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Microwave transitions of pairs of cold Rb Rydberg atoms as Forster resonances of Floquet states
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Previous measurements of single photon nd5/2nd5/2 → (n + 1)dj (n − 2)f transitions by two of us were
described as microwave transitions made possible by configuration interaction (CI) between the nd5/2nd5/2

and the nearly degenerate (n + 2)p3/2(n − 2)f states [Lee and Gallagher, Phys. Rev. A 93, 062509 (2016)].
Here we report the observation of the one photon nd5/2nd5/2 → (n + 3)s1/2(n − 2)f , two photon nd5/2nd5/2 →
(n + 3)pj (n − 2)f , and three photon nd5/2nd5/2 → (n + 4)s1/2(n − 2)f microwave transitions. We show that
both single and multiphoton microwave transitions are conveniently described as Forster resonant energy transfers
between resonant Floquet states, and we show that the Floquet-Forster model reduces to the CI model used
previously. Finally, to show that the transitions observed previously are by no means unique, we report pair
transitions with different initial and final states as well as radio instead of microwave frequencies.
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I. INTRODUCTION

Microwave fields provide a convenient way to probe and
control Rydberg atoms and their interactions, as shown by a
few examples. The observation of the motion of Rb Rydberg
atoms on a repulsive van der Waals potential has been
observed by Teixeira et al. [1] who followed the changing
frequency shift of a microwave transition. Microwaves and
radio frequency fields have been used to control Forster
resonant energy transfer, recently in cold Rydberg atom
samples by van Ditzhuizen et al. [2], and some time ago
in samples of room temperature atoms by Pillet et al. [3].
Microwaves have also been used to select pairs of atoms with
well-defined dipole–dipole interactions [4]. There are several
recent reports of transitions of pairs of Rydberg atoms [5–7].
Of particular relevance to the present work, we reported
the microwave spectroscopy of pairs of Rb Rydberg atoms.
In particular, we observed transitions in which a pair of
Rb nd5/2 atoms, in the nd5/2nd5/2 molecular state, absorbed
a single microwave photon and underwent the transition to
the (n + 1)dj (n − 2)f state. In spite of the fact that only
one photon was absorbed, both atoms changed state. We
described the process in terms of a configuration interaction
(CI) model, in which the dipole–dipole interaction induced
admixture of the energetically nearby (n + 2)p3/2(n − 2)f
state into the nd5/2nd5/2 state allows the microwave transition
to the (n + 1)dj (n − 2)f state.

Here we describe the extension of the observations to mul-
tiphoton transitions between pairs of atoms. Specifically, we
have observed the one photon nd5/2nd5/2 → (n + 3)s1/2(n −
2)f , two photon nd5/2nd5/2 → (n + 3)pj (n − 2)f , and three
photon nd5/2nd5/2 → (n + 4)s1/2(n − 2)f microwave tran-
sitions. All of these processes can be described in terms
of Forster resonant dipole–dipole energy transfers between
Floquet, or microwave dressed, states. In this approach we
treat the interaction of the atoms with the microwave field first,
and then the dipole–dipole interaction between the resulting
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Floquet states. This approach is similar to that followed by
van Ditzhuizen et al. [2] and Pillet et al. [3], but it differs
in that the microwave field interacts with only one of the
two atoms of the pair; the other is simply a spectator. The
spectator atom is analogous to the spectator Rydberg electron
in isolated core excitation of two electron Rydberg atoms [8,9].
The Floquet approach provides a convenient way to treat
multiphoton processes, and it reduces to the CI model for
single photon transitions. Finally, to show the generality of
these transitions we describe transitions involving different
initial and final states.

In the sections which follow we present the Floquet model,
describe the experimental approach, present our experimental
observations and compare them to the expectations from the
model.

II. FLOQUET MODEL OF FORSTER ENERGY TRANSFER

In Fig. 1 we show one, two, and three photon microwave
transitions from nd5/2nd5/2 pairs to other states of the
form n′s1/2(n − 2)f and (n + 3)pj (n − 2)f . Previously we
described one photon transitions using a CI model, in which
the dipole–dipole interaction of the nd5/2nd5/2 state with
the nearby (n + 2)p3/2(n − 2)f state admixes some of the
latter into the nominal nd5/2nd5/2 state. With this admixture
a relatively weak microwave field can drive the nd5/2nd5/2

to (n + 3)s1/2(n − 2)f transition. In the case of the two
and three photon transitions, a stronger microwave field is
required, and except for the most closely spaced pairs, the
interaction with the microwave field is much stronger than the
dipole–dipole interaction. Accordingly, our approach is to treat
the interaction of the atoms with the microwave field first, using
a Floquet approach and ignoring the dipole–dipole interaction,
and then introduce the dipole–dipole interaction between the
resulting Floquet states. When the microwave frequency brings
Floquet states into degeneracy, Forster resonant energy transfer
occurs due to the dipole–dipole interaction. For the case in
which a single microwave photon is absorbed or emitted the
Floquet approach reduces to the result given by the CI approach
used previously [5,6].

For concreteness we consider the system shown in Fig. 1,
specifically the one, two, and three microwave photon
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FIG. 1. One-, two-, and three-photon microwave transitions from
the nd5/2nd5/2 state. The transitions to (n + 3)pj (n − 2)f states are
two-photon transitions, and the transition to the (n + 4)s1/2(n − 2)f
state is a three-photon transition. The diagram is approximately to
scale.

transitions:

nd5/2nd5/2 + h̄ω → (n + 3)s1/2(n − 2)f, (1a)

nd5/2nd5/2 + 2h̄ω → (n + 3)p1/2(n − 2)f, (1b)

nd5/2nd5/2 + 2h̄ω → (n + 3)p3/2(n − 2)f, (1c)

nd5/2nd5/2 + 3h̄ω → (n + 4)s1/2(n − 2)f. (1d)

All of these transitions are allowed due to the dipole–
dipole interaction of the nd5/2nd5/2 state with the nearby
(n + 2)p3/2(n − 2)f state, as shown by the double-headed
arrow in Fig. 1. We ignore the (n + 2)p1/2(n − 2)f state since
it is not coupled to the nd5/2nd5/2 state by the dipole–dipole
interaction, and its inclusion does not significantly affect the
Floquet levels at the resonant frequencies.

Unless stated otherwise we use atomic units, and for
compactness in notation we introduce the shorthand,

nd5/2 → d,

(n + 2)p3/2 → p,

(n + 3)s1/2 → s,

(n + 3)p1/2 → p′
1, (2)

(n + 3)p3/2 → p′
3,

(n + 4)s1/2 → s ′,

(n − 2)f → f.

With this notation the transition of Eq. (1a) is written as dd +
h̄ω → sf .

The wave functions for the molecular states are direct
products of the two atomic wave functions, and we ignore
exchange. The energies of the molecular states at R = ∞,
where R is the distance between the two atoms, are obtained by
adding the energies of the two atomic states, which are easily
calculated using the known Rb quantum defects [10–12].

The molecular dipole matrix elements which are important
for the microwave coupling are

〈pf |μ|sf 〉 = 〈p|μ|s〉〈f ||f 〉 = 〈p|μ|s〉 = μps,

〈sf |μ|p′
1f 〉 = 〈s|μ|p′

1〉〈f ||f 〉 = 〈s|μ|p′
1〉 = μsp′

1
,

〈sf |μ|p′
3f 〉 = 〈s|μ|p′

3〉〈f ||f 〉 = 〈s|μ|p′
3〉 = μsp′

3
, (3)

〈p′
1f |μ|s ′f 〉 = 〈p′

1|μ|s ′〉〈f ||f 〉 = 〈p′
1|μ|s ′〉 = μp′

1s
′ ,

〈p′
3f |μ|s ′f 〉 = 〈p′

3|μ|s ′〉〈f ||f 〉 = 〈p′
3|μ|s ′〉 = μp′

3s
′ .

In each of these transitions one atom undergoes the transi-
tion while the other remains a spectator in the (n − 2)f state.
These molecular matrix elements are reminiscent of isolated
core excitation of the two-electron Rydberg atoms [8,9]. The
frequencies relevant to the transitions shown in Fig. 1 are not
near any atomic frequencies for either the atomic f or d states.
For this reason the (n − 2)f atom is simply a spectator in the
microwave transitions, and an nd atom is unaffected by the
microwave field.

The dipole–dipole interaction which is important for all
transitions shown in Fig. 1 is

Vdd = 〈nd5/2nd5/2|μμ′

R3
|(n + 2)p3/2(n − 2)f 〉, (4)

where μ and μ′ are the dipole matrix elements of the two
atoms. It can be written as

Vdd = 〈nd5/2|μ|(n + 2)p3/2〉〈nd5/2|μ′|(n − 2)f 〉
R3

= μdpμdf

R3
. (5)

Before we begin the description of the Floquet model for
the transitions shown in Fig. 1, it is useful to summarize the CI
model for the single photon dd → sf transition. Specifically,
we are interested in calculating the fractional population
transfer (FPT) from the dd to the sf state at resonance. To
calculate it we calculate the transition probability for a pair of
atoms spaced by R and then average over the spacings in the
trap volume, as explained in some detail elsewhere [5].

Due to the dipole–dipole interaction the dd state excited by
the laser has a small admixture of the pf state, so that at any
finite separation R the state |ddR〉 is given by

|ddR〉 = |dd〉 + μdpμdf

�R3
|pf 〉, (6)

where states without subscripts are R = ∞ states, and � is
the dd − pf energy detuning shown in Fig. 1.

The linearly polarized microwave electric field E cos(ωt)
produces the dd − sf coupling,

� = 〈ddR|μE

2
|sf 〉 = μdpμdf

�R3

μpsE

2
. (7)

The coupling � is the Rabi frequency for the transition, and if
the product �T > π , where T is the duration of the microwave
pulse, the population oscillates back and forth between the
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initially populated dd state and the sf state. The time average
probability of being in the sf state is 1/2. The spacing R = RT

is that for which �T = π . Explicitly,

�T = μdpμdf μpsET

2�R3
T

= π. (8)

For R < RT we assume the average transition probability to
be one-half, and for R > RT we assume it to vanish, since
� ∝ 1/R3. For FPT � 1, RT � Rav, where Rav is related to
the local density ρ by

ρ = 3

4πR3
av

. (9)

In this case,

FPT = R3
T

2R3
av

. (10)

From Eqs. (7)–(10) it is evident that

FPT ∝ ρE. (11)

That is, FPT is proportional to both density and the microwave
field amplitude.

From the six bare states shown in Fgi. 1 we construct
six Floquet states which are periodic, with the period of
the microwave driving field [13]. The Floquet energies are
obtained by adding and subtracting integral multiples of the
microwave frequency ω to the bare energies. We are interested
in the Forster resonances shown in Fig. 1, which occur when
the Floquet states based on the sf , p′

1f , p′
3f , and s ′f states are

degenerate with the dd state. For R = ∞ and zero microwave
field these degeneracies occur when

Wsf − ω = Wdd,

Wp′
1f

− 2ω = Wdd,

Wp′
3f

− 2ω = Wdd,

Ws ′f − 3ω = Wdd. (12)

Accordingly, we restrict our attention to the Floquet
energies Wdd , Wpf , Wsf − ω, Wp′

1f
− 2ω, Wp′

3f
− 2ω, and

Ws ′f − 3ω. Ignoring Floquet energies in which other multiples

FIG. 2. Floquet energy levels for n=39 as a function of the
microwave frequency for zero microwave field amplitude. The
energies are specified relative to the energy of the 39d5/239d5/2 state.

of ω have been added or subtracted is equivalent to making the
rotating wave approximation. Figure 2 shows the Floquet en-
ergy levels for n=39 as a function of the microwave frequency
for vanishing microwave field. The microwave resonances of
Fig. 1 correspond to the level crossings of the 42s1/237f ,
42p1/237f , 42p3/237f , and 43s1/237f Floquet states with
the 39d5/239d5/2 state at frequencies 57.878, 55.137, 55.850,
and 55.249 GHz. These are the Forster dipole–dipole energy
transfer resonances of the dd state with the Floquet states.

Equally important are the 42p1/237f − 43s1/237f and
41p3/237f − 42s1/237f crossings at 55.473 and 58.356 GHz.
These crossings are dipole allowed single photon microwave
resonances, and in any finite field they become avoided
crossings, altering all the energy levels but that of the
39d5/239d5/2 state. These avoided crossings lead to ac Stark
shifts of the Forster resonances.

In the presence of the linearly polarized microwave field
E cos ωt all the levels are coupled, by the matrix elements of
Eq. (3), except dd, and the Floquet Hamiltonian matrix can be
written as [13]

HF =

⎛
⎜⎜⎜⎜⎜⎝

Wdd 0 0 0 0 0
0 Wpf μspE/2 0 0 0
0 μspE/2 Wsf − ω μp′

1s
E/2 μp′

3s
E/2 0

0 0 μp′
1s
E/2 Wp′

1f
− 2ω 0 μs ′p′

1
E/2

0 0 μp′
3s
E/2 0 Wp′

3f
− 2ω μs ′p′

3
E/2

0 0 0 μs ′p′
1
E/2 μs ′p′

3
E/2 Ws ′f − 3ω

⎞
⎟⎟⎟⎟⎟⎠

. (13)

Diagonalizing this matrix yields the eigenvalues and eigenvectors. Since we have ignored the dipole–dipole interaction in this
Floquet treatment, the energy Wdd does not depend on the microwave field and one of the eigenstates is |dd〉. Each of the other
five eigenstates we label as |ψF 〉, where |ψF 〉 is the linear combination,

|ψF 〉 = a1|pf 〉 + a2|sf 〉 + a3|p′
1f 〉 + a4|p′

3f 〉 + a5|s ′f 〉. (14)

In Fig. 3 we show the Floquet energies over the same frequency
range as shown in Fig. 2, but with a microwave field amplitude
E = 415 mV/cm.

The dipole moments of Eq. (13) are matrix elements of z,
to correspond to the microwave polarization. We obtained the
radial parts from Saffman and Walker [14] and the angular
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FIG. 3. Floquet energy levels for n=39 as a function of the
microwave frequency for microwave field amplitude of 415 mV/cm.
The energies are specified relative to the energy of the 39d5/239d5/2

state.

parts from Edmonds [15]. The specific values used are

μs ′p′
3
=

√
2

3
(1681),

μs ′p′
1
= −1

3
(1650),

μp′
1s

= −1

3
(1752), (15)

μp′
3s

=
√

2

3
(1728),

μsp =
√

2

3
(1598).

With the microwave field of 415 mV/cm the matrix element
μsp leads to a microwave coupling of approximately 200 MHz,
i.e., μspE/2 ∼= 200 MHz.

Comparing Fig. 3 to Fig. 2, we can see that the single
photon microwave resonances at 55.473 and 58.356 GHz
have become obvious avoided crossings, and the two photon
41p3/237f − 42pj 37f resonances are visible. At the single
microwave photon resonances the separation between Floquet
levels, and the level shifts, are linear in the microwave field.
Far from them, for example, at the Forster level crossings
with the 39d5/239d5/2 state, the level shifts are quadratic in
the microwave field. in Fig. 4 we show an expanded view of
the portion of Fig. 3 containing the two- and three-photon
Forster resonances (marked by dashed boxes in Figs. 2 and 3),
in zero field and E=415 mV/cm. At the frequency of the
39d5/239d5/2 − 42p3/237f Forster resonance at 55.850 GHz,
the 42p3/237f state lies about halfway between the 43s1/237f

and 42s1/237f states, and the ac Stark shifts due to these
two states almost cancel, leading to a small ac Stark shift
of this Forster resonance. In contrast, at the frequency of
the 39d5/239d5/2 − 42p1/237f Forster resonance at 55.137
GHz, the 42p1/237f state is below both the 42s1/237f

and 43s1/237f states, so the ac Stark shifts add. More

FIG. 4. An expanded view of the region marked by the dashed
box in Figs. 2 and 3 containing the two- and three-photon Forster
resonances. Solid lines and dotted lines represent microwave coupling
of 0 and 200 MHz, respectively. For W42p3/237f − 2ω, the solid line
and the dotted line overlap. The energies are specified relative to the
energy of the 39d5/239d5/2 state.

important, the Forster resonance is very close to the single-
photon 42p1/237f − 43s1/237f resonance, leading to a large
frequency shift.

For small microwave fields the ac Stark shifts of the Forster
resonances are quadratic in the microwave field amplitude,
and the calculated ac Stark shifts are presented with the
experimental results in the next section.

To calculate the fractional population transfer (FPT) from
the laser excited dd state to a Floquet state at a Forster
resonance, we follow a procedure similar to that used in
the development of Eqs. (7)–(10). We compute the transition
probability for a pair of atoms spaced by distance R and then
average over the distribution of the spacings in the trap volume.

We calculate the transition probability at resonance for a
transition from the dd state to the Floquet state for a pair
as follows. The microwave field is switched on and off in
10 ns, which is fast compared to the dipole–dipole interaction.
Thus, when the microwave field is switched on the population
oscillates between |dd〉 and |ψF 〉 at the frequency � given by
the dipole–dipole coupling matrix element � = 〈dd|μμ′

R3 |ψF 〉.
Since only the |pf 〉 part of the |ψF 〉 eigenfunction contributes
to this matrix element,

� = 〈dd|μμ′

R3
|ψF 〉 = a1〈dd|μμ′

R3
|pf 〉, (16)

where a1 is the coefficient given in Eq. (14). For �T > π , on
average half the oscillating population is in the ψF state and
is left there when the microwave field is turned off, in 10 ns.
As in the earlier development of Eqs. (7)–(10),the condition
�T = π is met for R = RT where

�T = a1〈dd|μμ′

R3
T

|pf 〉T = π. (17)

For R < RT , �T > π , and the average transition probabil-
ity is one-half. For R > RT the transition probability falls
rapidly with R. Accordingly, pairs with R < RT undergo the
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TABLE I. Microwave field amplitudes required to produce a1 = 0.05 for n = 39.

Transition Required microwave field amplitude (mV/cm)

nd5/2nd5/2 → (n + 3)s1/2(n − 2)f7/2 49.8
nd5/2nd5/2 → (n + 3)p1/2(n − 2)f7/2 622.5
nd5/2nd5/2 → (n + 3)p3/2(n − 2)f7/2 456.5
nd5/2nd5/2 → (n + 4)s1/2(n − 2)f7/2 1369.5

transition, and the FPT is again

FPT = R3
T

2R3
av

. (18)

The population oscillation frequency � and the FPT
are proportional to the Rydberg atom density and a1, the
coefficient of the pf component of ψF . In the low microwave
field limit, at each of the Forster resonances a1 is proportional
to EM , where M is the number of the photons absorbed or
emitted.

To verify that the Floquet model gives the same result as
the CI model discussed earlier, we restrict our attention to
the one-photon case treated using the CI model. For the one-
photon dd − sf Forster resonance the microwave power is
sufficiently low that only three states need to be considered,
dd, pf , and sf . In this case the only coupling in the Floquet
matrix of Eq. (13) is that between the pf and sf states, and

a1 = μpsE

2(Wsf − ω − Wpf )
. (19)

Since, at resonance Wsf − ω = Wdd [see Eq. (12)], we can
write the oscillation frequency � as

� = μpsμdpμdf E

2�R3
, (20)

which is precisely the CI result of Eq. (7). In sum, the Floquet
model allows us to predict the ac Stark shifts of the multiphoton
resonances and the fractional population transfers, which scale
as EM , where M is the number of microwave photons emitted
or absorbed. Furthermore, the Floquet description is equivalent
to the CI model presented previously to describe one-photon
transitions.

To compute the microwave fields required to observe the
different transitions shown in Fig. 1, a useful criterion is the
field required to produce a fixed value of a1. In Table I we give
the microwave fields required to produce a1 = 0.05 for n=39.
For the two-photon transitions of Fig. 1 this criterion requires E
≈ 550 mV/cm, comparable to the microwave field amplitude
of 415 mV/cm that was used to generate Fig. 3. From Table I it
is apparent that similar microwave field strengths are required
to observe the two-photon transitions dd → p′

1f and dd →
p′

3f , since the detuning from the intermediate sf state is large
in both cases. However, the ac Stark shift of the dd → p′

1f

resonance is much larger due to the proximity of the dd →
p′

1f Forster resonance to the single microwave photon p′
1f →

s ′f resonance.

III. EXPERIMENTAL APPROACH

The essential notion of the experiment can be understood
with the aid of Fig. 5, which shows the relevant energy levels

of single microwave photon transitions from the nd5/2nd5/2

state. Pulsed 480-nm laser excitation of atoms to the nd5/2 state
produces nd5/2nd5/2 pairs, which are coupled by the dipole–
dipole interaction to the energetically nearby (n + 2)p3/2(n −
2)f state. A 1-μs-long microwave pulse drives one of the four
transitions, labeled A–D, in Fig. 5. In CI terms, the transitions
are allowed due to the admixture of the (n + 2)p3/2(n − 2)f
state into the nd5/2nd5/2 state by the dipole–dipole interaction.
One of the atoms in the admixture interacts with the microwave
field while the other remains a spectator. As shown by fig. 5,
which is approximately to scale, the microwave field can drive
the pair to a lower or higher energy state. We detect that the
pair has undergone the transition by applying a field ionization
pulse after the microwave pulse. We assume that the field
ionization pulse projects the atoms onto isolated atomic states.
For a transition to be observable one of the atoms in the final
state pair must have an energy above the energy of the initially

FIG. 5. The observed one-photon transitions originating from
nd5/2nd5/2. The (n + 2)p3/2(n − 2)f state is nearly degenerate with
the nd5/2nd5/2 level. For n = 39, the (n + 2)p3/2(n − 2)f level is
detuned by 477.8 MHz.
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FIG. 6. Observed 40d5/240d5/2 → 43s1/238f7/2 resonances for
a range of microwave field amplitudes. The calculated resonance
frequency for the transition at zero microwave power and R = ∞ is
53.721 GHz.

excited nd state so that it is ionized earlier in the field ionization
pulse. The (n + 2)p3/2, (n + 1)dj , and (n + 3)s1/2 states meet
this criterion. It is useful to note that in transition D although
the microwave transition removes energy from the pair, the
transition is detectable since the result is an (n + 2)p3/2 atom,
which lies above the nd5/2 state. The resonances corresponding
to the transitions shown in Fig. 5 are recorded by setting the
gate of a gated integrator on the signal due to field ionization
of the (n + 2)p3/2, (n + 1)dj , or (n + 3)s1/2 state and slowly
sweeping the microwave frequency over many shots of the
laser.

Since this experiment is an extension of work reported pre-
viously [5], the experimental approach has much in common.
85Rb atoms are trapped in a vapor loaded magneto-optical trap
(MOT), which supplies a steady population of Rb atoms in
the 5p3/2 state. Atoms are excited to the nd5/2 or ns1/2 state
by a 10-μJ 480-nm laser pulse which is generated by pulse
amplifying, at a 20-Hz repetition rate, and then frequency
doubling the output of tapered amplifier seeded by a 960-nm
single mode diode laser. The 480-nm pulse is 10-ns long and
has a bandwidth of 150 MHz. Approximately 4 ms before

the excitation with the pulsed laser, the trap magnetic fields
are switched off so that the residual field at the center of
MOT during the experiment is reduced to less than 50 mG.
Subsequent to laser excitation, the atoms are exposed to a
1-μs-long microwave pulse to drive the transitions shown in
Fig. 5; 65 ns after the end of the microwave pulse, a 3-μs rise
time field ionization pulse is applied to field ionize the Rydberg
atoms and drive the resulting ions to a microchannel plate
(MCP) detector. The signal from the MCP is recorded with a
gated integrator and stored in a computer for later analysis.

The cloud of cold Rb atoms is held at the center of four
stainless steel vertical rods which pass through the corners
of a horizontal square 18 mm on a side. The positive field
ionization voltage pulse is applied to the rods farther from
the MCP while the two rods closer to the MCP are grounded.
The density of Rydberg atoms in the MOT is determined in
the following way. The 780-nm fluorescence from the MOT is
measured to find the total number of the trapped atoms in the
5p3/2 state. Then, the number of Rydberg atoms excited on
each laser shot can be determined by combining the measured
reduction of the 5p3/2 population when the pulsed Rydberg
excitation is added and the 1-s filling time of the trap. The
density of the Rydberg atoms is determined by measuring the
waist of the 480-nm beam and the diameter of the MOT. It is
assumed that the Rydberg atom density has the following form:
ρ(x,y,z) = ρ0e

−(x2+y2+z2)/r2
M e−(x2+y2)/r2

L , where rM = 0.5 mm
and rL = 0.18 mm are the radii of the MOT and the 480-nm
laser beam, respectively; ρ0 is the density at the center of the
trap; and x, y, and z are the Cartesian displacements from
the center of the trap. The 480-nm beam propagates in the
z direction. In these experiments, the maximum value of ρ0

is 5 × 108cm−3, and the density measurement uncertainty is a
factor of three.

The microwaves are generated in an Agilent E8247C
synthesizer, which has a maximum frequency of 20 GHz, and
a General Microwave DM862B switch is used to form the
microwaves into 1-μs-long pulses. A Narda DBS2640X220
active doubler and a DBS4060X410 active quadrupler are
used to generate microwaves in the 26.5–40 GHz and 40–
60 GHz ranges, respectively. The relative microwave power
is controlled in the final waveguide with a HP R832A or
U832A precision attenuator. The microwaves have horizontal
polarization and propagate from a horn outside the vacuum

TABLE II. Resonance frequencies and ac Stark shifts for one-photon transitions. Calculated shifts are obtained from our Floquet model.
The estimated maximum field amplitudes are calculated from the maximum observed shifts and calculated shifts.

Calculated Observed Calculated Shift Max. Observed Estimated Max. Field
Transition n (GHz) (GHz) [MHz/(V/cm)2] Shift (MHz) Amplitude (mV/cm)

nd5/2nd5/2 → (n + 3)s1/2(n − 2)f7/2 39 57.878 57.876(9) 486.8 18.4 194
40 53.721 53.719(11) 791.1 73.4 305

nd5/2nd5/2 → (n + 2)p3/2(n − 1)d5/2 39 43.921 43.923(8) 348.4 29.4 290
40 40.415 40.417(8) 570.6 20.1 188

nd5/2nd5/2 → (n + 2)p3/2(n − 1)d3/2 39 44.138 44.139(3) 455.3 12.8 168
40 40.615 40.616(6) 745.7 10.7 120

nd5/2nd5/2 → (n + 2)p3/2(n − 2)g 41 1.190 1.190(11) 130.9 3.3 159
42 1.194 1.190(5) 305.2 3.6 109

ns1/2ns1/2 → (n − 1)d5/2(n − 1)p3/2 39 34.010 34.010(9) 36.7 <1
40 31.441 31.441(10) 44.9 <1
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FIG. 7. Fractional population transfer (FPT) vs microwave field
amplitude for the 40d5/240d5/2 → 43s1/238f7/2 transition.

system through a window to the MOT volume. The vertical
rods used to apply field ionization pulse scatter the microwaves
to some extent, and this results in the polarization’s not
being perfectly linear. Some of the transitions require low
frequencies, in the vicinity of 1 GHz. For those transitions, the
output of the Agilent E8247C synthesizer is directly connected
to the pair of rods closest to the MCP after going through a
Mini-circuits ZHL-42W amplifier and an E&M Labs L30Y
circulator. In most cases, there is an ac Stark shift due to near
resonance of the microwaves to some other transition. Since
the state that is responsible for the ac Stark shift is different for
each transition, more detail will be provided when discussing
each transition. It is straightforward to extrapolate the location
of the resonance peaks to zero microwave power, and the
power shift is used to estimate the absolute microwave field
amplitude over the range of frequencies employed.

IV. OBSERVATIONS

A. One-photon transitions from nd5/2nd5/2

In Fig. 5 we show the single-photon transitions from the
nd5/2nd5/2 state. In all cases these transitions are possible
due to the dipole–dipole induced admixture of the nearly
degenerate (n + 2)p3/2(n − 2)f state into the nd5/2nd5/2 state.

1. nd5/2nd5/2 → (n + 3)s1/2(n − 2) f , Transition (A)

Figure 6 shows the observed 40d5/240d5/2 → 43s1/238f7/2

resonances for a range of microwave field amplitudes. This
transition corresponds to the transition A in Fig. 5 when
n = 40. As the microwave field amplitude is raised, the
transition exhibits an ac Stark shift to higher frequency. The
ac Stark shift is caused by the fact that this transition is
nearly resonant with the atomic 42p3/2 → 43s1/2 transition.
The relative microwave fields are determined from attenuator
settings, whereas the absolute fields given in Fig. 6 are
determined by calculating how much field is required to
produce the observed shifts. In Table II we also present the
ac Stark shifts calculated from our Floquet model as well

FIG. 8. Observed resonance for the 41d5/241d5/2 → 43p3/239g

transition. The peak is shifted to higher frequency by 1.4 MHz
due to ac Stark shift. The calculated frequency for the transition is
1190.4 MHz.

as the maximum ac Stark shifts observed and the estimated
maximum field amplitude. Although we have not made careful
measurements of the microwave field amplitudes, they are
consistent with the maximum field ∼0.7 V/cm we expect
for our microwave system, which has a maximum power of
100 mW and a horn with a gain of 20 dB located 20 cm
from the trapped atoms. The resonance frequency at zero
microwave power is obtained by extrapolating the frequency
of the resonance peak at different microwave field amplitudes
back to zero power. The zero microwave power frequencies
for our measurements are summarized in Table II. Based on

FIG. 9. Energy levels for the one-photon transition ns1/2ns1/2 →
(n − 1)d5/2(n − 1)p3/2.
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FIG. 10. Observed resonance for the 40s1/240s1/2 →
39d5/239p3/2 transition. The calculated frequency for the transition
is 31.441 GHz. The peak is not observably shifted.

either the CI or Floquet model for a single-photon transition,
the fraction of atoms that is transferred to (n + 3)s1/2(n − 2)f
state is expected to depend linearly on the microwave field
amplitude. Figure 7 shows the plot of FPT vs the microwave
field amplitude, exhibiting the expected linear behavior.

2. nd5/2nd5/2 → (n + 1)d j (n − 2) f , Transition (B)

Transition B in Fig. 5 was first reported by Yu et al. [6]
in 2013. Further investigation of transition B as well as the
observation of transition D were reported in the previous
paper [5].

FIG. 11. Observed 39d5/239d5/2 → 42p1/237f resonances for a
range of microwave field amplitudes. The calculated resonance
frequency for the transition at zero microwave power and R = ∞
is 110.273 GHz.

FIG. 12. Fractional population transfer (FPT) vs microwave field
amplitude squared for the 39d5/239d5/2 → 42p1/237f transition.

3. nd5/2nd5/2 → (n + 2) p3/2(n − 2)g, Transition (C)

Unlike transitions A and B of Fig. 5, in this case it is
the (n − 2)f atom which undergoes the transition. Figure 8
shows the resonant peak for the 41d5/241d5/2 → 43p3/239g

transition, which corresponds to transition C in Fig. 5. Due
to the low frequency range required for the transition, the
output of the microwave synthesizer is connected directly to
the pair of rods closest to the MCP, as mentioned in the previous
section. The transitions exhibit an ac Stark shift, linear in the
radio frequency power, of up to 3 MHz, and the resonance
frequencies at zero power are obtained by extrapolating to zero
power. The results are summarized in Table II. The ng-series
quantum defect that is needed to calculate the intervals was
taken from the paper by Lee et al. [12].

FIG. 13. The observed resonance for the 40d5/240d5/2 →
44s1/238f transition. The peak is shifted to higher frequency by
25 MHz due to ac Stark shift.
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TABLE III. Resonance frequencies and ac Stark shifts for two-photon transitions. Calculated shifts are obtained from our Floquet model.
The estimated maximum field amplitudes are calculated from the maximum observed shifts and calculated shifts.

Calculated Observed Calculated Shift Max. Observed Estimated Max. Field
Transition n (GHz) (GHz) [MHz/(V/cm)2] Shift (MHz) Amplitude (mV/cm)

nd5/2nd5/2 → (n + 3)p1/2(n − 2)f7/2 39 110.273 110.280(51) 419.9 118.6 531
40 102.294 102.294(31) 482.1 50.8 325

nd5/2nd5/2 → (n + 3)p3/2(n − 2)f7/2 39 111.699 111.697(18) 8.6 <1
40 103.617 103.615(10) 15.5 <1

4. nd5/2nd5/2 → (n + 2) p3/2(n − 1)d5/2, Transition (D)

There are two notable aspects to this transition. In addition
to the (n − 2)f atom undergoing the transition, the transition
is to a molecular state lower in energy than the nd5/2nd5/2

state. However, the atom left in the (n + 2)p3/2 state gains
energy and can be distinguished from an nd5/2 atom by field
ionization. The observation of this transition was first reported
in the previous paper [5]. In Table II, we report more systematic
measurements made to determine the transition frequencies at
zero microwave power.

B. One-photon transitions from ns1/2ns1/2

For the transitions originating from the nd5/2nd5/2 state, it
is the dipole–dipole induced configuration interaction with the
nearby (n + 2)p3/2(n − 2)f state that allows the transitions.
If we start with the ns1/2ns1/2 state, the nearest dipole–
dipole coupled state, np3/2(n − 1)p3/2, is much further away.
As a concrete example, for n = 40,�40s1/240s1/2−40p3/239p3/2 =
5.45 GHz, whereas �40d5/240d5/2−42p3/238f7/2 = 325 MHz. The
large detuning for ns1/2ns1/2 − np3/2(n − 1)p3/2 results in
a small admixture coefficient. Nonetheless, it is possible
to observe transitions similar to the observed transitions
originating from the nd5/2nd5/2 state.

ns1/2ns1/2 → (n − 1)d5/2(n − 1) p3/2

Figure 9 shows the energy levels involved in the
ns1/2ns1/2 → (n − 1)d5/2(n − 1)p3/2 transition which is one
of the possible transitions originating from the ns1/2ns1/2

state. The diagram is approximately to scale, and the large
detuning between ns1/2ns1/2 and np3/2(n − 1)p3/2 is evident.
Figure 10 shows the observed resonance for n = 40. The
resonant peak does not observably shift when the microwave
power is raised because the microwave frequency is not near
the 40p3/2 → 39d5/2 resonant frequency.

C. Multiphoton transitions from nd5/2nd5/2

In addition to the transitions discussed so far, transitions
that involve more than one microwave photon have been
observed. Figure 1 shows the observed single- and multiphoton

transitions originating from the nd5/2nd5/2 state. Observing
the multiphoton transitions requires higher microwave field
amplitude.

1. nd5/2nd5/2 → (n + 3) p1/2(n − 2) f

Figure 11 shows the observed 39d5/239d5/2 → 42p1/237f

resonances for a range of microwave field amplitudes. This is
a two-photon transition, and the resonances exhibit a large ac
Stark shift to lower frequency. The microwave field amplitudes
involved here are greater than those in Fig. 6 by more than an
order of magnitude. The microwave field amplitudes were
estimated from the observed shifts. As discussed earlier,
for a two-photon transition, the fraction of atoms that is
transferred to the (n + 3)pj (n − 2)f state is expected to scale
as the square of the microwave field amplitude, or linearly
in the microwave power. Figure 12 shows the plot of FPT
vs microwave field amplitude squared, which is linear, as
expected. The obtained zero power frequencies are given in
Table III.

2. nd5/2nd5/2 → (n + 3) p3/2(n − 2) f

Although the frequency for this transition lies near the
nd5/2nd5/2 → (n + 3)p1/2(n − 2)f transition frequency, there
is an important difference: The resonant peak for this transition
does not observably shift when the microwave power is raised.
As discussed earlier, the suppression of the ac Stark shift is
caused by the fact that the (n + 3)p3/2 state lies approximately
halfway between the (n + 3)s1/2 and (n + 4)s1/2 states. As a
result, the ac Stark shift contributions due to the (n + 3)s1/2 and
(n + 4)s1/2 states nearly cancel. The calculated ac Stark shifts
are given in Table III as well as the observed and calculated
zero power frequencies.

3. nd5/2nd5/2 → (n + 4)s1/2(n − 2) f

Figure 13 shows the observed resonance for the
40d5/240d5/2 → 44s1/238f transition. The peak is shifted
to higher frequency by 25 MHz by the ac Stark shift.
This three-photon transition requires a high microwave field
amplitude, and the resonance peaks can only be obtained for
the microwave field amplitudes close to the maximum possible

TABLE IV. Resonance frequency and ac Stark shift for the three-photon transition. The calculated shift is obtained from our Floquet model.
The estimated maximum field amplitude is calculated from the maximum observed shift and calculated shift.

Calculated Observed Calculated Shift Max. Observed Estimated Max. Field
Transition n (GHz) (GHz) [MHz/(V/cm)2] Shift (MHz) Amplitude (mV/cm)

nd5/2nd5/2 → (n + 4)s1/2(n − 2)f7/2 40 153.768 153.767(79) 87.2 40.2 679
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value. The calculated ac Stark shifts are given in Table IV as
well as the observed and calculated zero power frequencies.

V. CONCLUSION

These measurements show that it is straightforward to drive
microwave transitions between pairs of atoms even when
the dipole-dipole detuning is large, ∼5 GHz. Both single
photon and multiphoton transitions can be described as Forster
resonances of Floquet states tuned into resonance with the
microwave frequency. The Floquet approach is particularly

convenient for multiphoton transitions as it is easily extended
to stronger fields, and it reduces to the CI approach used
previously for single-photon transitions.
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