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Theory of noise suppression in �-type quantum memories by means of a cavity
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Quantum memories, capable of storing single photons or other quantum states of light, to be retrieved on
demand, offer a route to large-scale quantum information processing with light. A promising class of memories
is based on far-off-resonant Raman absorption in ensembles of �-type atoms. However, at room temperature
these systems exhibit unwanted four-wave mixing, which is prohibitive for applications at the single-photon
level. Here, we show how this noise can be suppressed by placing the storage medium inside a moderate-finesse
optical cavity, thereby removing the main roadblock hindering this approach to quantum memory.
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I. INTRODUCTION

The need for low-loss active switching or synchronization
of nondeterministic operations in a linear-optical quantum
information processor has emerged over the past few years as
a sine qua non for the development of large-scale photonics-
based quantum technologies [1–5]. Experiments with optical
switches are making rapid progress [6–9]. Quantum memories
based on the coherent and reversible absorption of photons in
an atomic ensemble are being developed by many groups as
an alternative to optical switching [10–14], with impressive
demonstrations of the preservation of quantum correlations
and of temporal synchronization of photons, using cold atoms
[15] and cold-doped crystals [16]. An important class of
memory protocol is based on stimulated two-photon transitions
in a �-type atomic ensemble, where a bright control laser field
couples the incident signal photons to a ground-state coherence
in the atoms [17]. Memories based on electromagnetically
induced transparency (EIT) [18–20] and on far-off-resonant
Raman absorption [21–23] both fall into this category, and
in the following we will refer to all such memories as �

memories. � memories in cold atoms have successfully stored
single photons, but at room temperature it was found that
fluorescence noise [24] and four-wave mixing [25] became
problematic. Our group recently interfaced a single-photon
source with a Raman memory and measured the photon
number statistics of the retrieved fields [26]. There it was found
that while fluorescence noise was negligible for off-resonant
storage of short pulses, the thermal noise contributed by
four-wave mixing destroyed the antibunching characteristic
of single photons. Four-wave mixing noise is therefore the
key roadblock preventing the implementation of � memories
at room temperature [27,28]. Suggested solutions to this
problem include partial suppression via polarization selection
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rules [29], and engineering a Raman absorption feature in
an isotopically mixed vapor [30]. In this paper, we consider
the use of an optical cavity, enclosing the atoms, to suppress
four-wave mixing noise.

It has been appreciated for some time that optical cavities
provide a means to boost the interaction strength between
light and atoms. Very high-finesse cavities enable near-
deterministic storage with single atoms [31], but this is
technically demanding and the cavity acceptance bandwidth is
very narrow in this regime, which limits the suitability of such
a memory for synchronizing photons generated by parametric
scattering [3]. Working with atomic ensembles provides a
collective enhancement of the atom-light coupling strength,
such that the strong coupling regime of cavity QED is not
required. The efficiency of cavity-enhanced light storage has
been studied theoretically [32–34], though without considering
four-wave mixing noise. Experimental achievements include
a cavity-enhanced Duan-Lukin-Cirac-Zoller (DLCZ) type
“emissive” quantum memory in cold atoms [35], and a
demonstration of motional narrowing in a cavity-enhanced
DLCZ setting using warm atoms [36], along with our own
recent implementation of cavity-enhanced Raman storage in
warm Cs vapor [37]. In this work, we present a theoretical
analysis of this method of noise suppression, which is based
on an alternative approach to deriving the response functions
describing spontaneous scattering processes in a cavity. Our
analysis is based on the method introduced in [38], which
allows to drop the usual assumptions of low losses and
high cavity finesse that underpin standard cavity input-output
theory [39]. This allows us to directly predict the noise level
(the average number of spontaneously scattered photons) and
statistics (via the second-order autocorrelation) of the fields
retrieved from the memory. We show that a moderate-finesse
cavity, compatible with broadband operation, can suppress
four-wave mixing noise to a low level. We also point out
that the cavity-enhanced memory is nearly perfectly temporal-
mode selective [40], making it an appealing system for
chronocyclic encodings of quantum information [41].
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FIG. 1. (a) A control field (green) mediates the storage of a signal
field (red) in a free-space � memory. The control field can drive
the spontaneous Raman emission of an anti-Stokes field (blue) that
generates a spurious excitation in the memory. (b) Atomic transitions
driven in the storage interaction, (c) the retrieval interaction. (d) Four-
wave mixing noise refers to the retrieval of the spurious excitation
generated by the anti-Stokes scattering.

II. FOUR-WAVE MIXING IN � MEMORIES

Although the detailed dynamics in � memories differs
depending on the protocol employed (EIT, Raman, �-GEM),
all such memories share the same kinematical description,
shown in Fig. 1. That is, an ensemble of �-type atoms
are prepared in one of their two ground states, and then an
incident signal field is coupled to the empty storage state by
a strong control field tuned into two-photon resonance with
the signal. Four-wave mixing arises in this system when the
strong control field couples to the ground state and drives
off-resonant spontaneous Raman scattering (in the diagram
this is anti-Stokes scattering because we have chosen to pump
the atoms into the higher of the two ground-state levels).
The scattered anti-Stokes field is at a different frequency
from the signal field and does not directly contribute any
noise. But, each scattering event is accompanied by one
of the atoms switching state from | 1〉 to | 3〉. That is, the
scattering spontaneously generates excitations of the ground-
state coherence that are indistinguishable from the excitations
produced by successful storage of the signal field. When the
memory is read-out, these excitations are retrieved as noise.
The nomenclature “four-wave mixing” applies because there
are four optical fields that coherently interact, even though they
may not overlap in time. These are as follows: the control; the
anti-Stokes; the control again; and finally the retrieved (noisy)
signal.

III. SIMPLIFIED MODEL

Before running through the analysis in detail, we anticipate
our main results by applying well-known results from the
theory of cavities and etalons [42] to our cavity memory
system. As shown in Fig. 2, we consider an atomic ensemble
enclosed by a ring cavity with control and Stokes fields tuned
into resonance with the cavity, and the anti-Stokes field tuned to

FIG. 2. (a) We model the dynamics of the cavity-enhanced �

memory by considering the propagation of Stokes and anti-Stokes
fields around a ring cavity through a storage medium comprising
an ensemble of �-type atoms. The boundary conditions imposed
by the input-output coupler with amplitude reflectivity r connects
the intracavity fields to the incident and emitted fields. (b) The
cavity resonances are tuned to suppress the density of scattering
states (black peaks) at the anti-Stokes frequency with respect to the
Stokes frequency. In our theoretical treatment, we allow arbitrary
tuning of the Stokes and anti-Stokes fields with respect to the cavity
resonances. By choosing the round-trip phases φs = 0 (Stokes on
resonance) and φa = π (antiresonant anti-Stokes), we achieve the
optimal suppression depicted in the plot. Tuned midway between the
Stokes and anti-Stokes frequencies, the control field can be resonantly
coupled into the cavity in an orthogonal polarization mode (gray
peaks) [37].

precise antiresonance (this could be achieved in a birefringent
cavity with an orthogonally polarized control field [37]).

As described in the previous section, to successfully store
and then retrieve an incident photon, we require Stokes
absorption followed by Stokes emission [Figs. 1(b) and 1(c)],
whereas the generation of a noise photon requires anti-Stokes
emission followed by Stokes emission [Fig. 1(d)]. To obtain
a conservative estimate for the noise level introduced by
four-wave mixing, we consider the far-detuned limit, in which
the cross sections for both Stokes and anti-Stokes scattering are
equal. In that case, the only difference in strength between the
desired and undesired interactions is provided by the cavity,
which we arrange to preferentially select Stokes scattering
over anti-Stokes scattering.

The density of optical states inside the ring cavity is deter-
mined by multiple interference and has the characteristic Airy-
function shape, as depicted in Fig. 2(b). The signal-to-noise
ratio (SNR) will be determined by the ratio of the peak ρmax

to the minimum ρmin of the density of states. Operationally,
this ratio ρmax/ρmin = Imax/Imin can be measured directly by
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probing the cavity with a tunable laser and detecting the
leakage of light through one of the cavity mirrors, with the
laser tuned first into resonance with the cavity to record Imax,
and then tuned to antiresonance to record Imin. For a low-loss
cavity, the ratio is given by [42]

SNR = Imax

Imin
≈

(
2Fs

π

)2

, (1)

where Fs is the cavity finesse for the signal field, which can
also be measured directly via the cavity leakage spectrum,
providing a consistency check.

For single-photon storage applications in optical quantum
information processing, a key figure of merit is the g(2)

autocorrelation function of the fields retrieved from the
memory: noiseless single-photon Fock states exhibit perfect
antibunching with g(2) = 0, and the addition of noise is
expected to pollute the photostatistics so that the two-photon
probability is p2 ≈ 1/SNR, and the autocorrelation is then

g(2) ≈ 2p2

p2
1

≈ 2

SNR
. (2)

Aside from suppressing noise, the cavity also enhances, but
limits, the efficiency of the memory. As the optical fields make
multiple passes through the atoms, the effective optical depth
of the atomic vapor is increased. However, every round trip will
inevitably incur some finite scattering loss, and these losses are
also compounded over multiple round trips. First consider a
“bulk memory”, with no cavity.

In previous work [21] we showed that the single-pass far-
detuned �-memory efficiency is parametrized by a coupling
constant C = √

T dγ�/�, where the control field has peak
Rabi frequency � and duration T , the atomic vapor has optical
depth d and homogenous resonance linewidth 2γ , and the
signal field detuning from resonance is �. The overall memory
efficiency scales with C4 and unit efficiency can be achieved
for C4 � 1, which condition determines the control pulse
energy E ∝ �2T required for efficient operation.

Now, for a cavity-enhanced � memory, we replace the
single-pass optical depth d with the cooperativity C = dF/π ,
which is the optical depth achieved with an effective number
of cavity round trips F/π . Also, with a resonantly in-
coupled control field as shown in Fig. 2(b), the intracavity
field amplitude of the control is enhanced according to the
Airy-distributed density of states, so that the control pulse
energy is given by E ∝ �2T/F�, where F� is the cavity
finesse for the control field. With these modifications, the
control pulse energy required for optimal memory operation
is reduced by F2

s F2
�, compared with a bulk, single-pass

implementation without any resonant enhancement of the
control.

On the other hand, losses in the cavity reduce the fraction of
stored energy that can be retrieved. Just as losses limit the peak
transmission of an etalon, so the maximum memory efficiency
is limited by

ηtot �
( F
F0

)2

, (3)

where F0 = πr/(1 − r) is the ideal finesse of a lossless cavity,
with r the amplitude reflectivity of the input-output coupler.

In the remainder of the paper, we present a more detailed
analysis of the cavity-enhanced � memory, the results of which
bear out these conclusions, although the resulting formulas
are less transparent. We conclude with a discussion, where we
connect the rigorous results to the expectations from the above
simplified model.

IV. DETAILED MODEL

We now propose and analyze a scheme to inhibit four-wave
mixing by using an optical cavity to modify the density of
scattering states so that Stokes scattering is enhanced and
anti-Stokes scattering is suppressed. That is, we tune the cavity
into resonance with the Stokes frequency (this is also the
frequency of the signal to be stored), whereas we ensure that
the anti-Stokes frequency is antiresonant [Fig. 2(b)]. Below,
we introduce a model that shows how four-wave mixing noise
is suppressed by this arrangement.

We consider a �-memory storage medium with ground-
state splitting δ placed inside a ring cavity1 as shown in
Fig. 2(a). Such a cavity can be successfully described with cav-
ity input-output theory [39] and the operation of � memories in
a cavity has been analyzed in this way [32]. However, cavity
input-output theory is not suited to the description of fields
tuned out of resonance with a cavity. To proceed, we instead
follow the generalized input-output theory of Raymer and
McKinstrie [38] and consider the traveling-wave propagation
of the signal (Stokes) field S and the anti-Stokes field A around
the ring cavity. The fields interact with the atomic ensemble
in the presence of the control pulse, with Rabi frequency �,
according to the linearized Maxwell-Bloch equations, which
in the limit of a sufficiently smooth control, such that the
excited state | 2〉 can be adiabatically eliminated, take the form
[43–45]

(c∂z + ∂t )S = ic

√
dγ

L

�

�s
B − κsS,

(c∂z + ∂t )A = ic

√
dγ

L

�

�a
B† − κaA,

∂tB = −i

√
dγ

L

�∗

�s
S + i

√
dγ

L

�

�a
A†

−
[

1

�s
+ 1

�∗
a

]
|�|2B, (4)

where the z-coordinate parametrizes the position along the
folded optical path inside the cavity. The system (4) is
to be interpreted as describing the evolution of the slowly
varying annihilation operators S, A in the Heisenberg pic-
ture, with the bosonic spin-wave annihilation operator given
by B = ∑

j∈[z,z+δz] | 1〉j 〈3|/δz√N/L describing the ampli-
tude of the Raman coherence excited in the � memory.

1The ring geometry simplifies the analysis to follow, but it also has
the practical advantage that the intracavity fields are running waves
without nodes at zero intensity. This ensures that atoms interacting
with the fields during read-in do not escape interaction at retrieval by
diffusing into the “dark” field nodes during the storage time.
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The optical and spin-wave fields satisfy canonical commu-
tation relations [S(t,z),S†(t ′,z)] = [A(t,z),A†(t ′,z)] = δ(t −
t ′), [B(t,z),B†(t,z′)] = δ(z − z′). The operator nature of (4) is
key to the analysis of spontaneous four-wave mixing noise. The
meanings of the other symbols are as follows. �s,a = γ − i�s,a

denotes the complex detuning of the signal and anti-Stokes
fields from the atomic resonance with homogeneous linewidth
2γ . The complex decay rates κs,a account for dispersion,
absorption, and other scattering losses as the fields propagate.
Strictly the losses in (4) should be accompanied by Langevin
noise operators which maintain the bosonic commutation
relations of the field operators [46]. But, vacuum noise
entering due to losses experienced by the signal field does
not contribute to the signal intensities or autocorrelations
that we will compute, and anti-Stokes absorption and atomic
decoherence are negligible in the �-memory configuration
considered, thus we neglect Langevin forces [32]. The signal
coupling strength is parametrized by the single-pass resonant
optical depth d of the atomic ensemble, with N atoms in the
signal beam path of length L [47]. Neglecting inhomogeneous
broadening (generally valid far from resonance) the absorption
and dispersion are given by

κs = dγ

τ�s
; κa = dγ

τ�+
a

, (5)

where �+
a = γ − i(�a + δ) is the complex detuning of the

anti-Stokes field from the populated transition and τ = L/c

is the cavity round-trip time. However, in an experiment
the round-trip absorption and loss can be inferred from
the cavity transmission spectrum [48]. Note that we have
neglected decoherence of the spin wave since this is by
assumption slow on the time scale of the memory interactions.
The system (4) can be solved analytically [44], but in the
limit that the interaction with the atoms is weak over the
course of a single pass through the cavity, the fields AL,
SL emerging from the interaction at z = L can be related to
the amplitudes S0, A0, B0 at z = 0 by a Taylor expansion.
To capture the round-trip dispersion and absorption precisely,
we define S̃ = eκsz/cS, and similarly for the anti-Stokes, and
obtain

SL ≈ e−κsτ [S̃0 + L∂zS̃|z=0]

= e−κsτ

[
S0 + icτ

√
dγ

L

�

�s
B0 − τ∂tS0

]
;

AL ≈ e−κaτ [Ã0 + L∂zÃ|z=0]

= e−κaτ

[
A0 + icτ

√
dγ

L

�

�a
B

†
0 − τ∂tA0

]
. (6)

To capture the intracavity dynamics, we now “close the
loop” by imposing as a boundary condition the beam-splitter
relation at the input-output coupler, with amplitude reflectivity
r (assumed real for simplicity):

S0 = reiksLSL + trSin,

A0 = reikaLAL + trAin, (7)

where tr = √
1 − r2 is the input-output coupler ampli-

tude transmission, ks (ka) denotes the signal (anti-Stokes)
carrier wave vector, and we have introduced the input

field amplitudes Ain, Sin impinging on the cavity from
the outside. Substituting the solutions (6) into (7) we
obtain

∂t s = −γss + i

√
dγ

τ

�

�s
b + e−iφs

tr

μs
√

τ
Sin,

∂ta = −γaa + i

√
dγ

τ

�

�a
b† + e−iφa

tr

μa
√

τ
Ain,

∂tb = i

√
dγ

τ

[
−�∗

�s
s + �

�a
a†

]
−

[
1

�s
+ 1

�∗
a

]
|�|2b, (8)

where we have defined the intracavity field amplitudes a =√
τA0, s = √

τS0, as in [38], and similarly b = √
LB0, and

the resonant and antiresonant decay rates

1

γs,a
= τ

μs,ae
iφs,a

1 − μs,aeiφs,a
, (9)

where φs,a = ks,aL − Im{κs,a}τ is the cavity round-trip phase
accumulated by the fields, including any dispersion induced
by the atomic ensemble, and where the cavity round-trip
amplitude transmission, including any atomic absorption, is
given by μs,a = re−Re{κs,a}τ . If there are additional losses
due to scattering from surfaces inside the cavity, or partial
transmission through cavity mirrors, these can be incorporated
into μs,a. The system of coupled equations (8) takes a
form that might be written using cavity input-output theory,
except that we are able to treat the dynamics of both the
Stokes and anti-Stokes fields, with one being resonant and
the other off resonant with the cavity, as determined by the
phases φs,a.

V. BAD CAVITY LIMIT

To proceed to a solution, we once more invoke the bad cavity
approximation, in which the fields impinging on the cavity are
much more narrow band than the cavity linewidth [32]. Specif-
ically, then, we require that |∂t s| � |γss|, with commensurate
bandwidths for the anti-Stokes and control fields. In this limit,
we solve for s and a in terms of b by setting ∂t s = ∂ta ≈ 0, to
obtain

s = i

√
dγ

τ

�

�sγs
b + e−iφs

tr

γsμs
√

τ
Sin,

a = i

√
dγ

τ

�

�aγa
b† + e−iφa

tr

γaμa
√

τ
Ain,

∂tb =
{

dγ

τ

[
1

�2
s γs

+ 1

|�a|2γ ∗
a

]
− 1

�s
− 1

�∗
a

}
|�|2b

+ i
tr
√

dγ

τ

[
�∗

μs�sγs
e−iφsSin + �

μa�aγ ∗
a

eiφaA†
in

]
.

(10)

At this point, it is convenient to remove the dependence on
the temporal shape of the control field by making a coordi-
nate transformation t −→ ε(t) = ∫ t

−∞ |�(t ′)|2 dt ′/W , with W

chosen so that ε(∞) = 1. Then, we have ∂t = W−1|�(t)|2∂ε

[17,21]. Defining normalized signal and anti-Stokes field
amplitudes σ = s

√
W/� and α = a

√
W/�, the system (10)

012338-4



THEORY OF NOISE SUPPRESSION IN �-TYPE . . . PHYSICAL REVIEW A 96, 012338 (2017)

becomes

σ = csb + psσin,

α = cab
† + paαin,

∂εb = f b + gsσin + gaα
†
in,

where we pulled the various constants into the coefficients

cs,a = i

√
dγW

τ

1

�s,aγs,a
,

ps,a = tre
−iφs,a

μs,aγs,a
√

τ
,

f = W

[
dγ

τ

(
1

�2
s γs

+ 1

|�a|2γ ∗
a

)
− 1

�s
− 1

�∗
a

]
,

gs = i
tre

−iφs
√

dγW

μs�sγsτ
; ga = i

tre
iφa

√
dγW

μa�aγ ∗
a τ

. (11)

Note that the above transformations are unitary so the operators
α, σ , b obey the canonical relations [α,α†] = [σ,σ †] =
[b,b†] = 1. Solving for b gives

b(ε) = b(0)ef ε +
∫ 1

0
dε′ Mc(ε,ε′){gsσin(ε′) + gaα

†
in(ε′)},

(12)

where we have defined Mc(ε,ε′) = �(ε − ε′)M(ε,ε′) as the
causal version of the cavity response function M(ε,ε′) =
ef [ε−ε′], with � denoting the Heaviside step function.

Now, we are ready to solve for the outgoing fields emerging
from the cavity, using again the beam-splitter boundary
conditions at the input-output coupler:

Sout = tre
iksLSL − rSin(t),

Aout = tre
ikaLAL − rAin(t). (13)

In the limit of weak single-pass coupling, we can approxi-
mate (6) by eiksLSL ≈ (μs/r)eiφsS0, retaining only the phase
evolution and losses of the Stokes field as it traverses the
cavity.2 Substituting this into (13) and using (10), the output
field, switching back to the normalized variables σin,out =
Sin,out

√
W/�, is found to be

σout = itr (μs/r)eiφs
√

dγW

�sγsτ
b + [χ − r]σin, (14)

where we have defined the cavity transmission amplitude

χ = t2
r

r

μse
iφs

1 − μseiφs
. (15)

VI. STORAGE AND RETRIEVAL

We consider first the field emerging from the cavity when
we attempt to store an incident signal. This field will contain
both a contribution from the unstored signal due to the finite
efficiency of the storage interaction, and also a contribution

2Note that reusing the Taylor expansion in (6) actually exacerbates
the truncation error of the weak-interaction approximation and gives
an incorrect result for (14).

from four-wave mixing noise. Assuming for simplicity that the
memory is initially prepared with no spin-wave excitations,3

the output field is found from (14) and (12) to be

σout,1(ε) =
∫ 1

0
dε′ {M1(ε,ε′)σin,1(ε′) + M

[1]
FWM(ε,ε′)α†

in,1(ε′)
}
,

(16)

where we have defined the integral kernels

M1(ε,ε′) = −χC2
s Mc(ε,ε′) + (χ − r)δ(ε − ε′);

M
[1]
FWM(ε,ε′) = −χCsCaxMc(ε,ε′), (17)

where the subscript 1 indicates fields associated with the
storage interaction. Here, we have introduced the signal and
anti-Stokes memory coupling parameters

Cs,a =
√
CγW

�s,a
, (18)

with C = dμse
iφs/(1 − μse

iφs ) the cooperativity of the cavity
for the signal field. On resonance with the cavity (φs = 0),
this is equal to the optical depth of a medium with length
L × Fs/π , where Fs is the cavity finesse for the signal field
(when the control field � is not present). Note that the coupling
of the anti-Stokes field is multiplied by the noise suppression
factor

x = μse
iφsγs

μae−iφaγ ∗
a

= 1 − μse
iφs

1 − μae−iφa
. (19)

This is the factor that we will aim to minimize by appropriate
tuning of the cavity resonances.

We next consider the retrieval interaction. In this case,
there is no incident signal field, and the initial spin wave
is (neglecting decoherence during storage) given by the
excitation generated at read-in, so that the retrieved signal
field can be written as

σout,2(ε) =
∫ 1

0
dε′{M2(ε,ε′)σin,1(ε′) + M

[2]
FWM(ε,ε′)α†

in,1(ε′)

+M
[1]
FWM(ε,ε′)α†

in,2(ε′)
}
, (20)

where we have defined the integral kernels

M2 = −χC2
s e

f M;

M
[2]
FWM = −χCsCaxef M

= (�s/�a)xM2. (21)

Here, we have assumed for convenience in simplifying the
expressions that the control pulse used to drive the retrieval
interaction is identical to the storage control pulse.

3For memories based on alkali-metal vapors, Rb or Cs, this requires
efficient optical pumping of the atomic ensemble into one of the two
hyperfine states within its ground-state manifold. In practice, this is
hard to achieve, but fortunately experiments have shown that a small
residual population of unpumped atoms does not significantly affect
the operation of the memory [26].
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VII. EFFICIENCY AND NOISE

The above expressions provide a means to predict the
efficiency of the memory by comparing the expectation
values Nx = 〈∫ ∞

−∞ S
†
x(t)Sx(t) dt〉 = 〈∫ 1

0 σ
†
x (ε)σx(ε) dε〉 of the

input and output intensity operators (x = in,out,1,2). Four-
wave mixing noise enters via the operators describing the
incident anti-Stokes fields, which, although they are in the
vacuum state (we do not send in any anti-Stokes light),
nonetheless contribute to the intensity because the incident
fields are described by creation operators, giving rise to
anti-normally-ordered terms. In a noiseless memory one
would define the total efficiency ηtot,noiseless = Nout,2/Nin,1,
with commensurate definitions for the storage efficiency
ηstore,noiseless = 1 − Nout,1/Nin,1 and the retrieval efficiency
ηret,noiseless = ηtot,noiseless/ηstore,noiseless. For a noisy memory we
modify the definition of the total efficiency by subtracting
the noise floor Nout,2|no input retrieved from the memory when
Nin,1 = 0 (no incident signal photons):

ηtot = Ñout,2

Nin,1
; Ñout,2 = Nout,2 − Nout,2|no input. (22)

In computing these expectation values, it is helpful to
adopt matrix notation for the integral kernels, so that for
a two-dimensional function K = K(ε,ε′), we can write∫ 1

0 K(ε,ε′)K∗(ε′′,ε′) dε′ simply as KK† = KK†(ε,ε′′), and∫ 1
0 K(ε,ε′)ψ(ε′) dε′ simply as K|ψ〉, where the ket notation

is unrelated to the quantum mechanics of the problem, but is
used to denote the vectorized version of the function ψ(ε). In
this notation, the trace is given by tr{K} = ∫ 1

0 K(ε,ε) dε. With
these preliminaries, we can write the transmitted and retrieved
photon numbers, for the case of input coherent state or Fock
state signal fields, as

Nout,j = tr{Pj },
where we have defined the operators

Pj = Nin,1| ϕj 〉〈ϕj | +
j∑

k=1

M
[k]
FWMM

[k]†
FWM, (23)

with | ϕj 〉 = Mj | ψin〉, and ψin(ε) the mode function describing
the temporal amplitude of the input signal field, normalized
so that 〈ψin | ψin 〉 = 1. To see how this works, consider the
temporal amplitude of the signal field emerging from the
storage interaction

ϕ1(ε) = −χC2
s e

f εψ(ε) + (χ − r)ψin(ε),

where ψ(ε) = ∫ ε

0 e−f ε′
ψin(ε′) dε′. The number of photons,

including noise due to four-wave mixing, is then found to
be

Nout,1 = Nin,1〈ϕ1 | ϕ1〉 + |χCsCax|2 1 − E

ζ
,

where we have defined E = ∫ 1
0 e−ζ ε dε = (1 − e−ζ )/ζ , with

the dimensionless coupling parameter ζ given by

ζ = −(f + f ∗)

= −2 Re
{
C2

s + C2
a x(μa/μs)e

−i(φs+φa−2 arg �a)
}

+ 2W Re

{
1

�s
+ 1

�∗
a

}
. (24)

Considering now the retrieval interaction, the temporal mode
emerging from the memory is

ϕ2(ε) = −χC2
s e

f (eζE)1/2κef ε,

where we have introduced the normalized overlap between the
input field and the cavity response, κ = (eζE)−1/2ψ(1). With
this definition, when ψin(ε) ∝ ef ∗ε , we obtain κ = 1. Including
the contributions from four-wave mixing, the number of
photons retrieved from the memory is found to be

Nout,2 = |χCs|2[|CsEκ|2Nin,1 + |Cax|2g(ζ )], (25)

where we defined g(ζ ) = (1 − e−ζ E)/ζ . The first term de-
scribes the coherent operation of the memory; the second
term describes the retrieval of noise photons that are present
even when no signal photons are sent into the memory. The
efficiency of the memory is seen to be

ηtot = |χC2
s Eκ|2. (26)

Taking the ratio of the first and second terms in (25) provides
the following formula for the signal-to-noise ratio (SNR) of
the memory:

SNR = Nin,1|κ|2 ×
∣∣∣∣�a

�s

∣∣∣∣2

× E2

g(ζ )
× 1

|x|2 . (27)

Parsing this result from left to right, the SNR increases with
the number of incident signal photons, and with the degree to
which they overlap with the cavity response, described by |κ|2.
The second factor is essentially the ratio of the anti-Stokes and
Stokes detunings, which factor is also present in a cavityless
� memory. This reflects the fact that low-noise operation can
be achieved with detunings much smaller than the splitting
between the ground states of the � system, as can be realized
with EIT in cold atoms [49]. The third factor is purely
dynamical, but the final factor, proportional to |x|−2, represents
the noise suppression afforded by the cavity. As should now
be clear, minimizing |x| by appropriate tuning of the cavity
resonances provides a route to low-noise operation of a �

memory, even at room temperature where large detunings from
resonance are necessary. Note that for a single far-detuned
ideally mode-matched incident photon, with the cavity tuned
as in Fig. 2(b) with the anti-Stokes field on antiresonance
φa = π and the Stokes field on resonance φs = 0, and noting
that μs ≈ μa ∼ 1, we find

x ≈ π

2Fs
(28)

recover the “intuitive” expression derived in Eq. (1), up to
the numerical factors E2/g, which emerge from the detailed
dynamics.

VIII. MODE SELECTIVITY

The cavity memory interaction is a single-mode interaction.
That is to say, the memory stores just a single temporal
mode, and a single temporal mode is retrieved from the
memory [50]. This is clear from the structure of the solution
(20), where the coherent mapping between input and output
is described by the Green’s function M2 ∝ M = ef [ε−ε′],
which is a separable function of ε and ε′. Accordingly, the
efficiency of the memory is parametrized by the overlap
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integral κ defined above; any input mode orthogonal to
e−f ε′

will not couple to the memory at all. Furthermore,
converting back into the ordinary time coordinate ψin(t) =
W−1/2�(t)ψin[t(ε)], we observe that the input mode that is
stored can be arbitrarily chosen by appropriate shaping of
the control field �. The single-mode nature of the cavity
memory interaction has been derived previously, albeit without
considering four-wave mixing [32,51], but here we point
out that it is an advantageous feature. The combination of
single-mode operation and arbitrary shaping has been dubbed
temporal mode selectivity, and is a useful feature for quantum
optical information processing, where large-alphabet signals
can be demultiplexed by a mode-selective “drop filter” [40]. In
fact, the conventional traveling-wave Raman protocol [21,47]
is nearly single mode [52], but the mode selectivity degrades at
high efficiency, a phenomenon encountered also in engineering
mode-selective frequency conversion [53]. Recently, Reddy
et al. showed how to achieve high-mode selectivity and
high efficiency in frequency conversion by double passing or
multipassing the active medium, so that each interaction was
weak enough to remain effectively single mode [54,55]. The
perfect mode selectivity of the cavity memory analyzed here
can be understood as the multipass limit of this approach,
where the interaction describing a single pass through the
cavity is weak, and therefore separable, whereas the coherent
combination of all cavity round trips provides for arbitrarily
high efficiency while retaining temporal-mode selectivity.

IX. AUTOCORRELATION

A key figure of merit for the operation of a quantum memory
is the ability to preserve the sub-Poissonian statistics of stored
single-photon Fock states. In our recent experiments with a
Raman � memory without any cavity, we found that although
the average number of noise photons generated by four-wave
mixing in the absence of an input signal field was low, the
effect of four-wave mixing on the photon statistics of the fields
retrieved from the memory was dramatic [26]. To see how
the cavity influences the performance of the memory as a
component for synchronizing photonic quantum information,
we compute the g(2) autocorrelation function for the fields
emerging from the memory, which can be written as

g
(2)
out,j =

∫ 1
0

∫ 1
0dε dε′〈σ †

out,j (ε)σ †
out,j (ε′)σout,j (ε′)σout,j (ε)〉[∫ 1

0dε′′σ †
out,j (ε′′)σout,j (ε′′)

]2

= 1 + tr
{
P 2

j

} − (
2 − g

(2)
in,1

)
N2

in,1〈ϕj | ϕj 〉2

N2
out,j

. (29)

For the fields emerging from the storage interaction, we obtain
the result

N2
out,1

[
g

(2)
out,1 − 1

] = [
g

(2)
in,1 − 1

]
N2

in,1〈ϕ1 | ϕ1 〉2

+ tr
{
M

[1]
FWMM

[1]†
FWMM

[1]
FWMM

[1]†
FWM

}
+2Nin,1〈ϕ1 |M [1]

FWMM
[1]†
FWM| ϕ1〉, (30)

where the second term evaluates to

tr
{
M

[1]
FWMM

[1]†
FWMM

[1]
FWMM

[1]†
FWM

} = |χCsCax|4ζ−4{4ζ (1 − E)

− 2ζ 2E − �}, (31)

with � = 2e−ζ [sinh(ζ ) − ζ ]. Of particular interest is the
corresponding expression for the g(2) autocorrelation of the
fields retrieved from the memory by the readout control pulse,
which, after some rather lengthy calculations, can be written
as

N2
out,2

[
g

(2)
out,2−1

]=|χCs|4
{[

g
(2)
in,1−1

]
N2

in,1|CsEκ|4+|Cax|4h(ζ )

+ 2Nin,1|CsCaxκ|2h′(ζ )
}
, (32)

where we defined the functions

h(ζ ) = 4
1 − E

ζ 3
− 2

E

ζ 2
+ E4 + �

ζ 4
(2ζE − 1),

h′(ζ ) = E4 + E�

ζ 3
. (33)

For the case of storing single-photon Fock states, for which
g

(2)
in,1 = 0, we obtain

g
(2)
out,2 = {2Nin,1|κCsCax|2[E2g(ζ ) + h′(ζ )]

+ |Cax|4[g(ζ )2 + h(ζ )]}
× [Nin,1|κCsE|2 + |Cax|2g(ζ )]−2.

Note that for incident single photons, Nin,1 � 1 is to be
interpreted as the average number of photons per pulse,
including any losses prior to the memory. For a heralded photon
source [56], Nin,1 is therefore the heralding efficiency of the
source.

If we achieve strong noise suppression, so that |x|2 � Nin,1,
then the autocorrelation can be written as

g
(2)
out,2 = 2

[
1 + h′(ζ )

E2g(ζ )

]
1

SNR
. (34)

We note that the first term in this expression is the same as
predicted by our simple model in Eq. (2). However, the more
complete analysis is required for a quantitative prediction,
and to see how the autocorrelation changes with the coupling
strength of the memory interaction.

X. WEAK COUPLING LIMIT

The expressions for the efficiency, signal-to-noise ratio,
and autocorrelation simplify in the limit of weak coupling,
when |Cs,a| � 1, so that ζ � 1. In this limit we obtain,
to first order in ζ (valid for ζ � 0.2), E → 1 − 1

2ζ , � →
1
3ζ 3 − 1

3ζ 4, g(ζ ) → 3
2 − 7

6ζ , h(ζ ) → 11
6 − 13

5 ζ , h′(ζ ) → 4
3 −

5
2ζ . The number of retrieved photons is then given by

Nout,2 = |χCs|2
[
Nin,1(1 − ζ )|Csκ|2 +

(
3

2
− 7

6
ζ

)
|Cax|2

]
,

with the efficiency given by

ηtot = (1 − ζ )
∣∣χC2

s κ
∣∣2

,

and the signal-to-noise ratio

SNR =
(

2

3
− 4

27
ζ

)
Nin,1|κ|2

∣∣∣∣�a

�s

∣∣∣∣2 1

|x|2 .
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The autocorrelation (again for incident single photons in the
high noise-suppression regime) is found to be

g
(2)
out,2 =

(
34

9
− 14

81
ζ

)
1

SNR
. (35)

In general, the control field �(t) can be shaped so as to
achieve |κ| = 1 and maximize the SNR. In the weak coupling
limit, the requirement to shape the signal and control pulses is
relaxed because when |f | � 1, the optimal input mode ef ∗ε is
approximately flat. If the signal and control pulse shapes derive
from a common source, so that ψin(t) ∝ �(t) and ψin(ε) = 1,
we then achieve κ = 1 − 3

2f − 1
4f ∗ ≈ 1.

XI. STRONG COUPLING

On the other hand, it is also instructive to consider the case
of very strong coupling, when ζ � 1. Note that the size of
ζ depends on the signal field frequency through the phase
φs, so this limit depends on the control field energy, optical
depth, and also on the signal field tuning. With ζ � 1, we
have E → 1/ζ , g(ζ ) → 1/ζ , � → 1, h(ζ ) → 2(ζ − 1)/ζ 4,
h′(ζ ) → 2/ζ 4, and the memory efficiency tends to

ηtot →
∣∣∣∣χC2

s κ

ζ

∣∣∣∣2

= |χκ|2 |Cs|4
ζ 2

. (36)

For very strong coupling, we find g
(2)
out,2 −→ 1, independent

of the noise suppression factor x. In this case, the four-wave
mixing gain dominates and the system has effectively become
a Raman laser. To remain in the regime where the cavity
suppresses the four-wave mixing, we should have |x| �
Nin,1/ζ , in which case from (34) we obtain

g
(2)
out,2 =

∣∣∣∣�s

�a

∣∣∣∣2 2|x|2ζ
Nin,1|κ|2 .

Here, the autocorrelation rises linearly with the coupling
parameter ζ . To achieve low-noise operation of the memory,
we therefore seek the smallest coupling strength ζ for which
the efficiency saturates. Note that the above result, derived
from a detailed analysis, is the same as we expect from our
simple model, for the case of a single far-detuned ideally
mode-matched incident photon, in Eq. (2), except it is larger
by a factor of ζ , and of course ζ � 1 by assumption, in the
strong coupling regime.

XII. COMPARISON WITH PREVIOUS RESULTS

Cavity-enhanced � memories have been analyzed previ-
ously [32–34]. To compare with those works, we consider
the case that there is no four-wave mixing (equivalent to
the limit δ → ∞ so that Ca = 0), and we assume the signal
field to be tuned to the empty-cavity resonance with ksL = 0
mod(2π ). Finally, we assume that there are no interface or
scattering losses inside the cavity, other than atomic absorption
contained in κs, and we assume that the single-round-trip
dispersion and absorption is small, |κs|τ � 1. In this case,
we can express the cooperativity C for the signal field in terms

of the absorption-free cooperativity C = rd/(1 − r),

C ≈ C
1

r

�s

�C
, (37)

where �C = �s + Cγ . We also find ζ ≈ 2Wγ (C + 1)/|�C|2,
χ ≈ (1 + r)�s/�C, and C2

s ≈ WγC/�s�C, which upon sub-
stitution into (36) yields the rather elegant result, previously
derived by Gorshkov [32], that the optimal storage efficiency
in the limit of strong coupling is

ηtot = |κ|2
(

1 + r

2

)2[ C

C + 1

]2

, (38)

which is independent of the detuning �s and also independent
of the control field energy E ∝ W , provided the control field
is strong enough to reach saturation, ζ � 1. Unit efficiency is
achieved with an optically thick ensemble in a high-quality
cavity with a mode-matched storage interaction such that
|κ| = 1.

In a real atomic system, four-wave mixing is present, and in
that case the maximum noise suppression is achieved when the
cavity resonance condition φs = 0 mod 2π obtains, which
is different to the empty-cavity resonance condition ksL = 0
mod 2π assumed above, because of atomic dispersion. In fact,
the resonance condition φs = 0 is natural in a real experiment,
where the atoms are introduced into the cavity before the
signal field is tuned to resonance with the cavity. Any other
scattering losses inside the cavity should also be included in the
round-trip amplitude transmission μs. Four-wave mixing gain
can boost the efficiency (while introducing noise), whereas
intracavity losses will reduce the efficiency. In general, the
expression (26) and its strong coupling limit (36) can be used
to predict the memory performance.

XIII. BANDWIDTH

The analysis presented here assumes adiabatic following of
the atoms driven by the intracavity fields, and also adiabatic
evolution of the intracavity fields driven by the external fields
impinging on the cavity. In fact, Eqs. (8) hold generally,
for arbitrary pulse bandwidths (consistent with adiabatic
following of the atomic dynamics), but the subsequent closed-
form solutions require the bad cavity approximation, which
holds when the spectral bandwidth of the external fields is
much narrower than the decay rates γs,a of the intracavity fields.
Equivalently, the cavity resonance at the signal frequency, with
linewidth γs, should be broad compared to the signal pulse
bandwidth. In this limit, the acceptance bandwidth δs of the
memory is constrained by the cavity finesse δs < a�FSR/Fs,
where a ∼ 0.3 is a “safety margin” and where �FSR is the free
spectral range of the cavity. Assuming low loss so that μa ≈
μs ≈ 1, and the resonance and antiresonance conditions φs =
0 mod 2π , φa = π mod 2π , we have x ≈ 2π/Fs, and so
δs ∝ x, which expresses a tradeoff between noise suppression
and speed of operation.

It is worth pointing out that the conventional relationship,
used above, between the cavity finesse on the one hand, and
its acceptance bandwidth on the other, is not fundamental, but
arises from the linear relation between intracavity phase and
optical carrier frequency in a nondispersive medium. White-
light cavities use anomalous dispersion to remove the overall
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frequency dependence of the intracavity phase over a broad
bandwidth [57]. To design a cavity-enhanced � memory with
simultaneously broad bandwidth and high-noise suppression,
one could imagine a related but inverted design principle: a
broadband cavity with a dispersive element that accelerates
the accumulation of phase at frequencies close to the unwanted
anti-Stokes, such that they are pushed out of resonance with
the cavity. One could, for example, replace one of the internal
cavity mirrors with a Gires-Tournois interferometer (GTI),
which is simply another ring cavity that reflects all incident
optical power, but with a phase shift that depends strongly
on the detuning from its resonant frequencies. With this
design, a very broadband memory cavity could be used, that
would accept a broadband input pulse. Without the GTI, the
anti-Stokes would not experience the greatest possible noise
suppression as it would still be partially resonant with the
cavity. But with the GTI, one can arrange that the anti-Stokes
field picks up a significant phase shift on reflection, such that its
cavity round-trip phase is φa = π and it is strongly suppressed.
A full analysis of this design lies beyond the scope of this
work, but here we simply note that this and other designs
are possible, which circumvent the noise and speed tradeoff
discussed above.

XIV. SPATIAL MODES

We have treated the evolution of the fields in the cavity
by considering the one-dimensional propagation equations
(4). Of course, spontaneously initiated four-wave mixing may
populate any spatial mode; the important point as a source of
noise for the �-memory interaction is whether a spontaneously
scattered photon is associated with a spin-wave excitation that
can be retrieved into the signal mode as noise. For emission
events that scatter anti-Stokes photons out of the cavity, it is
clear by momentum conservation that retrieval into the cavity
from the resulting spin wave is not phase matched. For paraxial
scattering events, one should consider the density of states at
the anti-Stokes frequency for higher-order transverse cavity
modes. Such events populate spin waves with transverse spatial
structure, and these may couple in some degree to the signal
in the fundamental cavity mode due to the transverse structure
of the control field [58]. The main contribution will be from
scattering into transverse modes that are resonant with the
anti-Stokes frequency. Higher-order Hermite-Gaussian modes
with mode index p are detuned from the fundamental cavity
mode (p = 0) by pξ , where ξ is a frequency offset determined
by the Guoy phase [42]. In order to align the cavity, we
assume that it has been designed such that the frequency
offset is larger than the cavity linewidth, ξ � FSR/F , so that
the spatial modes are spectrally distinct. The cavity-based
noise suppression fails for the spatial mode for which the
anti-Stokes frequency, by assumption tuned halfway between
the fundamental cavity modes, is on resonance. This fixes the
index of this failure mode as pfail ≈ (FSR/2)/ξ ≈ F/2. The
probability P to retrieve this excitation into the fundamental
cavity mode depends on the intermode coupling mediated
by the control field, which we assume to be coupled into
the fundamental cavity mode (possibly with an orthogonal

polarization to the signal field),

P ∝
∣∣∣∣∫ U0(x)2Upfail (x) dx

∣∣∣∣2

,

where the mode profile is given by Up(x) = Nphp(
√

2x)e−x2
,

with hp the Hermite polynomial of degree p and Np a
normalization. We find numerically that P � 10−pfail/2, and
thus noise due to paraxial anti-Stokes scattering into higher-
order cavity modes is suppressed by a factor exponential in the
cavity finesse.

XV. CAVITY-ENHANCED RAMAN MEMORY

Here, we consider a specific implementation of a � memory
in caesium vapor, in the far-off-resonant Raman limit. While
our results are valid for adiabatic storage with arbitrary
detunings, and also on resonance (which corresponds to EIT-
type � memories), the Raman configuration has the advantage
that broadband pulses can be stored at room temperature
outside of the Doppler and collisional absorption profile, and
the pulse durations ∼ns time scale are sufficiently short that
the collisional fluorescence [24] and dephasing are negligible
during the optical interactions [59]. Preliminary experiments
have confirmed the operating principles of the cavity-enhanced
memory proposed here [37], and this calculation indicates
that a high-performance memory is within reach. We begin
by noting the caesium hyperfine splitting of δ = 9.2 GHz
= 57.8 × 109 s−1. For simplicity, consider the proposal,
mentioned above, to use a tunable birefringence to in-couple
an orthogonally polarized control field. Neglecting for the
moment atomic dispersion, this fixes the free-spectral range
of the cavity to �FSR = 4δ/(2m + 1), where the integer
m = 0,1,2 . . . specifies the order of the cavity, that is, the
number of cavity resonances that lie between the signal and
anti-Stokes frequencies. The largest operating bandwidth is
achieved for the largest free-spectral range, so we consider a
zero-order cavity. The cavity round-trip length is then fixed
to be L = 2πc/�FSR = 8 mm, which is much smaller than
a comparable free-space memory and could be incorporated
“on chip”. The natural linewidth of the Cs D2 line at λ = 852
nm is 2γ = 5.2 MHz, but with a buffer gas to extend the
storage lifetime the pressure-broadened linewidth could be
larger, so we will assume 2γ ≈ 50 MHz. We then choose a
signal detuning of �s = 5 GHz, which puts us in the far-off-
resonant limit, and which lies sufficiently outside the Doppler
profile, ∼500 MHz at room temperature, that inhomogeneous
broadening of the vapor can be neglected. Assuming a
temperature of ∼70 ◦C, the optical depth, fixed by the cavity
length L and the temperature dependence of the caesium vapor
pressure, is found to be d ≈ 380. For a collimated cavity mode,
the Rayleigh range should be matched to the round-trip length,
which fixes the transverse mode area to A = λL. Figure 3
shows the efficiency and g(2) autocorrelation function for the
storage of single photons heralded with efficiency Nin,1 = 0.5
in such a cavity-enhanced Raman memory, as a function of
the energy of the control pulses, for two different input-output
coupler reflectivities, and assuming several different levels of
intracavity loss. We consider ideal mode matching such that
the mode overlap is |κ| = 1.
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FIG. 3. The predicted efficiency ηtot and autocorrelation g
(2)
out,2

for the storage of single photons, heralded with efficiency Nin,1 =
0.5, in a cavity-enhanced Raman memory, as described in the text,
with input-output coupler reflectivities r = 0.9 [(a),(b)] and r = 0.95
[(c),(d)], and a range of intracavity round-trip intensity losses (see
legend).

The cavity linewidth is 1.3 and 0.6 GHz for the two
cases r = 0.9 and 0.95, respectively. The memory acceptance
bandwidths are then δs ∼ 400 and 200 MHz, respectively.
These are compatible with cavity-enhanced down-conversion
sources [60] and would enable the storage of few-ns-duration
pulses, suitable for the fastest useful clock rates, ∼0.1−1 GHz,
for electronic synchronization applications. Finally, the control
pulse energies required to saturate the efficiency, on the order
of E = 10 pJ, are sufficiently low that the memory could be
driven by the modulated output of a semiconductor diode laser.

XVI. ASYMPTOTIC EFFICIENCY WITH FINITE LOSS

As can be seen in Fig. 3, in each case the efficiency saturates
at an asymptotic value determined by the intracavity loss. This
is predicted by the formula in Eq. (36), noting that in the
far-detuned Raman case with strong noise suppression, we
have ζ ≈ 2|Cs|2, so that, setting Nin = |κ| = 1 for an ideally
mode-matched single photon,

ηtot =
∣∣∣χ

2

∣∣∣2
.

This reduces to the prediction in Eq. (3), equivalent to the
maximum efficiency of a lossy Gires-Tournois interferometer,
if we note that on resonance with φs = 0, we have

χ = (1 − r)(1 + r)
μs/r

1 − μs

≈ 2 ×
(

μs

1 − μs

)/(
r

1 − r

)
= 2

Fs

F0
. (39)

Given some finite cavity losses α = μs/r , the efficiency is
maximized by setting the input-output coupler reflectivity to
be

ropt = 1 − √
1 − α2

α
.

For the case of a Raman-type memory considered here,
even with lossless optical components, off-resonant absorption
contributes a loss α ≈ e−d(γ /�s)2

, which, using the above
optimal reflectivity, imposes the efficiency limit

ηtot � 1 − 2
√

2
γ
√

d

�s
.

XVII. CONCLUSION

We have described a method to suppress four-wave mixing
noise in a � memory by means of a cavity tuned simul-
taneously into resonance with the signal field to be stored,
and into antiresonance with the field mode that is excited
through spontaneous Raman scattering driven by the control
field interacting with the populated initial state. We have
extended previous analyses of cavity-enhanced � memories
by explicitly considering the evolution of both the Stokes
and anti-Stokes fields, and we have derived analytic formulas
for the four-wave mixing noise and, a key figure of merit for
quantum information applications, the g(2) autocorrelation for
the retrieved fields. Our analysis shows that highly efficient
and low-noise operation can be simultaneously achieved, and
we have presented an example calculation for a memory in
Cs vapor which offers the realistic prospect of constructing
technically simple quantum memories for near-infrared pho-
tons, with near-unit efficiency and negligible noise, operated
at GHz rates at room temperature in a chip-scale package
powered by diode lasers. We are optimistic that technologies
of this kind will enable the field of quantum optics to finally
escape the “two-photon doldrums” and explore the physics of
large quantum systems.
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