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We consider the quantum Rabi model with external time modulation of the atomic frequency, which can
be employed to create excitations from the vacuum state of the electromagnetic field as a consequence of
the dynamical Casimir effect. Excitations can also be systematically subtracted from the atom-field system by
suitably adjusting the modulation frequency, in the so-called antidynamical Casimir effect (ADCE). We evaluate
the quantum thermodynamical work and show that a realistic out-of-equilibrium finite-time protocol harnessing
ADCE allows for work extraction from the system, whose amount can be much bigger than the modulation
amplitude, |WADCE| � h̄ε�, in contrast to the case of very slow adiabatic modulations. We provide means
to control work extraction in state-of-the-art experimental scenarios, where precise frequency adjustments or
complete system isolation may be difficult to attain.
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I. INTRODUCTION

The dynamical Casimir effect (DCE) consists in the
generation of quanta from the initial vacuum (or any other)
state of some field due to time-dependent boundary conditions
or varying material properties of some macroscopic system
(see [1–4] for reviews). In the majority of cases this corre-
sponds to the generation of photons due to accelerated motion
of a single mirror, a cavity wall or time-dependent dielectric
permittivity or conductivity of the intracavity medium [5–11],
although phonon generation is also possible in such systems
as Bose-Einstein condensates [12,13], quantum fluids of
light [14], or laser-cooled atomic gases [15]. In recent years,
it has been shown that a microscopic analog of DCE can
be achieved using a time-dependent quantum Rabi model
[16–18]—a quantized single-mode electromagnetic field cou-
pled to a two-level atom (TLA) with time-dependent parame-
ters. The photon generation occurs as a result of time variation
of the transition frequency of the TLA or the atom-field
coupling strength, while the macroscopic boundary conditions
for the field remain stationary [19–21]. Ultimately, the photon
creation relies on the presence of the counter-rotating terms
(CRT) in the Rabi Hamiltonian (RH) [22], usually neglected
under the rotating wave approximation (RWA) [23,24]. The
time-dependent Rabi model can be implemented experimen-
tally in the current circuit quantum electrodynamics (circuit
QED) architecture [25–34] with artificial superconducting
atoms coupled to microwave resonators, where DCE analogs
were already observed both in a single mirror and cavity
configurations [35,36]. However, the DCE is not the only
relevant effect that arises from the combination of the CRT
and the temporal modulation of the system parameters. It
was predicted in Refs. [37–39] that by properly adjusting
the modulation frequency one can induce a coherent photon
annihilation from nonvacuum states, in what became known
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as the antidynamical Casimir effect (ADCE). Moreover, by
letting the modulation frequency slowly change with time,
effective Landau-Zener transitions may occur between the
dressed states of the time-independent Rabi Hamiltonian [40].

The DCE and the ADCE involve, respectively, creation and
annihilation of excitations from some initial state of the atom-
field system. In order to implement these physical processes an
external agent is required to supply or withdraw energy from
the system by means of appropriate modulation of parameters.
However, till now there has been no clear relationship between
the creation (annihilation) of excitations and the amount of
energy supplied (withdrawn) by the external agent. In this
scenario, the following question can be stated: is it possible
to use the ADCE to extract work from the atom-field system?
In order to address this issue, one can use the framework of
quantum thermodynamics [41–44]—a field of physics seeking
to establish a quantum version for thermodynamic principles
and processes. Studies in quantum thermodynamics aim to
introduce appropriate definitions of work and heat [45–51],
the development of quantum thermal machines [52–59], the
analysis of the heat transport [60–65] and the validity of the
second law at the microscopic level [66–72], the study of
the stochastic thermodynamics [73,74], and the fluctuation
theorems [75–80], just to name a few. An interesting result
involving the Rabi model in the context of the quantum
thermodynamics was presented in Ref. [81]. The authors
have shown that the CRT prevent the atom-field system from
reaching the absolute zero temperature, even in the limit of an
infinite number of cycles.

In this paper we investigate the relationship between
quantum work and the creation or annihilation of excitations in
the Rabi model. Work extraction has already been investigated
in the stationary regime of the Rabi model [82], requiring
ultrastrong couplings and huge atom-field detunings. In our
case, the time-dependent Rabi model is shown to allow
for finite work extraction |WADCE| even for perturbative
modulation amplitude of the system parameters, demanding
moderate atom-field couplings. Considering as an example

2469-9926/2017/96(1)/012501(10) 012501-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.96.012501


A. V. DODONOV, D. VALENTE, AND T. WERLANG PHYSICAL REVIEW A 96, 012501 (2017)

the modulation of the atomic energy gap with amplitude h̄ε�,
we shall show that one may obtain |WADCE| ∼ 2h̄ω � h̄ε� ∼
10−2h̄ω for the optimum initial state (Fock state of the cavity
field); this amount becomes smaller for other initial states, yet
the relation |WADCE| � h̄ε� persists.

The main messages conveyed by this paper are as follows.
(i) The nonstationary Rabi model can provide a substan-

tially larger amount of added or extracted work than the
nonstationary Jaynes-Cummings model.

(ii) Under specific conditions ADCE can be used to extract
a finite amount of work from the thermal state of the cavity
field.

(iii) Work can be extracted either in a periodic or a steady
manner, even in the presence of dissipation.

This paper is organized as follows. The theoretical frame-
work is presented in Sec. II. In Sec. II A the time-dependent
RH is introduced, and the system dynamics under parametric
modulation is elucidated. In Sec. II B the definitions of work
and heat are delineated. Our main result is described in Sec. III:
ADCE can be a resource for work extraction. In Sec. III A we
evidence how work extraction is related to annihilation of
system excitations driven by an out-of-equilibrium finite-time
protocol, implemented as a perturbative modulation of the
atomic frequency. In Sec. III B we extend the method for
multitone modulations, which are useful for realistic initial
states of the system. In Sec. III C we employ a time-dependent
modulation frequency in order to solve two issues, namely,
the need for an asymptotic finite work extraction and the
challenge of finding a very fine-tuned modulation frequency.
Finally, in Sec. III D we investigate how the presence of
dissipation may reduce the amount of extracted work in actual
implementations. Conclusions are presented in Sec. IV, and
some formal analytical derivations are summarized in the
Appendix.

II. MODEL

A. Atom-field interaction

The atom-field interaction is described by the time-
dependent Rabi Hamiltonian (we set h̄ = 1) [19–21,83,84]

H = ωa†a + �(t)

2
σz + g(a + a†)(σ+ + σ−), (1)

where a (a†) is the cavity annihilation (creation) operator and
σ+ = |e〉〈g| and σ− = σ

†
+ are the atomic ladder operators.

Here |g〉(|e〉) denotes the atomic ground (excited) state and
σz = |e〉〈e| − |g〉〈g|. The field number states are denoted by
|n〉, such that a†a|n〉 = n|n〉. ω is the cavity frequency, g is the
atom-field coupling strength, and �(t) is the time-dependent
atomic transition frequency. The total average number of
excitations is given by N = Tr(ρa†a) + Tr(ρ|e〉〈e|), where ρ

denotes the atom-field density operator.
We assume that the atomic frequency undergoes an external

multitone modulation as

�(t) = �0 +
∑

k

ε
(k)
� sin[η(k)(t)t + φ(k)], (2)

where η(k)(t) is the kth modulation frequency and ε
(k)
� is the

kth modulation amplitude. It is worth noting that this particular
choice for the modulation does not restrict the generality of

our results, since for the regime considered here (g � ω,�)
a weak modulation of any system parameter produces similar
results [21,37,85]. We suppose that the modulation frequency
η(k)(t) may also slowly change as a function of time. To uncover
the effects of temporal modulation on the system dynamics,
we assume a perturbative regime characterized by ε

(k)
� � �0

and ε
(k)
� � g. Besides, for the validity of the single-mode

approximation we require the inequality |	−| � ω, where
	− = ω − �0 is the average field-atom detuning. In the
following we restrict our attention to the dispersive regime,
g
√

nmax � |	−|/2, where nmax is the maximum number of
system excitations.

The time-dependent RH can be implemented in the circuit
QED architecture—an area of research that investigates the
interaction between the quantized electromagnetic field con-
fined in microwave resonators and superconducting artificial
atoms composed of Josephson junctions. Originally proposed
in 2004 with the target of implementing the Jaynes-Cummings
model in a highly controllable environment [86], this field
has expanded enormously over the past ten years, and
now it embraces plenty of experimental architectures with
different kinds of multilevel artificial atoms and sophisticated
assemblies of interconnected resonators and waveguides [25–
28,87–89]. However, all the setups have in common the
attribute of strong atom-field coupling and the ability to control
in situ the system parameters (e.g., the atomic transition
frequency or the coupling strength). The typical parameters
in current circuit QED architectures read as [29,34,90–92]
ω/2π ∼ 5–10 GHz, g/ω ∼ 10−2 − 10−1, |	−|/g ∼ 0–20,
κ/ω ∼ γ /ω ∼ 5 × 10−7 − 5 × 10−6, and Tr ∼ 10–50 mK,
where κ (λ) denotes the cavity (atom) damping rate and Tr

is the temperature. As will be shown in the following, these
values are sufficient for the realization of the protocol proposed
in this paper.

For g/ω,ε�/�0 � 1 the dynamics of the time-dependent
Rabi model presents qualitatively different behaviors de-
pending on the choice of the modulation frequency η(t)
[19–21,37–39,84,85]. By properly adjusting η(t), which de-
pends on the initial state of the system, one can resonantly
couple a specific set of the dressed states (eigenstates) of the
bare RH (see Appendix for details). Below we resume three
qualitatively different phenomena that alter the total number
of excitations: the DCE, the anti-Jaynes-Cummings behavior
(AJC), and the ADCE.

The DCE regime is characterized by the creation of photon
pairs from the vacuum and occurs for the modulation frequency
ηDCE ≈ 2ω. For the initial zero-excitation state |g,0〉 the
number of excitations increases through the induced transitions
between the states |g,0〉, |g,2〉, |g,4〉, . . ., |g,2k〉, where k

depends on the values of 	−, g, and ε� [37]. The population
of the atomic excited state remains approximately unchanged
in this scenario. (In reality, the transitions occur between the
atom-field dressed states, which in the dispersive regime can be
approximated as |g,n〉—see the Appendix). On the other hand,
using the same initial state and ηAJC ≈ ω + �0, the dynamics
consists of periodic transitions between the approximate states
|g,0〉 and |e,1〉. So the increase in the number of quanta occurs
due to the excitation of both the atom and the cavity field.
Such behavior is known as AJC regime [19,37,38,93] or the
blue-sideband transition [83,84].
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Both regimes presented so far are responsible for the
increase in the number of excitations. However, in Refs.
[37–39,85] the authors showed that the number of excitations
can be reduced instead, in what they called ADCE. This effect
consists of coherent annihilation of two system excitations due
to the approximate transition |g,n〉 ←→ |e,n − 3〉 (for n � 3),
and takes place for the modulation frequency ηADCE ≈
3ω − �0. For constant η the total number of system excitations
presents a periodic behavior, with the typical period of
oscillation on the order of ∼10−4 g−1 for realistic experimental
parameters. One way to get a reduction in the total number
of excitations without a subsequent return to its initial value
is to use a time-dependent modulation frequency, η(t), swept
across the expected resonance associated with the ADCE [40].
A steep decrease in the number of excitations is observed
when η(t) ≈ ηADCE, and as η(t) moves away from ηADCE
the resonance condition is forfeit. As shown in the Appendix
this process can be viewed as an effective Landau-Zener-
Stueckelberg-Majorana problem [94–97], which asserts that
the asymptotic transition between the two involved states will
be complete for sufficiently small |η̇|. Hence it is possible to
deterministically induce a steady decrease in the number of
excitations.

B. Quantum thermodynamics

In the context of quantum thermodynamics, the internal
energy of a quantum system is the average energy U (t) =
〈H (t)〉 = Tr(ρ(t)H (t)), where H (t) is the system’s Hamilto-
nian and ρ(t) its density operator. The quantum version of the
first law of thermodynamics reads [43,52]

	U = W + Q, (3)

where W is the work performed by an external agent and Q

is the heat supplied to the system by its thermal environment.
The quantum work W computed from time ti up to tf is related
to the time variation of the system’s Hamiltonian,

W =
∫ tf

ti

Tr(ρ(t)∂tH (t))dt, (4)

while the heat Q is related to the time variation of the
density operator Q = ∫ tf

ti
Tr(∂tρ(t)H (t))dt . For a unitary

quantum dynamics there is no heat exchange, Q = 0, because
Tr(∂tρ(t)H (t)) = Tr(−i[H (t),ρ(t)]H (t)) = 0. Therefore, the
variation of the internal energy coincides with the work done
on the system (W > 0) or extracted from the system (W < 0).

It is important to note that the work performance crucially
depends on the time variation of the system’s Hamiltonian.
For example, for an isolated system described by the time-
independent Rabi model, Eq. (1) with �(t) = �0, the quantum
work will always be equal to zero, even with the increase
in the number of excitations caused by the counter-rotating
terms. This result shows that in order to extract work from the
atom-field system it is necessary that the system’s Hamiltonian
itself evolves over time, driven by an external agent.

III. RESULTS AND DISCUSSIONS

In this section we discuss the relationship between the
creation or annihilation of excitations and quantum work in the

Rabi model. We shall show that generation of a finite number
of excitations is accompanied by positive work performed
on the system, while the coherent annihilation of quanta is
accompanied by negative work of the order ∼(−2h̄ω), i.e.,
the energy is withdrawn by the external agent. We shall also
demonstrate that energy can be added or withdrawn from the
system without changing the total number of excitation (with
only infinitesimal changes in N ), however, the net amount of
work is |W | < h̄ω in this case.

A. Single-tone modulations

We begin our analysis by investigating how the creation
of excitations from the zero-excitation state |g,0〉 affects
the quantum work. The dynamics of the system was ob-
tained through the numerical solution of the Liouville–von
Neumann equation, ρ̇ = −i[H (t),ρ(t)], where H (t) is the
time-dependent RH, Eq. (1). In Fig. 1 we plot the dynamics of
the quantum work

W (t) = (1/2)
∫ t

0
dt ′�̇(t ′)〈σz(t

′)〉 (5)
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FIG. 1. Quantum work and average total number of excitations
as a function of dimensionless time t/τ for the regimes DCE [panels
(a1),(a2)], AJC [panels (b1),(b2)], JC [panels (c1),(c2)], and ADCE
[panels (d1),(d2)]. Here τ−1 = gε�/2	+ with 	± = ω ± �0. For the
DCE and AJC regimes the initial state is |g,0〉; for the JC and ADCE
regimes it is |g,3〉. Parameters g/ω = 5 × 10−2, 	− = 8g, ε� =
0.05�0, and φ = 0. The modulation frequencies are ηDCE = 2.0089ω,
ηAJC = 0.9943	+, ηJC = 1.07	−, and ηADCE = 1.0076(3ω − �0).
Panels (e1) and (e2) show the dynamics of 〈σz〉 over short time scales,
exhibiting fast oscillations synchronized with �̇. In the DCE regime
[panel (e1)] the oscillations are nonsinusoidal, but the characteristic
period is still ≈2π/η.
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and the total number of excitations N for the parame-
ters g/ω = 5 × 10−2, 	− = 8g = 0.4ω, φ = 0, and ε� =
0.05�0 = 0.03ω. The DCE regime [Figs. 1(a1) and 1(a2)] was
obtained using a single-tone modulation with η = 2.0089ω.
The AJC regime [Figs. 1(b1) and 1(b2)] was obtained using
η = 0.9943	+, where 	+ = ω + �0. In both regimes, the
quantum work is predominantly positive (it may take small
negative values when N ≈ 0) and presents an oscillatory
behavior, which is periodic for AJC and quasiperiodic for
DCE. This behavior resembles the dynamics of the average
number of excitations in the atom-field system. As a positive
amount of work means that an external agent does work on
the system, the creation of excitations in the DCE and AJC
comes from the energy supplied to the system, following the
relation W = Nh̄ω − h̄	−Pe, where Pe = Tr(ρ|e〉〈e|) is the
atomic excitation probability.

Work can also be realized on the system without variation
of N . As the simplest example, consider the Jaynes-Cummings
Hamiltonian (JCH) [23,24], obtained from Eq. (1) by ne-
glecting the counter-rotating terms. This approximate model
describes well the dynamics provided g � ω,�0 and the
modulation frequency is low, η � ω. For JCH the total number
of excitations is a constant of motion, and for the initial state
|ϕn,±〉, which is the eigenstate of JCH with n excitations (see
the Appendix), the work reads

WJC|off = ± 1
2ε� cos 2θn[sin (ηt + φ) − sin (φ)]. (6)

Here the subscript “off” indicates that η must be sufficiently
different from |	−|/K , where K is an integer [19]. Therefore,
the work of magnitude |WJC|off| � h̄ε� can be performed on
or by the system without any change in N .

Still under JCH, one can obtain a finite work, either positive
or negative, by setting the modulation frequency to η ≈ |	−|
(or |	−|/K in the general case, although the transition rate
decreases with K), thereby promoting the coupling between
approximate states |g,n〉 and |e,n − 1〉 in the dispersive
regime. This behavior is known as Jaynes-Cummings or
red-sideband regime [19,83,84,93], and has recently been
implemented experimentally in circuit QED [33,34]. For
instance, for the initial state |g,n〉 a straightforward energetic
reasoning predicts for the extremum amount of work WJC ≈
−h̄	−, so energy can be added or withdrawn from the system
depending on the sign of 	−. This result holds under RH
as well, as illustrated in Figs. 1(c1) and 1(c2) for the initial
state |g,3〉 and the modulation frequency η = 1.07	− (all
other parameters are as previously). We see that work is
indeed extracted from the system, while the total number of
excitations undergoes only infinitesimal changes due to the
off-resonant contribution of CRT.

Because in the DCE and AJC regimes the maximal
extracted work is Wmax > |WJC|, one can see that the counter-
rotating terms crucially contribute to the quantum work. Since
the creation of excitations is related to the performance of
work on the system, the annihilation of excitations is expected
to play a role in the extraction of work. To investigate this point,
we evaluate the dynamics of W (t) in the ADCE regime. For
this, we adopted η = 1.0076(3ω − �0) and the initial state
|g,3〉. Figures 1(d1) and 1(d2) show that the quantum work
becomes negative indeed, proving that the ADCE can be used
to extract work from the atom-field system. Maximal work

extraction occurs at times when the population of the state |g,3〉
attains its minimum value due to the transfer of population to
the state |e,0〉, that is, when N reaches its lowest value. We
also see that in the ADCE regime one can extract the energy
≈2h̄ω from the system, compared to ≈h̄ω/2 under the JC
resonance.

The main contribution of this paper to the field of
quantum thermodynamics is that it shows a finite-time, out-
of-equilibrium realistic resource for work extraction from
systems suitably described by the Rabi model. The Rabi model
itself has already been investigated in the context of heat
engines [82]. In that case, the so-called adiabatic regime was
addressed, which restricts the rate of change in any system’s
parameter to an infinitely slow pace, in order to keep it in
equilibrium at all points of the cycle. As a consequence, the
exchanged work is directly proportional to the variation of
the system’s energy gap, since populations of the eigenstates
remain constant during the work exchange protocol for an
isolated atom-field system. Therefore, a fair amount of work
extraction requires huge variations of the gap, that means
equally huge changes in the atom-field detuning, as well as an
ultrastrong coupling regime, g ∼ ω. The out-of-equilibrium
process we present here conveys a conceptually different
origin for work extraction: it comes from the time-dependent
gap variation that under resonance conditions induces the
amplification of oscillations between the eigenstates of the
nonmodulated system, thereby allowing the system to be
driven to a lower-energy state.

The quantum thermodynamics approach also leaves clear
the interference nature associated with the generation or
annihilation of excitations in our protocol. As is clear from
Eq. (5), the work averaged over a few periods of oscillation of
� would be zero unless 〈σz(t)〉 also exhibits fast oscillations
with frequencies of the order of η. This is precisely what
one observes by making a zoom of 〈σz(t)〉 corresponding
to data in Figs. 1(a1) and 1(b1), as shown in Figs. 1(e1)
and 1(e2). This confirms that a finite average amount of
work can only be obtained when the oscillations of 〈σz(t)〉
become synchronized with �̇(t), meaning that energy can be
added or withdrawn from the system only under resonance
conditions. Since the modulation frequency must also match
the energy gap associated to the transition between two system
eigenstates, modulation frequencies of the order ∼2ω lead to
larger amounts of added or extracted work than modulation
frequencies of the order ∼|	−|.

B. ADCE under multitone modulation

The initial state influences the maximum amount of work
that can be extracted from the system by means of ADCE. As
a realistic example, we consider the scenario where the field
is initially in a thermal state and the atom is in the ground
state, ρ(0) = |g〉〈g| ⊗ ρ

f

T . We recall that the thermal state
is given by ρ

f

T = ∑
n pn|n〉〈n|, where pn = n̄n/(n̄ + 1)n+1 is

the population of the state |n〉 and n̄ is the average photon
number related to temperature as T −1 = kBω−1 ln( 1+n̄

n̄
) (kB is

the Boltzmann constant).
Since the modulation frequency depends on the initial state,

we can adjust the value of η to select a particular transition
|g,n〉 ←→ |e,n − 3〉 for a given value of n. Therefore, the
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FIG. 2. Panel (a): quantum work as a function of dimensionless
time t/τ for single-tone modulations with {η(1) = 1.0076(3ω −
�0), ε(1)

� = 0.05�0} (black curve), {η(2) = 1.0113(3ω − �0),ε(2)
� =

0.025�0} (red curve), and for the two-tone modulation with the
above frequencies and modulation amplitudes (blue curve). All curves
correspond to the ADCE regime and φ(1,2) = 0. We used the initial
state ρ(0) = |g〉〈g| ⊗ ρ

f

T , where ρ
f

T = ∑
n pn|n〉〈n| is a field thermal

state with pn = n̄n/(n̄ + 1)n+1 and n̄ = 1.5 (other parameters are
as in Fig. 1). τm denotes the instant of time when the extracted
work is maximum. Panel (b): dynamics of quantum work around the
instant of time τm for a single-tone modulation with frequency η(1).
Panel (c): level diagram related to the modulation-induced transitions
between the approximate eigenstates of the time-independent RH for
frequencies η(1) and η(2). Panel (d): quantum work for single-tone
modulation η(1) in the presence of Markovian dissipation. The cavity
and atom damping rates are κ = γ = 2 × 10−5 g and the reservoirs’
temperature is kBTr/ω = 0.33. Panel (e): behavior of N under unitary
and dissipative dynamics.

amount of work extracted from the system depends on the
initial populations of the states |g,n〉 and |e,n − 3〉. As shown
in the Appendix, one is able to extract work from any initial
state of the form |g〉〈g| ⊗ ρf provided the initial population
P|g,n〉 is larger than P|e,n−3〉. To illustrate this point we plot in
Fig. 2(a) the quantum work W as a function of dimensionless
time t/τ for two different modulation frequencies: η(1) =
1.0076(3ω − �0) (black curve) and η(2) = 1.0113(3ω − �0)
(red curve). We use the same parameters as previously, n̄ = 1.5
and φ(1,2) = 0. As discussed in Sec. III A, the dynamics of
the quantum work in the ADCE regime presents a periodic

behavior on large time scales. In Fig. 2(a) we adopt a time in-
terval that corresponds to a single oscillation period. Frequency
η(1) drives the transition |g,3〉 ←→ |e,0〉, whereas frequency
η(2) drives the transition |g,4〉 ←→ |e,1〉. Since the initial
population of state |g,3〉 is larger than the initial population of
state |g,4〉, p3 ≈ 0.086 > p4 ≈ 0.052, it is possible to extract
a larger amount of work using the modulation frequency η(1)

rather than the frequency η(2) [98]. The instant of time τm

at which the work extraction is maximum depends on both
the number of photons in the state |g,n〉 and the modulation
amplitude ε�: τ−1

m ∝ √
n(n − 1)(n − 2)ε(k)

� (see Appendix for
details). Figure 2(b) shows the dynamics of quantum work
around the instant of time τm. The quantum work rapidly
oscillates at time scale 1/η(1) due to the fast oscillations of
〈σz〉, which are necessary to withdraw a finite amount of energy
from the system (as discussed in Sec. III A).

In order to adjust the same τm for both modulation frequen-
cies, η(1) and η(2), the modulation amplitude associated with
frequency η(2) was set as ε

(2)
� = ε

(1)
� /2, where ε

(1)
� = 0.05�0 is

the modulation amplitude associated with frequency η(1). This
choice of modulation amplitudes is particularly convenient
for employing multitone modulations. The blue curve in
Fig. 2(a) describes the dynamics of the quantum work for
a two-tone modulation characterized by the atomic frequency
�(t) = �0 + ∑

k=1,2 ε
(k)
� sin(η(k)t). In this case, the amount

of work extracted is effectively affected by both transitions:
|g,3〉 ←→ |e,0〉 and |g,4〉 ←→ |e,1〉. Hence, according to
expression (5), the total amount of work extracted from
the system is equal to the sum of the works extracted by
each single-tone modulation individually. Therefore, in order
to maximize the extracted work, one needs to adjust the
amplitudes ε

(k)
� in such a way that all the induced transitions

have the same τm.

C. Effective Landau-Zener transitions

In the cases studied so far, we observed two features that
can possibly be regarded as issues. First, the dynamics of
the quantum work in the ADCE regime presents a periodic
behavior. The amount of work extracted from the system
will, then, be maximal around specific instants of time (t =
nτm with n = 1,2, . . .), after which it will return to zero.
Secondly, the ADCE regime is obtained for a very fine-tuned
modulation frequency η, which must be ultimately found either
numerically or experimentally.

We overcome these possible limitations by using a time-
dependent modulation frequency η(t) [40]. As discussed in
Sec. II A, when the modulation frequency varies over time, it
can assume values close to the resonance frequency ηADCE
that correspond to the ADCE regime for a given initial state.
When η(t) is close to ηADCE, the energy of the atom-field
system will decrease due to the work extraction. But, as η(t)
moves away from ηADCE, the resonance condition η(t) ≈
ηADCE is lost. Therefore, the external agent responsible for
the atomic frequency modulation will not be able to give back
energy to the system. To illustrate this point we choose η(t) =
η(1) − 10λ + λ2t , where λ is the transition rate between the
states |g,3〉 and |e,0〉. The initial state is the local thermal
state ρ(0) = ∑

n pn|g,n〉〈g,n|, and all other parameters are as
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FIG. 3. Panels (a),(b): quantum work and N under unitary
(black curves) and dissipative (green curves) evolution for aperiodic
modulation with frequency η(t) = η(1) − 10λ + λ2t , where η(1) =
1.0076(3ω − �0), φ = 0, and λ = 1.67 × 10−5ω. The initial state
and other parameters are as in Fig. 2. The dynamics resembles
the typical Landau-Zener behavior for an effective TLA undergoing
adiabatic frequency sweep. Panel (c): quantum work under dissipative
dynamics for two different choices of the modulation frequency:
η(t) = η(1) − 10λ + λ2t (red curve) and η(t) = η(1) − 6λ + λ2t (blue
curve). One can see that for the blue curve the work extraction is
larger and faster; hence there is room for further optimization of our
protocol.

in Sec. III B. In this case, η(1) = 1.0076(3ω − �0) and λ =
1.67 × 10−5ω.

In Fig. 3(a) we plot the quantum work as a function of di-
mensionless time t/τ . The transition |g,3〉 −→ |e,0〉 begins at
tb ≈ 5/λ ≈ 140τ , corresponding to η(tb) = η(1) − 5λ, instead
of η(tb) = η(1) one would expect naively. Such discrepancy can
be explained after rigorous derivation of the effective Hamil-
tonian, which reads Heff = V (t)(|g,3〉〈g,3| − |e,0〉〈e,0|)/2 +
(λ|g,3〉〈e,0| + H.c.), where V (t) = 2λ2t − 10λ (see the
Appendix). Indeed, for t ≈ tb one obtains V (tb) ≈ 0, corre-
sponding to the expected resonance condition. Fortunately, we
do not have to solve analytically the time evolution according
to the Hamiltonian Heff , since this was made independently
in 1932 by Landau, Zener, Stueckelberg, and Majorana, in
what became known as the Landau-Zener problem [94–97].
As shown in the Appendix, for sufficiently slow η̇ the transition
from |g,3〉 to |e,0〉 is almost complete, even for finite duration
of the process [40]. Therefore, the work extracted from the

system tends to a steady value W ≈ −0.2h̄ω. Note that this
steady value is practically equal to the maximum extracted
work using the time-independent modulation frequency η =
η(1), shown in Fig. 2(a) (black curve).

D. Account of dissipation

For actual experimental implementation of our proposal it
is necessary to take into account the interaction between the
system and its environments. For the quantum Rabi model
with moderate coupling rates, g/ω � 10−1, one can use the
Markovian master equation in the dressed picture, which was
rigorously deduced from the first principles in [83]. We did
solve it numerically and verified that for the parameters of
Figs. 1 and 2 the results are almost indistinguishable from the
predictions of a much simpler “standard master equation” of
quantum optics: ρ̇ = −i[H (t),ρ(t)] + L(ρ). The Liouvillian
superoperator L(ρ) reads [38,40,83,86]

L(ρ) = γ (1 + na)D[σ−]ρ + γ naD[σ+]ρ

+ κ(1 + nc)D[a]ρ + κncD[a†]ρ, (7)

where D[c]ρ ≡ 1
2 (2cρc† − c†cρ − ρc†c), κ (γ ) is the decay

rate of the cavity (atom), and nc = [exp(βh̄ω) − 1]−1 (na =
[exp(βh̄�0) − 1]−1) is the mean number of thermal excitations
in the cavity (atom). Here β = kBTr and Tr is the common
temperature of both reservoirs, adjusted so that nc = 0.05.
We use the same parameters as previously, which give na =
0.19 for the positive detuning adopted in this paper. For the
dissipative rates we assume the state-of-the-art values in circuit
QED: κ = γ = 2 × 10−5 g.

We studied the influence of dissipation on the quantum work
and average number of excitations in the ADCE regime for the
initial state ρ(0) = |g〉〈g| ⊗ ρ

f

T with n̄ = 1.5. In Figs. 2(d)
and 2(e) we show the behavior of W and N for a single-
tone modulation that drives the transition |g,3〉 ←→ |e,0〉. For
initial times the amount of extracted work is approximately
equal to the one obtained in the lossless case, although its
absolute value decreases as time goes on. The average number
of excitations decreases with exponential envelope superposed
with small oscillations due to the periodic transitions between
|g,3〉 and |e,0〉, which are resolvable for initial times.

The aperiodic regime with time-dependent η is also feasible
in the presence of dissipation, as illustrated in Fig. 3. The
behavior of W and N for the modulation frequency η(t) =
η(1) − 10λ + λ2t is illustrated in Figs. 3(a) and 3(b). The
qualitative behavior of quantum work is similar in the unitary
and dissipative cases, although the amount of extracted work
is roughly 50% smaller due to the losses. The behavior of
N is also affected by the ADCE: instead of an exponential
decay expected for pure damping, N exhibits an accentuated
decrease around t ∼ 130τ , which is precisely where the LZ
transition takes place.

We finally note that in the presence of dissipation it is
advantageous to decrease the duration of the frequency sweep
in the effective LZ process, so that the transition occurs at
earlier times while the population of the state |g,3〉 is as high
as possible. The downside of such a drastic measure is that
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the probability of complete population transfer from |g,3〉 to
|e,0〉 is lowered and the Landau-Zener formula (A4) loses its
validity. Yet a compromise can be found in order to optimize
the work extraction. An example is shown in Fig. 3(c) for the
modulation frequency η(t) = η(1) − 6λ + λ2t (blue curve): the
LZ transition takes place earlier than in the previous case and
the amount of extracted works is slightly higher. These results
demonstrate that our protocol can be optimized for maximum
work extraction in realistic scenarios.

IV. CONCLUSIONS

We have established the direct relationship between the
quantum work and generation or annihilation of excitations
in the quantum Rabi model with time-modulated atomic
frequency. Our results are valid in the dispersive regime
of light-matter interaction (|	−| ∼ 10 g), moderate coupling
strengths (g/ω ∼ 0.05), and perturbative modulation ampli-
tude (ε�/�0 ∼ 0.05), and can be easily extended for the
modulation of other parameters. We showed that the “rotating”
(or “Jaynes-Cummings”) terms in the Rabi Hamiltonian can
be used both to add and extract energy from the system while
maintaining the total number of excitations approximately
constant. However, the maximum value of the work is
limited by |Wmax| � h̄|	−| < h̄ω in this case. Even in this
number-conserving scenario, the out-of-equilibrium protocol
we propose outperforms the very slow adiabatic modulations,
i.e., |Wmax| ∼ 0.5h̄ω > h̄ε� = 0.03h̄ω.

A much greater amount of energy can be transferred
between the system and the external agent by harnessing the
“counter-rotating” (or “anti–Jaynes-Cummings”) terms. We
showed that the generation of excitations is accompanied
by positive work, as in the dynamical Casimir and anti–
Jaynes-Cummings effects. On the other hand, the work
becomes negative in the so-called antidynamical Casimir effect
(ADCE), when one pair of excitations is coherently annihilated
under appropriate modulation frequency. For ADCE the
maximum amount of extracted work is |WADCE| ∼ 2h̄ω �
h̄ε� = 0.03h̄ω, and strongly depends on the initial state.
We also explained why the generation and annihilation of
excitations are always accompanied by fast low-amplitude
oscillations of the atomic population inversion: the attainment
of a finite amount of work requires the synchronization of
oscillations of 〈σz(t)〉 and the atomic transition frequency �(t).

We extended our results to realistic initial states in circuit
QED, arguing that multitone modulations are more effective in
extracting energy from the system when the field is prepared
in a thermal equilibrium state. Additionally, we have shown
how effective Landau-Zener transitions between the system
dressed states may be employed for obtaining aperiodic work
extraction, which also solves the problem of an extremely
fine-tuned adjustment of the modulation frequency. Lastly,
we carried out numerical simulations to assess the feasibility
of our proposal in realistic circuit QED setup subject to
atomic and cavity dampings, demonstrating that periodic and
aperiodic work extraction is still possible, although in a smaller
amount compared to the lossless case. We hope these results
will find applications in out-of-equilibrium quantum thermal
machines of finite-time cycles.
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APPENDIX: ANALYTICAL APPROACH

In this Appendix we briefly describe how to obtain
the resonant modulation frequencies and the corresponding
transition rates mentioned in the main text. We expand the
state corresponding to the Hamiltonian (1) as

|ψ(t)〉 =
∑

l

Al(t)e
−itEl |Rl〉,

where El and |Rl〉 are the eigenvalues and eigenstates
(dressed states) of the time-independent Rabi Hamiltonian
H0 ≡ H [�(t) = �0], where l increases with energy. The
probability amplitudes obey the differential equations

iȦj =
∑

l

∑
k ε

(k)
� sin(η(k)(t)t + φ(k))

2
〈Rj |σz|Rl〉

× e−it(El−Ej )Al. (A1)

Therefore, modulation frequency η(k) = |El − Ej | may induce
a resonant coupling between the amplitudes Aj and Al with
transition rate ∝|〈Rj |σz|Rl〉| .

To diagonalize H0 we perform the unitary transforma-
tion U = exp [�(aσ− − a†σ+) + ξ (a2 − a†2)σz], where � =
g0/	+, ξ = g0�/2ω, and 	± = ω ± �0. To the first order �

we obtain

U †H0U = (ω + δ+σz)n + �0 + δ+
2

σz + g(aσ+ + a†σ−),

where δ± = g2/	±. Hence we find the approximate eigenval-
ues and eigenstates: E0 = −(�0 + δ+)/2, |R0〉 = U |g,0〉,

Em,± = ωm − ω + δ+
2

± 1

2

√
(	− − 2δ+m)2 + 4g2m,

|Rm,−〉 = U (cos θm|g,m〉 − sin θm|e,m − 1〉),
|Rm,+〉 = U (sin θm|g,m〉 + cos θm|e,m − 1〉),

where m � 1 and

tan θm = 	− − 2δ+m +
√

(	− − 2δ+m)2 + 4g2m

2g
√

m
.

The Jaynes-Cummings eigenvalues and eigenstates (denoted
as |ϕn,±〉) are obtained simply by setting U = 1 and δ+ = 0
in the above formulas. To compute Eq. (6), we must note
that 〈σz(t)〉 = ±(cos2 θm − sin2 θm) = ± cos 2θm for the initial
state |ϕn,±〉.

In the following we restrict our attention to the dispersive
regime, |	−|/2 � g

√
nmax, where nmax is the maximum

number of system excitations and we assume the condition
|	−| � ω . The approximate eigenenergies then read

Em,D ≈ (ω + δ− − δ+)m − αm2 + E0,

Em,−D ≈ (ω − δ− + δ+)m + αm2 − 	− + E0,
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whereD ≡ 	−/|	−| = ±1 and α = g4/	3
−. To the first order

in g/	− the dressed states are |R0〉 ≈ |g,0〉,

|Rm,D〉 ≈ |g,m〉 + g
√

m

	−
|e,m − 1〉,

|Rm,−D〉 ≈ |e,m − 1〉 − g
√

m

	−
|g,m〉. (A2)

AJC regime. For the initial state |g,0〉 and the modulation fre-
quency η(k) = 	+ − 2(δ− − δ+) + 4α − ν(t) one can neglect
the rapidly oscillating terms in (A1) and obtain the effective
Hamiltonian [40]

H̃ = E0|R0〉〈R0| + E2,−D|R2,−D〉〈R2,−D|
+ (λe−it(E2,−D−E0−ν(t))|R2,−D〉〈R0| + H.c.),

λ = iDg

2	+
ε

(k)
� exp(−iφ(k)).

Performing the time-dependent unitary transformation

U1 = exp

{
−i

[(
E0 + ν(t)

2

)
t |R0〉〈R0|

+
(

E2,−D − ν(t)

2

)
t |R2,−D〉〈R2,−D|

]}
,

we get the final effective Hamiltonian

Hf = ν̃(t)

2
(|R2,−D〉〈R2,−D| − |R0〉〈R0|)

+ (λ|R2,−D〉〈R0| + H.c.), (A3)

ν̃(t) ≡ ν(t) + ν̇(t)t .

This is the standard Hamiltonian for a two-level system with
a time-varying energy splitting and constant off-diagonal
coupling. For ν(t) = 0 the dynamics consists of periodic
oscillation between the states |R0〉 and |R2,−D〉, which ap-
proximately corresponds to the transition |g,0〉 ↔ |e,1〉. On
the other hand, if ν(t) = |ξ |t and t is varied from −∞ to +∞
one can use the well-known formula for the Landau-Zener
transition [94–97]. If for t = −∞ the initial state was |R0〉,
then for t → +∞ the probability of occupancy of the state
|R2,−D〉 is

P = 1 − exp

(
−π |λ|2

|ξ |
)

. (A4)

Therefore, if |ν̇| � |λ|2 one can accomplish an almost com-
plete transition from |R0〉 to |R2,−D〉. As shown in [40] a
similar conclusion holds even if ν(t) varies within a finite
interval around ν(t) = 0.
DCE regime. For the modulation frequency η(k) = 2ω0 +
2(δ− − δ+) − 4α − ν(t) we obtain the effective DCE Hamil-
tonian

Hf =
nmax∑
m=0

(
ν̃(t)

2
m − αm(m − 2)

)
|Rm,D〉〈Rm,D|

+
nmax∑
m=0

(
λm|Rm+2,D〉〈Rm,D| + H.c.

)
, (A5)

λm = − iδ−
2	+

√
(m + 1)(m + 2)ε(k)

� exp(−iφ(k)),

where nmax is the maximum number of excitations allowed by
the dispersive approximation and we denote |R0,D〉 ≡ |R0〉. As
shown in [37] the Kerr term αm(m − 2) in (A5) is responsible
for nonperiodic collapse-revival behavior of 〈n〉.
JC regime. For the modulation frequency η

(k)
J =

|	− − 2δ+J | + 2|δ−|J − 2|α|J 2 − ν, with J � 1, we
obtain the effective Hamiltonian (see [40] for the validity
range)

Hf = D ν̃(t)

2
(|RJ,D〉〈RJ,D| − |RJ,−D〉〈RJ,−D|)

+ (λJ |RJ,D〉〈RJ,−D| + H.c.), (A6)

λJ = − ig0

2	−

√
Jε

(k)
� exp(−Diφ(k)). (A7)

This corresponds roughly to the transition between the states
|g,J 〉 and |e,J − 1〉, reliant only on the rotating terms in the
Hamiltonian.
ADCE regime. For the modulation frequency η

(k)
J = 3ω −

�0 + 2(δ− − δ+)(J − 1) − 2α(J 2 − 2J + 2) − ν(t), where
J � 3, we obtain the effective Hamiltonian

Hf = ν̃(t)

2
(|RJ,D〉〈RJ,D| − |RJ−2,−D〉〈RJ−2,−D|)

+ (λJ |RJ,D〉〈RJ−2,−D| + H.c.), (A8)

λJ = − iDgδ−
2	+	−

√
J (J − 1)(J − 2)ε(k)

� exp(−iφ(k)) . (A9)

A more rigorous calculation performed in [37] resulted in the
expression

λ′
J = λJ

(
2ω − 	−
2ω + 	−

ω + 	−
ω

)

instead of (A9). For the parameters of this paper, 	− = 0.4ω,
we obtain λ′

J /λJ = 14/15 ≈ 0.93, so the difference between
λJ and λ′

J is insignificant and becomes smaller as the ratio
|	−|/ω decreases.
ADCE corresponds to the induced coupling between the
dressed states |RJ,D〉 and |RJ−2,−D〉, or approximately |g,J 〉
and |e,J − 3〉. In particular, for ν = 0 we can solve the unitary
dynamics for any initial state by writing the density matrix in
the dressed basis

ρ(t) =
∑
S,T

∞∑
n,l=0

ρ
S,T
n,l (t)|Rn,S〉〈Rl,T |.

If initially the off-diagonal elements ρ
S,−S
n−2,n(0) are zero, as

occurs for the thermal state considered in this work, the
solution for the affected dressed states reads

ρ
D,D
J,J = ρ

D,D
J,J (0) cos2(|λJ |t) + ρ

−D,−D
J−2,J−2(0) sin2(|λJ |t),

ρ
−D,−D
J−2,J−2 = ρ

−D,−D
J−2,J−2(0) cos2(|λJ |t) + ρ

D,D
J,J (0) sin2(|λJ |t),

while other probabilities remain unaltered. Therefore, one is
able to annihilate two system excitations provided ρ

D,D
J,J (0) >

ρ
−D,−D
J−2,J−2(0), or approximately when the initial population of

|g,J 〉 is bigger than |e,J − 3〉.
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