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Mutual information is the reciprocal information that is common to or shared by two or more parties. Quantum
mutual information for bipartite quantum systems is non-negative, and bears the interpretation of total correlation
between the two subsystems. This may, however, no longer be true for three or more party quantum systems.
In this paper, we propose an alternative definition of multipartite information, taking into account the shared
information between two and more parties. It is non-negative, observes monotonicity under partial trace as well
as completely positive maps, and equals the multipartite information measure in literature for pure states. We
then define multiparty quantum discord, and give some examples. Interestingly, we observe that quantum discord
increases when a measurement is performed on a large number of subsystems. Consequently, the symmetric
quantum discord, which involves a measurement on all parties, reveals the maximal quantumness. This raises a
question on the interpretation of measured mutual information as a classical correlation.
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I. INTRODUCTION

Quantum correlations [1,2] are essential ingredients in
quantum information theory [3]. Various quantum corre-
lations, different in nature and types, find huge applica-
tions in quantum information processing tasks. Consequently,
their characterization and quantification is inevitable. Several
nonclassical correlation measures have been proposed for
bipartite quantum systems, and some of them have been
extended to multipartite settings. Nonetheless, quantifying
multipartite quantum correlations in quantum physical systems
remains a challenging problem. Recently, however, significant
developments have been made towards this end in the form of
multipartite global (symmetric) quantum discord (GKD) [4],
conditional entanglement of multipartite information (CEMI),
[5], and quantum correlation relativity (QCR) [6]. In Ref. [7],
an operational interpretation of GQD was given in terms of the
partial state distribution protocol. It was also shown that GQD
nearly vanishes for a multiparty quantum state that is approxi-
mately locally recoverable after performing measurements on
each of the subsystems. An important aspect to notice is that
all these developments count on some multipartite information
measure (see below) [8]. Multipartite (mutual) information, the
reciprocal information that is common to or shared by two or
more parties, has an authoritative stand in the arena. Quantum
mutual information (QMI), whose definition is motivated by
that of classical mutual information (CMI), is well defined for
bipartite quantum systems. QMI of a bipartite quantum state
ρAB is defined as

I (ρAB) = S(ρA) + S(ρB) − S(ρAB)

= S(ρAB ‖ ρA ⊗ ρB) � 0, (1)

where S(ρ) = −tr(ρ log2 ρ) is the von Neumann entropy
and S(ρ ‖ σ ) = tr(ρ log2 ρ − ρ log2 σ ) is the quantum relative
entropy. It is non-negative, and bears the interpretation of total
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correlation between the two subsystems [9]. It is defined as
the amount of work (noise) that is required to erase (destroy)
the correlations completely. These properties (non-negativity,
interpretation of total correlation) may, however, no longer be
true for three or more party quantum systems. The existing
quantum version of multipartite information in literature, due
to Watanabe [8], is a straightforward generalization of bipartite
QMI,

Ix(A1 : A2 : · · · : An) =
n∑

k=1

S(ρAK
) − S(ρA1A2···An

)

= S(ρA1A2···An
‖ ρA1 ⊗ · · · ⊗ ρAn

)

� 0. (2)

We refer to it as conventional quantum mutual information
(CQMI). It is the sum of the individual von Neumann
entropies less the joint von Neumann entropy of a multipartite
quantum system, ρA1A2···An

. It is non-negative, and monotone
nonincreasing under the local discarding of information [i.e.,
Ix(A1X1 : A2X2 : · · · : AnXn) � Ix(A1 : A2 : · · · : An) for a
multiparty quantum state ρA1X1A2X2···AnXn

]. However, unlike
two-party quantum mutual information Ix(A1 : A2), it does
not have any operational interpretation.

In another approach, three-variable CMI [10] is defined as

K(A : B : C) = K(A : B) − K(A,B|C), (3)

where K(A : B) = H (A) − H (A|B) = H (A) + H (B) −
H (A,B) = H (B) − H (B|A) is two-variable CMI,
K(A,B|C) = H (A|C) + H (B|C) − H (A,B|C) is three-
variable conditional mutual information, and H (·) is the
Shannon entropy. Though both K(A : B) and K(A,B|C) are
non-negative, the three-variable CMI can be negative. Using
the chain rule H (X,Y ) = H (X) + H (Y |X), the following
expressions of CMI are equivalent:

K1(A : B : C) = [H (A) + H (B) + H (C)]

− [H (A,B) + H (A,C) + H (B,C)]

+H (A,B,C), (4)
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K2(A : B : C) = H (A,B) − H (B|A) − H (A|B)

−H (A|C)−H (B|C)+H (A,B|C), (5)

K3(A : B : C) = [H (A) + H (B) + H (C)]

− [H (A,B) + H (A,C)] + H (A|B,C).

(6)

The above definitions of CMI can be extended to the quantum
domain. They are obtained by replacing the random variables
by density matrices and Shannon entropies by von Neumann
entropies, with appropriate measurements in the quantum
conditional entropies. Hence,

I (A : B : C) = [S(A) + S(B) + S(C)]

− [S(A,B)+S(A,C)+S(B,C)]+S(A,B,C),

(7)

J1(A : B : C) = S(A,B) −SM(B|A) −SM(A|B) −SM(A|C)

− SM(B|C) + SM(A,B|C), (8)

J2(A : B : C) = [S(A) + S(B) + S(C)]

− [S(A,B) + S(A,C)] + SM(A|B,C), (9)

where S(X) ≡ S(ρX), and SM(X|Y ) = S(ρX|MY ) is the quan-
tum conditional entropy obtained after some generalized
measurement M has been performed on subsystem Y . It
is asserted that the above quantum expressions are not
equivalent as measurement assumes its role in the quantum
conditional entropies. These QMIs have certain drawbacks.
First, surprisingly enough, I (A : B : C) is identically zero for
arbitrary three-party pure quantum states [10], implying that
mutual information among the subsystems of three-party pure
quantum systems is zero. This is not true in the case of bipartite
QMI. Second, I (A : B : C) and other versions of QMI can be
negative [10,11]. How is this negative correlation useful for
quantum information tasks? Though the existing definition
of three-party QMI is argued to reveal the true nature of
quantum correlations [10], the fact that QMI, being a measure
of correlation, can assume a negative value is challenging.
This perplexing stance, handicapped with any operational
interpretation of multipartite information, motivated us to
propose an alternative definition of multiparty QMI.

Our multipartite quantum mutual information for quantum
state ρA1A2···An

assumes the following form,

I (A1 : A2 : · · · : An) =
∑

S
(
Xk1Xk2 · · · Xkn−1

)
− (n−1)S(A1A2 · · · An), (10)

where Xki
∈ {A1,A2, . . . ,An}. It takes into account the shared

information among m-parties, 2 � m � n, and not only
the common information among all parties. This is quite
reasonable as information can be distributed or stored among
m-parties. We show that it is non-negative, and argue that it,
by its very construction, manifests total correlation. Also, it
equals CQMI for pure states. Moreover, we obtain its lower
and upper bounds in terms of CQMI.

The rest of this paper is organized as follows: In the
following section, we provide an alternative definition of
multiparty quantum mutual information, compute its value
for some typical states, and prove its non-negativity and

monotonicity. Then, in the next section, we discuss multiparty
quantum discord and present a few illustrations. Surprisingly,
we observe that the symmetric quantum discord reveals the
maximal quantumness. Finally, we conclude.

II. QUANTUM MUTUAL INFORMATION

We propose an alternative definition of multiparty quantum
mutual information, via the Venn diagram approach, for
an n-party quantum state ρA1A2···An

. As information can
be distributed or stored among m-parties, 2 � m � n, our
definition takes into account the shared information among
m-parties, and not only the common information among all
parties. This can be understood readily using a Venn diagram.

A. Two-party QMI

From Fig. 1(a), we see that the only way the subsystems
A and B interact with each other is via region ab, i.e., ab =
A ∩ B = A + B − A ∪ B. In entropy language, this translates
as I (A : B) = S(A) + S(B) − S(AB). This is usual bipartite
QMI.

B. Three-party QMI

From Fig. 1(b), the possible ways the subsystems A, B,
and C interact with each other are via region abc, which is
common to all three, and regions ab, ac, bc, which are pairwise
common. Taking just the region abc, i.e., abc = A ∩ B ∩ C =
A + B + C − (A ∪ B + A ∪ C + B ∪ C) + A ∪ B ∪ C, this
“common information” translates into Ic(A : B : C) :=
[abc] = [S(A) + S(B) + S(C)]−[S(AB) + S(AC)+S(BC)]+
S(ABC). Note that in doing so we have discarded pairwise
interactions. However, a priori, there is no reason to throw
them away. Moreover, they can provide important information

FIG. 1. (a) Two-variable, (b) three-variable, and (c), (d) four-
variable Venn diagrams with possible intersecting regions. While (c)
does not represent the true Venn diagram of four variables, (d) does.
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TABLE I. Values of common information (Ic) and
QMI (I ) of |GHZn〉 = 1√

2
(|0〉⊗n + |1〉⊗n) [13], |Dr

n〉 =
1√
(n
r)

∑
P P[|0〉⊗n−r |1〉⊗r ] [14], three-qutrit totally antisymmetric

state |ψas〉 = 1√
6
(|123〉 − |132〉 + |231〉 − |213〉 + |312〉 − |321〉)

[15], and four-qubit cluster state |C4〉 = 1
2 (|0000〉 + |0011〉 +

|1100〉 − |1111〉) [16]. While Ic can be negative, I is non-negative.
For pure states, I = Ix , from Theorem 2.

State Ic I

|GHZ2〉 2 2
|GHZ3〉 0 3

|D1
3〉 0 2.75489

|ψas〉 0 4.75489
|GHZ4〉 2 4

|D1
4〉 0.490225 3.24511

|D2
4〉 0.490225 4

|C4〉 −2 4

when examined together. Then “two-party shared information”
reads as Is2(A : B : C) := [ab + ac + bc]. Thus, the total
three-party QMI is the sum of the common information and
the pairwise shared information: I (A : B : C) = Ic(A : B :
C) + Is2(A : B : C) := [A ∪ B ∪ C − (a + b + c)]. After
simple algebra, I (A : B : C) can be expressed in entropy
language as

I (A : B : C) = S(AB) + S(AC) + S(BC) − 2S(ABC)

= S
(
ρ⊗2

ABC

∥∥ρAB ⊗ ρAC ⊗ ρBC

)
. (11)

It guarantees that I (A : B : C) is not identically zero for
arbitrary three-party pure quantum systems.

C. Four-party QMI

Figure 1(c) does not represent the true Venn diagram of
four variables as pairwise interacting regions ad and bc are
missing. The correct four-variable Venn diagram is represented
in Fig. 1(d). The total four-party QMI is then defined

as I (A : B : C : D) := [A ∪ B ∪ C ∪ D − (a + b + c + d)],
which, again, after some simple algebra, can be expressed
as [12]

I (A : B : C : D) =
∑

X1,X2,X3

S(X1X2X3) − 3S(ABCD)

= S

⎛
⎝ρ⊗3

ABCD ‖
⊗
{Xi }

ρX1X2X3

⎞
⎠, (12)

where Xi ∈ {A,B,C,D}. We list in Table I the values of
common information (Ic) and QMI (I ) of some typical states
(see also Fig. 2).

An n-party QMI can be analogously defined,

I (A1 : A2 : · · · : An) := [A1 ∪ A2 ∪ · · · ∪ An

− (a1 + a2 + · · · + an)]

=
n∑

k=1

S
(
ρAk

) − (n − 1)S
(
ρA1A2···An

)

=
n∑

k=1

S
(
ρA1A2···An

‖ ρAk
⊗ ρAk

)

− S

(
ρA1A2···An

‖
n⊗

k=1

ρAk

)

= S

(
ρ⊗n−1

A1A2···An
‖

n⊗
k=1

ρAk

)
, (13)

where n-party common information is evaluated as
Ic(A1 : A2 : · · · : An) = ∑n

k=1(−1)k+1 ∑
{AIk

} SAIk
, with

AIk
≡ Ai1Ai2 · · · Aik , SX ≡ S(ρX), and SAi

≡ S(ρAi
) =

S(ρA1···Ai−1Ai+1···An
). Hence, QMI can be rewritten as

I (A1 : A2 : · · · : An) = ∑n
i=1 SAi

− (n − 1)SA1A2···An
. An

n-party quantum mutual information is the sum of
(n − 1)-party von Neumann entropies less (n − 1) times the
joint von Neumann entropy of an n-party quantum system.We
argue here that multiparty QMI I (A1 : A2 : · · · : An), as

FIG. 2. Plots of logarithmic-negativity EN (A : BC) [21,22], common information Ic(A : B : C), CQMI Ix(A : B : C), and QMI
I (A : B : C) against the white-noise parameter p, of three-party state ρABC = p|ψ〉〈ψ | + (1 − p) I

8 for different |ψ〉’s: (a) Greenberger-Horne-
Zeilinger (GHZ) state, |GHZ〉 = 1√

2
(|000〉 + |111〉) [13], (b) W state |W〉 = 1√

3
(|001〉 + |010〉 + |100〉) [14], and (c) totally antisymmetric state

|ψas〉 = 1√
6
(|123〉 − |132〉 + |231〉 − |213〉 + |312〉 − |321〉) [15]. In all three cases, while Ic(A : B : C) vanishes at p = 0,1 and is negative at

intermediate values, QMI I (A : B : C) vanishes at p = 0 only and is positive for other values. QMI is greater than or equal to Ix(A : B : C).
We see that logarithmic negativity, an entanglement measure, exceeds common information, indicating that common information cannot be a
total correlation.
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I (A1 : A2), by its very construct, bears the interpretation of
total correlation of a multiparty quantum system. Further, we
can obtain generalized QMI by replacing the von Neumann
entropy, S(ρ) = −tr(ρ log2 ρ), with generalized entropies
such as the Renyi entropy, SR

q (ρ) = 1
1−q

log2[tr(ρq)] [17],

the Tsallis entropy, ST
q (ρ) = 1

1−q
[tr(ρq) − 1] [18], and the

(smooth) min-max entropies [19]. Both Renyi and Tsallis
entropies reduce to the von Neumann entropy in the limit
q → 1.

In subsequent theorems, we prove that I (A1 : A2 : · · · : An)
is non-negative, and is monotonically nonincreasing under
partial trace and completely positive maps. It equals CQMI
for pure states, and give its lower and upper bounds in terms
of CQMI.

Theorem 1. I (A1 : A2 : · · · : An) is non-negative.
Non-negativity of quantum mutual information

I (A1 : A2 : · · · : An) follows directly from that of quantum
relative entropy, S(ρ ‖ σ ) � 0. Here, we provide an alternative
proof. To prove this, we will extensively use a variant of
the strong subadditivity relation, SXYZ + SY � SXY + SYZ ,
which states that conditioning reduces entropy, i.e.,
SX|YZ � SX|Y . The proof for the n-party case follows as [20]
I (A1 : A2 : · · · : An) = S12···(n−1) + S12···(n−2)n + · · · + S23···n−
(n− 1)S12···n = S12···(n−1) − S1|23 ··· (n−1)n − S2|13···(n−1)n− · · · −
S(n−1)|12···(n−2)n � S12···(n−1) − S1|23···(n−1) − S2|13···(n−1) − · · · −
S(n−1)|12···(n−2) = · · · � S123 − S1|23 − S2|13 − S3|12 = S12 −
S1|23 − S2|13 � S12 − S1|2 − S2|1 = S1 + S2 − S12 � 0. Hence,
the theorem is proved. �

Theorem 2. I (A1 : A2 : · · · : An) equals CQMI for pure
states.

For the pure quantum states, SA1A2···An
= 0 and SĀi

=
SAi

. Hence, I (A1 : A2 : · · · : An) = Ix(A1 : A2 : · · · : An) us-
ing Eqs. (10) and (2). �

Theorem 3. I (A1 : A2 : · · · : An) observes monotonicity
under partial trace, and any completely positive map �.

These are direct consequences of the monotonicity of
quantum relative entropy [23] under partial trace, S(ρA ‖
σA) � S(ρAX ‖ σAX), and any completely positive map �,
S(�(ρ) ‖ �(σ )) � S(ρ ‖ σ ). �

Theorem 4. Ix − (n − 2)S12···n � I � Ix + 2S12···n.
Using the strong subadditivity entropic relation, SX + SY �

SXZ + SYZ , and the Araki-Lieb inequality, SX − SY � SXY ⇒
SX − SXY � SY , we can, respectively, obtain

∑n
i=1 SAi

�∑n
i=1 SĀi

and
∑n

i=1 SĀi
− nSA1A2···An

�
∑n

i=1 SAi
. Therefore,

I (A1 : A2 : · · · : An) = ∑
SAk1 Ak2 ···Akn−1

− (n − 1)SA1A2···An
�∑n

i=1 SAi
− (n − 1)SA1A2···An

=Ix(A1 : A2 : · · · :An) − (n− 2)
SA1A2···An

. Again, I (A1 : A2 : · · · : An) = ∑
SAk1 Ak2 ···Akn−1

−
(n − 1)SA1A2···An

= (
∑n

i=1 SĀi
− nSA1A2···An

) + SA1A2···An
�∑n

i=1 SAi
+ SA1A2···An

= Ix(A1 : A2 : · · · : An) + 2SA1A2···An
.

Hence, the proof. �
The lower bound being dependent on n is weak. Moreover,

we find numerically that for an n-party quantum system
ρA1A2···An

(n = 3,4), we have

0 � I (n) − I (n)
x � I (n)

x −
∑

I (2), (14)

where I (k) is the k-party quantum mutual information, and
the inequality is saturated for n = 3 (this can be shown
analytically).

III. MULTIPARTY QUANTUM DISCORD

In this section, we extend the definition of bipartite quantum
discord [24,25] to a multipartite setting. Quantum discord for a
bipartite quantum state ρAB is defined as D(ρAB) = I (ρAB) −
maxM J (ρAB), where I (ρAB) = I (A : B) = S(A) + S(B) −
S(AB) and J (ρAB) = S(B) − SM(B|A). Here, a measure-
ment is performed on subsystem A with a rank-one
projection-valued measurement {Ai}, producing the states
ρB|i = 1

pi
trA[(Ai ⊗ IB)ρ(Ai ⊗ IB)], with probability pi =

trAB[(Ai ⊗ IB)ρ(Ai ⊗ IB)]. I is the identity operator on the
Hilbert space of B. Hence, the conditional entropy of ρAB is
given by SM(B|A) = ∑

i piS(ρB|i).
Three-party quantum discord can then be defined, when

measurement is performed on subsystem A, subsystem AB,
and the whole system, as follows,

DA(ρABC) = I (ρABC) − max
�A

I (�A(ρABC)), (15)

DAB(ρABC) = I (ρABC) − max
�AB

I (�AB(ρABC)), (16)

and

DABC(ρABC) = I (ρABC) − max
�ABC

I (�ABC(ρABC)), (17)

where I (σXYZ) = I (X : Y : Z), �A(ρABC) = ∑
i �Ai

ρABC

�Ai
, �AB(ρABC) = ∑

i,j �AiBj
ρABC�AiBj

, and �ABC

(ρABC) = ∑
i,j,k �AiBj Ck

ρABC�AiBj Ck
with �Ai

= πi ⊗ I ⊗
I , �AiBj

= πi ⊗ πj ⊗ I , and �AiBj Ck
= πi ⊗ πj ⊗ πk . Equa-

tion (17) is the symmetric quantum discord or global quantum

FIG. 3. Plots of quantum discords based on an alternative defini-
tion of QMI (top panel) and conventional quantum discords (bottom
panel) DA, DAB , and DABC against the white-noise parameter p, of
three-party states ρABC = p|GHZ〉〈GHZ| + (1 − p) I

8 [(a) and (c)],
and ρABC = p|W〉〈 W| + (1 − p) I

8 [(b) and (d)]. Contrary to our
intuition, quantum discord increases when measurement is performed
on a larger number of subsystems. The higher values of quantum
discord suggest that the W state is more robust, as compared to the
GHZ state, against measurement.
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discord (GQD) [4]. Similarly, multiparty quantum discord can
be defined.

Quantum discord, employing the von Neumann entropy,
of a three-party GHZ state and W state admixed with white
noise is shown in Fig. 3. Quite unexpectedly, we find that
DA � DAB � DABC , that is, quantumness increases when a
measurement is performed on a large number of subsystems.
This observation seems to be independent of the definition
of quantum mutual information. The symmetric quantum
discord, which requires measurement on all the parties, reveals
the maximal quantumness. This contradicts the interpretation
of measured mutual information as classical information
because measuring more than one subsystem should yield
more classical information and hence less quantum discord.

IV. CONCLUSION

To sum up, we have proposed an alternative definition of
quantum mutual information for a multipartite setting. It is

non-negative, and obeys monotonicity under partial trace and
any completely positive map. We argue that it manifests a total
correlation of a multiparty quantum system. We then employed
this definition of quantum mutual information to define
multiparty quantum discord. Surprisingly, we found that more
quantumness can be harnessed by performing measurements
on a larger number of parties, which is quite counterintuitive.
Symmetric quantum discord reveals a maximal quantumness.
This suggests that measured mutual information should not
be interpreted as a classical correlation. We believe that our
work will provide further insights in understanding the nature
of nonclassical correlations.
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