)

where �μk is the magnetic moment of nucleus K . In Dirac
theory, the HFS interaction Hamiltonian due to �A can be
given as

Hhfs =
n∑
i

�αi · �Ai, (13)

where αi denotes the Dirac α matrices for the ith electron
and n is the total number of electrons. The magnetic hyperfine
constant of the J th electronic state of an atom can be given as

AJ = 1

IJ
〈�J |Hhfs|�J 〉

= �μk

IJ
· 〈�J |

n∑
i

( �αi × �ri

r3
i

)
|�J 〉, (14)

where I is the nuclear spin quantum number and �J is the
wave function of the J th electronic state.

III. COMPUTATIONAL DETAILS

The DIRAC10 program package [39] is used to solve the
DHF equation and to construct the one- and two-electron
matrix elements. The magnetic HFS integrals are extracted
from a locally modified version of DIRAC10. Gaussian charge
distribution is considered for the finite size of the nucleus
where the the nuclear parameters are taken from Ref. [40].
The restricted kinetic balance [41] condition is used to link
small and large component basis functions. No virtual pair
approximation (NVPA) is used to solve the DHF equation. This
means that the negative energy solutions are removed by using
a projection operator and only positive energy solutions are
included in the correlation calculations. However, how to go

TABLE II. Magnetic hyperfine coupling constant (in MHz) of ground state of atoms.

δ%

Atom SCF ECC [31] Z-vector Expt. ECC Z-vector

6Li 107.2 149.3 148.3 152.1 [48] 1.9 2.6
7Li 283.2 394.3 391.6 401.7 [48] 1.9 2.6
23Na 630.6 861.8 861.4 885.8 [48] 2.8 2.8
39K 151.0 223.5 226.6 230.8 [48] 3.3 1.9
40K −187.7 −277.9 −281.8 −285.7 [49] 2.8 1.4
41K 82.9 122.7 124.4 127.0 [48] 3.5 2.1
85Rb 666.9 972.5 986.5 1011.9 [50] 4.1 2.6
87Rb 2260.1 3295.7 3343.3 3417.3 [51] 3.7 2.2
133Cs 1495.5 2179.1 2218.4 2298.1 [52] 5.5 3.6
223Fr 5518.0 7537.4 7654(2)[53] 1.5
9Be+ −498.8 −614.6 −612.9 −625.0 [54] 1.7 2.0
25Mg+ −466.7 −581.6 −584.8 −596.2 [55] 2.5 1.9
43Ca+ −606.2 −794.9 −801.5 -806.4 [56] 1.4 0.6
87Sr+ −761.0 −969.9 −977.9 −1000.5(1.0) [57] 3.2 2.3
135Ba+ 2737.4 3513.3 3591.7 [58] 2.2
137Ba+ 3062.1 3930.2 4018.9 [58] 2.3
223Ra+ 2842.8 3446.3 3404(2) [59,60] 1.2
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FIG. 1. Comparison of relative deviations between Z-vector and
ECC values of the magnetic HFS constant of atoms.

beyond the no-pair approximation by accounting for correla-
tion contributions of negative energy states has been discussed
in depth in Refs. [42–44]. In our calculation, we have used
aug-cc-pCVQZ basis [45,46] for Li, Na, Be, and Mg atoms
and dyall.cv3z basis [47] for Rb, Sr, Fr, and Ra atoms and
dyall.cv4z [47] basis for K, Ca, Cs, and Ba atoms. All electrons
are considered for the correlation calculation of all systems.
The cutoff used for the virtual orbitals is compiled in Table I.

IV. RESULTS AND DISCUSSION

In Table II we present the magnetic HFS constant of alkali
metal atoms and mono-positive alkaline earth metal ions in
their ground state (2S) electronic configuration using the Z-
vector technique in the relativistic coupled-cluster framework.
We have compiled the experimental values for these systems
in the same table, and the relative deviations of Z-vector
results from the experimental values are presented as δ%.
The results for different isotopes are calculated by using their
corresponding nuclear magnetic moment values although the
nuclear parameters in the nuclear model are taken as the same
for each isotope, which is the default for the most stable
isotopes in DIRAC10 [39]. Our calculated Z-vector results
are in very good agreement with the experimental values.
From the table, it is clear that the deviations of the Z-vector
results from the experiments are well within 3% except for the
133Cs atom, where it is 3.6%. The Z-vector results are quite
impressive, especially for the heavy atoms. The ECC values
of magnetic HFS constant are taken from Ref. [31], and the
deviations from the experiment are presented in the table. We
have used the same basis and cutoff for those systems for
comparison purposes. The deviations of ECC and Z-vector
values from the experimental values are presented in Fig. 1.
From the figure, it is clear that Z-vector results are far better

TABLE III. Comparison of full CI and Z-vector magnetic HFS
values (in MHz) of 7Li.

Basis Full CI [31] Z-vector

aug-cc-pCVDZ 384.1 383.9
aug-cc-pCVTZ 402.0 401.3
aug-cc-pCVQZa 386.0 385.2

aConsidering three electrons and 189 virtual orbitals.

TABLE IV. Comparison of full CI and Z-vector magnetic HFS
values (in MHz) of 9Be+.

Basis Full CI [31] Z-vector

aug-cc-pCVDZ −586.6 −586.5
aug-cc-pCVTZ −615.7 −615.4
aug-cc-pCVQZa −613.0 −612.7

aConsidering three electrons and 183 virtual orbitals.

than the ECC results except for two small systems like Li
and Be+. As the magnetic HFS constant is very sensitive to
the near nuclear wave function, the above results show that
the Z-vector method can produce a far better wave function
in the nuclear region than the ECC method, and the results
are quite impressive for the heavy atoms. Although ECC is
a truncated series, in the CCSD model, the natural truncation
leads to very expensive terms. In Ref. [31], the truncation
scheme proposed by Vaval et al. is used to avoid the expensive
terms in the ECC functional where the right exponential is
full within the CCSD approximation and the higher-order
double-linked terms within the CCSD approximation are
taken in the left exponent. This approximation introduces
an additional error, which may be the reason for the poor
performance of ECC compared to the Z-vector method.

The HFS constant predominantly depends on the spin
density of the valence electron in the nuclear region and
thus is not very sensitive to the retardation and magnetic
effects described by the Breit interaction [61,62]. It can be
seen from the previous calculations that the higher order
relativistic effects on these types of properties generally lie
∼0.5%–1% [63–65]. It is worth mentioning that although we
have correlated all electrons in our Z-vector calculations, the
results are not completely free from the uncertainty associated
with a core correlation as the cvNz (N = 3, 4) basis set
misses some important core correlating functions. The 1s − 3d

electrons also need much higher virtual energy orbitals for
proper correlation functions as shown in Ref. [66,67]. A series
of calculations are done to estimate the uncertainty associated
with the Z-vector values of the magnetic HFS constant of these
systems. A comparison between full configuration interaction
(FCI) and Z-vector magnetic HFS constant values of 7Li and
9Be+ has been made and is presented in Tables III and IV, re-
spectively. By comparing Z-vector values with FCI values and
considering all other sources of error like higher order relativis-
tic effects, missing correlation effects, etc., it can be assumed
that the overall uncertainty in our final results is less than 5%.

V. CONCLUSION

We have calculated the magnetic HFS constant of alkali
metal atoms (Li, Na, K, Rb, Cs, and Fr) and mono-positive
alkaline earth metal ions (Be+, Mg+, Ca+, Sr+, Ba+, and Ra+)
using the Z-vector technique in the relativistic coupled-cluster
framework. We have compared the Z-vector values and the
ECC values taken from Ref. [31] with experiment, and the
comparison shows that the Z-vector method with single and
double approximation can produce a much more accurate
wave function in the nuclear region than the ECC method
with the given approximation. A possible explanation for the
poor performance of the ECC method is also given.
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