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Four-concurrence in the transverse XY spin-1/2 chain
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We analyze the entanglement measure C4 for specific mixed states in general and for the ground state of the
transverse XY spin-1/2 chain. We find that its factorizing property for pure states does not easily extend to mixed
states. For cases where the density matrix is a tensor product, C4 is definitely upper bounded by the product of
the corresponding concurrences. In transverse XY chains, we find that for large distances this condition goes
conform with the working hypotheses of a factorizing property of density matrices in this limit. Additionally, we
find that C4 together with the genuine multipartite negativity makes it impossible to decide—at the present state
of knowledge—which type of entanglement prevails in the system. In particular, this is true for all entanglement
measures that detect SL-invariant genuine n-partite entanglement for different n. Further measures of SL-invariant
genuine multipartite entanglement have to be considered here. C4 is, however, of the same order of magnitude as
the genuine multipartite negativity in Phys. Rev. B 89, 134101 (2014) and shows the same functional behavior,
which we read as a hint towards the Greenberger-Horne-Zeilinger (GHZ) type of entanglement. Furthermore,
we observe an interesting feature in the C4 values that resembles a destructive interference with the underlying
concurrence.
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I. INTRODUCTION

Entanglement is a resource in physics and therefore needs to
be quantified and to be better understood. For this purpose, it is
of major importance to quantify and classify entanglement in
laboratory systems, hence for mixed states. In the year 2002,
the works [1,2] have initiated an avalanche of analysis into
this direction in the following decade. Particular importance
was drawn to the Coffman-Kundu-Wootters (CKW) inequality
[3], which connected the total entanglement detectable—the
tangle: a quantity that originates in the single site reduced
density matrix—with something not encoded in the entangle-
ment of pairs, as measured by the concurrence. The difference
of the tangle and the sum of the concurrences squared was
henceforth interpreted as residual entanglement. The residual
entanglement vanishes for the W states and is maximal for
any maximally entangled state with respect to the group SL(2)
[4–6]. The CKW conjecture could be proved in 2006 by
Osborne and Verstraete in Ref. [7]. As a matter of fact, the
residual tangle was shown to be dominant not only for the
transverse XY model [8]. This means that most of the present
quantum correlations close to its quantum phase transitions
must come from genuine multipartite entanglement in the spirit
of Ref. [4]. Since then, there have been only few recent trials of
looking into that direction [9,10]. Here, we will follow this road
with an entanglement measure, which is the four-concurrence
C4, the four-particle generalization of the concurrence C2. It
has been introduced for pure states in Ref. [11] and its convex
roof extension is due to Uhlmann [12]. This choice is rather
obviously taken with regard to its simple handling and in that
it only detects states of Greenberger-Horne-Zeilinger (GHZ)
type together with products of two-site entangled states as the
Bell states [13]. So besides a possible bipartite part, any further
entanglement detected by it will be of GHZ type.
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The genuine multipartite negativity [14] is detecting states
that are not biseparable. Therefore it will not detect products
of Bell states, but it will detect states of W type. Now, when
looking at C4 in parallel to the genuine multipartite negativity
only, we cannot certify GHZ-type entanglement either, as an
outcome of this work, since the negativity may only detect
entanglement of W kind, and C4 detects also mixtures of W
states and biseparable products of Bell states. The results will
therefor be at most a hint towards GHZ entanglement in this
model.

This work is laid out as follows: we begin with a study of
C4 for specific mixed states in the following section. Next, we
analyze this quantity for the transverse Ising model followed
by the XY model. The conclusions are drawn and an outlook
on possible future directions is given in the last section.

II. THE ENTANGLEMENT MEASURE C4

We highlight on an SL invariant measure of entanglement,
the four-concurrence C4[ψ] := |〈ψ∗|σ⊗4

y |ψ〉| in this work.
Whereas this measure cannot distinguish between entangle-
ment that is carried by the states like |GHZ4〉 = 1√

2
(|0000〉 +

|1111〉) from that carried by products of Bell states, it will
not detect any entanglement supported by states of W type
[4,5,13]. The only SL-invariant entanglement measure that
detects these globally entangled states (but not genuinely
multipartite entangled states, following the notion in Ref. [5])
is the concurrence for two qubits [15,16]. Therefore, in our
notion, the W states are only pairwisely entangled but which
is globally distributed. The convex-roof extension of C4 is
calculated for mixed states in the following way [12]:

�4 : = σy ⊗ σy ⊗ σy ⊗ σy, (1)

R : = √
ρ �4ρ

∗�4
√

ρ, (2)

C4[ρ] = 2λmax − tr
√

R, (3)
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FIG. 1. Here, the value of C4 for ρ = p|GHZ4〉〈GHZ4| +
(1 − p)|Bell ⊗ Bell〉〈Bell ⊗ Bell| is shown for |GHZ4〉 = (|1111〉 +
|0000〉)/√2 and |Bell〉 is one of the two states (|11〉 + |00〉)/√2 (red
dash-dotted curve) and (|11〉 + i|00〉)/√2 (black solid line).

where λmax is the maximal eigenvalue of the non-negative
operator

√
R. At first, we briefly analyze the four-concurrence

for certain mixed states.
Since the four-concurrence of a tensor product of

Bell states is also maximal as for GHZ states, we
have two different classes of entanglement, which do
interfere—genuinely entangled GHZ states and bisepa-
rabel products of Bell states. Hence it is not sur-
prising that for the state ρ(p) = p|GHZ4〉〈GHZ4| + (1 −
p)|ψB ⊗ φB〉〈ψB ⊗ φB |, with ψB,φB ∈ (|σ,σ 〉 ± |σ,σ 〉)/√2
and 〈σ |σ 〉 = 0, both entanglement classes interfere such that
C4[ρ( 1

2 )] assumes its minimal value at zero if the states are
orthogonal to each other and it can take decreasing values
from at most 1/

√
2 down to 0 if |ψB ⊗ φB〉 is nonorthogonal

to GHZ4 (see Fig. 1). This does not happen to be the case for
admixtures of a W4 state, it does not lead to an interfering
behavior as in the case of three qubits [17]; C4 linearly
grows in p for ρ(p) = p|GHZ4〉〈GHZ4| + (1 − p)|W4〉〈W4|
or ρ(p) = p|�+ ⊗ �+〉〈�+ ⊗ �+| + (1 − p)|W4〉〈W4| from
0 to 1. Here, we use the standard notation for Bell states:
|�±〉 = (|11〉 ± |00〉)/√2 and |	±〉 = (|10〉 ± |01〉)/√2. In
contrast, it will, of course, influence the concurrence when
tracing out arbitrary two qubits, as is shown in Fig. 2. Here,
we even have a whole interval where C4 is positive and the
corresponding concurrences vanish. This behavior changes
whenever the state is a tensor product of two two-site matrices;
then the optimal decomposition for the concurrences becomes
a decomposition of C4, and therefore C4 is upper bounded
by the product of the concurrences. An example is shown in
Fig. 3 where we plotted C4 of ρ4 together with the products
of the corresponding concurrences C2 of the corresponding
states ρ2. The density matrix is ρ4 = ρ2 ⊗ ρ2 with the two-site
density matrix ρ2 = p|Bell1〉〈Bell1| + (1 − p)|Bell2〉〈Bell2|,
where |Belli〉 is an arbitrary Bell state for i = 1, 2.

We want to emphasize here that one can not infer from a
relation of C4 to the corresponding concurrences anything
about the entanglement type participating in the state at
hand. For tensor products of density matrices, the factorizing
property of C4 is relaxed in that here C4 is upper bounded by
the product of the corresponding concurrences.
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FIG. 2. C4 and C2;1,2C2;3,4 are shown for ρ(p) = p|�+ ⊗
�+〉〈�+ ⊗ �+| + (1 − p)|W4〉〈W4|. Here, C2;i,j is the concurrence
of the reduced density matrix of the sites i and j . It is clearly
seen that the factorizing property of C4 into the concurrences for
pure states does not mean that it factorizes also for mixed states.
Whereas C4 linearly decreases, C2;1,2C2;3,4 has two distinct zeros at
p1 ∼ 0.1716 and p2 = 1/3. Even if the square root is taken from the
concurrences, this would mean only to replace the red dashed curves
by a corresponding piecewise linear curve.

We now discuss rank-three states. There are several interest-
ing cases for the admixtures of GHZ4 states, products of Bell
states, and W4 states. For GHZ4 − Bell ⊗ Bell − W4 mixtures
and mixtures of GHZ4 and two different products of Bell states,
there can appear whole regions where C4 is zero (see Figs. 4
and 5). However, it is unclear to assign which of the two classes
contributed mainly to the state. This becomes particularily
clear when no genuinely multipartite entangled state is in the
optimal decomposition as it is shown in Figs. 6 and 7. Also
in this case, as for rank-two density matrices, a zero in the
product of the two concurrences in a particular 2-2 bipartition,
which is satisfied for an almost chocklike range, does not mean
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FIG. 3. C4 and C2;1,2C2;3,4 are shown for ρ(p) = ρ2(p) ⊗ ρ2(p),
where ρ2(p) = p|Bell1〉〈Bell1| + (1 − p)|Bell2〉〈Bell2|. Here, C2;i,j

is the concurrence of the reduced density matrix of the sites i and
j and |Belli〉 can be arbitrary Bell states for i = 1, 2. It is clearly
seen that the factorizing property of C4 into the concurrences for pure
states for tensor products of states transports into a C4 being upper
bounded by C2;1,2C2;3,4.
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FIG. 4. Here it is seen how the admixture of an additional
Bell state influences the result; C4 becomes precisely zero.
The density matrix is taken to be ρ = p|GHZ4〉〈GHZ4| + (1 −
p)(q|�− ⊗ �−〉〈�− ⊗ �−| + (1 − q)|	− ⊗ 	−〉〈	− ⊗ 	−|), with
|�±〉 = (|11〉 ± |00〉)/√2, and |	±〉 = (|10〉 ± |01〉)/√2.

that necessarily C4 = 0 (this is only satisfied precisely on the
centerline of the two Bell states), as one could erroneously
conclude from the fact that C4 for pure states decomposes into
a product of any two concurrences. The revival for the product
of the concurrences from q ∼ 0.83 quadratically to 0.25 at
q = 1 is merely due to the W state (see Fig. 7).

For the mixture of two GHZ states and the W state, we
have the same situation as in Fig. 6; the only difference being
that the product of the concurrences is always zero except
of its quadratic raise from q ∼ 0.83 to 0.25 at q = 1 as in
Fig. 7. We thus cannot learn from C4 alone about the nature of
entanglement of the state.

With results as those from the PPT criterion [10], we can
at best conclude that the state contains entanglement, which
is not biseparable in a region where the genuine multipartite
negativity Nρ is nonzero [10]. This also includes mixtures of
the W state and any biseparable Bell products. Whereas the W
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FIG. 5. Here the value of C4 is shown for the rank-3 density ma-
trix ρ = p|GHZ′

4〉〈GHZ′
4| + (1 − p)(q|Bell ⊗ Bell〉〈Bell ⊗ Bell| +

(1 − q)|W4〉〈W4|) with |GHZ′
4〉 = (|0100〉 + |1011〉)/√2, |Bell ⊗

Bell〉 = �+ ⊗ 	− with �+ and 	− as defined in Fig. 4, and
|W4〉 = (|1000 + |0100〉 + |0010〉 + |0001〉)/2〉.

0
0.2

0.4
0.6

0.8
1 0

0.2

0.4

0.6

0.8

1

0
0.2
0.4
0.6
0.8

1

C
4(

p,
q)

C4(p,q)=
     0.8
     0.6
     0.4
     0.2

  0.0001

p

q

C
4(

p,
q)

0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
1

FIG. 6. The value of C4 for ρ = p|W4〉〈W4| + (1 − p)(q|Bell1 ⊗
Bell1〉〈Bell1 ⊗ Bell1| + (1 − q)|Bell2 ⊗ Bell2〉〈Bell2 ⊗ Bell2|) is
shown for |W4〉 = (|1000〉 + |0100〉 + |0010〉 + |0001〉)/√2 and
|Belli〉 = (|11〉 + (−1)i |00〉)/√2. It is zero only on the centerline
between both Bell states and for the W4 state at p = 1.

state will be detected by the PPT criterion, the products of Bell
states would be detectable by C4. In order to decide to which
class of entanglement a mixed state belongs, we need either
a better knowledge of optimal decompositions or different
measures of entanglement that do only measure SL-invariant
genuine multipartite entanglement [5].

III. THE TRANSVERSE ISING MODEL

Next, we analyze the spin-1/2 Ising model, which is given
through the Hamiltonian

H = −λ
∑

i

Sx
i Sx

i −
∑

i

Sz
i . (4)

This model has a second-order phase transition from anti-
ferromagnetism at λ < −1 via the paramagnetic phase at
|λ| < 1 to ferromagnetism at λ > 1. It is translational invariant
and hence we have for the concurrence between sites j1

and j2 that C2(j1,j2) = C2(|j2 − j1|) = C2(d) for d ∈ ZZ and
C2(−d) = C2(d) with C2(0) := 0. Since C2(d) vanishes for
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FIG. 7. The product of two concurrences are shown for the same
mixed state as in Fig. 6. The product of the two concurrences is zero
on a whole region, which has a chocklike form.
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FIG. 8. The upper solid black line is the 1-tangle, 4 det ρ1, and is
an upper bound to

∑
n C2

2 (n) (red dashed line). The difference of both
is the “residual tangle” in the chain, which consists of multipartite
entanglement beyond two sites.

distances d > 2, the monogamy relation is easily obtained [8],
demonstrating that the essential entanglement in the tansverse
Ising model must be of some multipartite type (see Fig. 8).
Of what type, however, has never been investigated and even
the recent contributions ([9] and [10]) can not distinguish W
from GHZ entanglement. Recent discoveries would render
this, however, a feasible task [18,19].

We analyze the entanglement measure C4 for this model
and compare with the results from Ref. [10]. Therefore we
briefly introduce our notation: we write C4(n1,n2,n3), where
the numbers ni indicate how far away to the right is the
next neighbor. C4(1,1,1) hence means that all neighbors
are nearest neighbors with a distance of 1. We want to
highlight here that whenever the state would become a tensor
product of two two-site matrices [examples are usually states
with distances (i,n,j ) when n → ∞], then, as stated before,
the optimal decomposition to the concurrences becomes a
decomposition of C4, and therefore C4 is upper bounded by
the product of the concurrences. Therefore we compare the
curves for C4(i,n,j ) with take the product of the two major
concurrences C2(i)C2(j ). This means that we compare C2

2 (1)
with C4(1,n,1), and C2(1)C2(2) with C4(1,n,2).

We start our discussion with C4(1,n,1). Observing that the
nearest-neighbor concurrence is nonzero and assuming that
the density matrix be a tensor product for n → ∞, we deduce
that the expected result would be upper bounded by the square
of the nearest-neighbor concurrence. Whereas this is not true
for n = 2,3 it begins to be satisfied for growing n, where a gap
occurs (sometimes called in the literature “sudden death” and
“sudden revival” of entanglement) around the critical point
λc = 1 (see Fig. 9). Since the state should become a tensor
product only for n → ∞, the results are not violating this
working hypothesis of earlier work. That it is not satisfied for
n = 2,3 is not so surprising. C4 being zero means that the
density matrix can be decomposed in this region into states
exclusively from the null cone of C4, that means none of the
states is of the GHZ type or a tensor product of Bell-like states
in whatsoever bipartitions of the four-site subsystem. This
does not mean, however, that the decomposition could not
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FIG. 9. We show various graphs of C4(1,n,1) for n = 1 to 9. It is
seen that a gap occurs for n � 7 around the critical point λc = 1. In
this region of vanishing C4, the optimal decomposition states must
be made of states from the null cone of C4, including W, cluster, and
states of X-type [4,6], which all contribute to the PPT criterion [10].
As a comparison we also print C2

2 (1), which would be an upper bound
to C4, if the state would be a tensor product. For n � 3, our results
are at least compatible with that hypothesis.

be genuinely multipartite entangled, since it includes, e.g., the
genuinely four-partite entangled Cluster states and X states [5],
since these have a different state length, of 4 and 6, respectively
[6], i.e., they are minimally decomposed of as many different
tensor product basis states. It also includes W-type of states
as a possibility, which sometimes are also termed as being
“genuinely multipartite entangled”. Within the language of
this paper [4–6], the W state is, however, not only a bipartitely
distributed two-site entangled state, whose entanglement is
solely given by the concurrences, its residual tangle is precisely
zero [3].

When confronting this with the results of Ref. [10], we find
that the state could, of course, contain GHZ entanglement, but
it could consist also of W states and a bipartite product of
Bell states, as seen in Fig. 6. In addition, the optimal decom-
positions for C4 and the genuine multipartite negativity could
be different, a phenomenon that occurred, e.g,. in Ref. [17],
and created some ambiguity in the types of entanglement that
may enter a decomposition. We want to mention here that
for configurations (1,n,1) and n � 3 the genuine multipartite
negativity is zero. Hence the entanglement has its origin in
biseparable products of Bell states there. We highlight that our
results go conform with the genuine multipartite negativity
being zero for these instances.

The same argument would apply to C4(2,n,2) and
C4(1,n,2) or equivalently C4(2,n,1), but in these cases C4

always turns out to be zero, except for C4(1,1,2), which we
show in Fig. 10. It is important to mention here that C4(2,n,2)
being zero does not violate the working hypothesis that this
state roughly becomes a tensor product with growing n, either.
Here, the states in the optimal decomposition are in the null
cone of C4 for all C4(2,n,2), and for n > 2 in C4(1,n,2),
whereas there is still a possibility for the GHZ state left
to support the entanglement as long as C4 is zero (see, for
instance, finite regions with C4 = 0 in Figs. 4 and 5).
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FIG. 10. The figure shows C4(1,1,2) together with C2(1)C2(2). It
is the only nonvanishing C4(1,n,2) that exists.

IV. THE TRANSVERSE XY MODEL

The Hamiltonian is

H = −λ
∑

i

(
1 + γ

2
Sx

i Sx
i + 1 − γ

2
S

y

i S
y

i

)
−

∑
i

Sz
i (5)

and, except for γ = 0, the model is in the same universality
class with the transverse Ising model. When going towards the
isotropic model at γ = 0, the range R of the concurrence C2(n)
grows as R ∝ γ −1 for the critical value λc (see Ref. [20]).
The model hence interlinks the Ising case for the anisotropy
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FIG. 11. Various curves are plotted for C4(1,n,1) at the value
γ = 0.5: C4(1,1,1) (full orange curve) with the highest maximum
down to the lowest maximum for C4(1,8,1) (full black curve) are
shown together with C2

2 (1) (black dashed curve). It drops down to zero
around the critical point λc = 1 as for the transverse Ising model. This
remarkable feature is not seen around the factorizing point λf = (1 −
γ 2)−

1
2 , where the ground state is an exact site-wise tensor product.

Here, C4(1,n,1) has to approach zero at least as quickly as C2(1)2,
if the state is to a good approximation a tensor product. It, however,
tends to lie a bit above C2(1)2 for λ � λf . It is seen that it is, however,
upper bounded by C2

2 (1) up to a value of λ = 1.125 for n � 5. For
n � 4, C4(1,n,1) is upper bounded by C2(1)2 above the factorizing
field. This is seen in the inset. For λ = 2 and n � 2, they all have
values of about 0.0033.
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FIG. 12. C4(2,n,2) is compared with C2
2 (2).

parameter γ = 1 with the isotropic model for γ = 0. It has a
factorizing point λf = (1 − γ 2)−

1
2 where the ground state is

an exact tensor product [21,22]. We will study more in detail
the behavior of C4 in the anisotropic model.

At first we observe that the C4(1,n,1) plots are quite
similar to the ones for the transverse Ising model except for
the factorizing point, where every measure of entanglement
must vanish. In particular, as far as the working hypothesis of
earlier work is concerned, C4(1,n,1) becomes upper bounded
by C2(1)2 for sufficiently large n (see Fig. 11). Besides the
apparent tendency that the critical point is spared as n grows,
this is not observed close to the factorizing point λf = (1 −
γ 2)−1/2. Here, the ground state of the chain is compatible with
the necessary condition that C4(1,n,1) be smaller than C2(1)2

for λ � λf and n � 4; for λ � λf this condition is violated.
For n � 5 and λ � 1.125, it is satisfied again (see inset of
Fig. 11). C4(2,n,2) is considerably large for sufficiently small
n only. Therefore we print it only for the values n = 1,2 in
Fig. 12 and compare it again with the concurrence squared
C2(2)2. That C4(2,n,2) is larger than C2(2)2 in a wide region
for n = 1,2 just tells that the state has not a product form here,
hence it could be otherwise entangled; for higher values of n,
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FIG. 13. The behavior of C4(1,1,2) is shown (blue solid curve)
and compared with C2(1)C2(2) (black dashed curve). The curves are
for γ = 0.55. A similar behavior is observed as for γ = 0.58 and
γ = 0.59 (see Figs. 15 and 17, respectively).
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FIG. 14. γ = 0.55: C4(1,1,3) already sets in considerably earlier
than C2(1)C2(3). The value of C4(1,1,3), where C2(1)C2(3) sets in is
considerably above 0.0012, which is more than 50% of its maximum
value.

however, we have C4(2,n,2) � C2
2 (2) and therefore the state

satisfies the condition for being (roughly) a product in these
cases.

Next, we look at 1-1-n configurations. This state should
become a tensor product for growing number of n. Hence its
four-concurrence should tend to zero. We analyze the four-
concurrence C4(1,1,n) for different values of the anisotropy
parameter γ and for n = 2 and 3. We observe that C4(1,1,2)
does not differ much for the values of γ from 0.55 via
0.58 to 0.59 (Figs. 13, 15, and 17) besides the shift of the
factorizing point following λf = (1 − γ 2)−1/2. The interval of
γ is chosen such that C2(3), at the critical value, drops to zero a
bit before γ = 0.58. Something interesting begins to happen,
when the four-concurrence of the distance 1-1-3 is considered.
Whereas for γ = 0.55, C4(1,1,3) sets in considerably before
C2(1)C2(3), C2(1)C2(3) begins to have nonvanishing values
from about λ = 0.975, with a visible finite slope, a bit before
the critical point λc = 1 (see Fig. 14). Then, C2(1)C2(3)
behaves as if it were “pinned” at the critical point λc for the
following two values of γ = 0.58 (both curves with a rather
high slope; see Fig. 16) and γ = 0.59 (again with a visible
slope; see Fig. 18).
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FIG. 15. C4(1,1,2) together with C2(1)C2(2) is shown for γ =
0.58. The plot is basically as in Fig. 13, except that the factorizing
point has moved as λf = (1 − γ 2)−

1
2 .
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FIG. 16. C4(1,1,3) together with C2(1)C2(3) is shown for γ =
0.58, whereas C4(1,1,3) has squeezed apparently against the critical
point λc with a high slope. It appears to destructively interfere with
something that has approximately the same height as C2(1)C2(3).

C4(1,1,3) is definitely feeling the critical point as well:
whereas its onsetting remains at about the same distance
from the point where C2(1)C2(3) sets in from γ = 0.55
to γ = 0.58 it, however, squeezes the function C2(1)C2(3)
against the critical point, and thereby also feels an apparently
destructively interfering part from it [see the maximum of
C4(1,1,3) in Fig. 16]. At γ = 0.59, C4(1,1,3) has already
overtaken C2(1)C2(2), the latter being still stuck to the critical
λc but with a visible slope. We remember that a nonvanishing
C4 in presence of a zero C2(1)C2(2) does not need to mean
a nonzero portion of GHZ-like entanglement in principle
(see the discussion of Fig. 6), it is, however, an interesting
observation.

We have to mention that the function C2(3), as every
entanglement measure, is pinned at and also localized about
the factorizing field. Therefore it vanishes for the Ising
model [1]. It exists for an arbitrary value of 0 < γ < 1
and will be accompanied by C4(1,1,3) (also pinned at the
factorizing field), getting smaller and smaller as γ → 1.
Similar conclusions apply also to C2(n) and we conjecture also
the corresponding behavior for γ → 1 of C4(1,1,n), which we
leave to possible future publications.
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FIG. 17. C4(1,1,2) together with C2(1)C2(2) is shown for γ =
0.59. The plot is basically as in Fig. 13, except that the factorizing
point has moved as λf = (1 − γ 2)−

1
2 .
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FIG. 18. C4(1,1,3) together with C2(1)C2(3) is shown for γ =
0.59. It has “overtaken” C2(1)C2(3), which is still pinned at λc.

V. CONCLUSIONS AND OUTLOOK

We have analyzed the four-concurrence C4 with particular
emphasis on spin-1/2 chains. Similarly to the well known
concurrence C2, this measure is an entanglement monotone
[23], which has an exact analytic form for arbitrary mixed
states, which is due to the fact that it is written as a
bilinear form of the pure state coefficients [5,6,12]. Note
that this is a nontrivial property since in general one has to
minimize over arbitrary decompositions of a given density
matrix (convex-roof construction). For example, for the three-
tangle [3], the convex roof is unknown for general mixed
states. As a drawback, beyond genuine four-partite GHZ-type
entanglement, C4 also detects bipartite entanglement such as
the product of Bell states. This has to be taken into account
when interpreting the results.

As a first and central result, the obvious factorizing property
of C4 for pure states |	1,2,3,4〉 = |	1,2〉 ⊗ |	3,4〉,

C4(	1,2,3,4) = C2(	1,2)C2(	3,4) , (6)

does not apply to mixed states—instead, we find the inequality
for tensor products as ρ1,2,3,4 = ρ1,2 ⊗ ρ3,4 (see Fig. 3),

C4(ρ1,2,3,4) � C2(ρ1,2)C2(ρ3,4) . (7)

Naively, one might be tempted to interpret the difference
between C4 and the product of the concurrences C2 as an
indicator for four-partite GHZ-type entanglement. However,
this is not correct in general. First, the contributions to C4

stemming from four-partite and pairwise entanglement are
not additive, i.e., there can be interferences (see Fig. 1).
Second, even if the product of the concurrences C2 vanishes,
a nonzero C4 does not necessarily indicate four-partite GHZ-
type entanglement (see Fig. 2). This indicates that the optimal
decomposition (in the convex roof construction) for C4 is
different from that for the two C2. We emphasise that one
can apply Eq. (7) to spin models in order to test when

a state can roughly be given by a corresponding tensor
product.

Next, we evaluate the four-concurrence for the Ising model.
We find that C4 for the four nearest neighbors significantly
exceeds the product of the concurrences (see Fig. 9), indicating
that a product ansatz ρ1,2,3,4 = ρ1,2 ⊗ ρ3,4 is not a good
approximation here. As suggested by Eq. (7), this approxi-
mation should become better when we increase the distance
between the two pairs of spins (see Fig. 9). For n = 1,2, the
four-concurrence C4(1,n,1) violates the bound (7).

At the critical point, C4(1,n,1) vanishes for n � 7; it stays
exactly zero in an interval around the critical point (we did
not check this for n > 12 but formulate it as a surmise here).
For configurations of distances 1-n-2, only the case n = 1, i.e.,
C4(1,1,2) (or eqivalently C4(2,1,1)) yields a nonzero result.
For C4(1,1,2) (three neighboring spins while the fourth spin
is the next-to-nearest neighbor), we also find a violation of the
bound (7); therefore the state is not a simple tensor product.
C4(2,n,2) vanish for all n. For the states with distances (i,n,j )
and n → ∞, one is roughly left with a tensor product of
density matrices and there the four-concurrence C4 must be
upper bounded by the product of the concurrences C2(i)C2(j ).
Also here, only a hint towards GHZ-type entanglement for
the distances (1,2,1) and (1,1,2) is given from the results for
the corresponding genuine negativity that behaves essentially
the same way [10]. However, as explained above, additional
entanglement measures are mandatory in order to get a clear
answer. This holds for any two measures that detect an, e.g.,
SL-invariant genuine n-partite entanglement one wishes to
assure in common together with at least one further type of
entanglement each in which they differ.

For the XY model, we obtain analogous results below the
critical point λ � 1. C4(1,n,1) is upper bounded by the concur-
rence C2(1)2 for n � 4 and λ � 1.125 and vanishes precisely
for n � 7 close to the critical point. One noticable difference to
the Ising model is the factorizing (Kurmann-Thomas-Müller)
point [21]. At this factorizing point, this is not the case.
We obtain different behavior for λ ∈ [λc,λf ] and λ > λf :
between the critical point (at λc = 1) and this factorizing point
(λf = 2/

√
3 for γ = 1/2), the four-concurrence C4(1,n,1)

violates the bound (7) for n < 5 in λ ∈ [λc,1.125] and close
to the factorizing point for n smaller than 7 or 8; above this
factorizing point, the bound is violated for n < 4 (see Fig. 11).
Additionally, we find a nonzero C4(2,1,2) (see Fig. 12) that,
however, violates Eq. (7). Analyzing C4(1,1,n) for n = 2,3,
we observe a further unexpected phenomenon. Particularly
interesting is the functional dependence of C4(1,1,3) on the
parameter λ. It is rather complex and changes drastically when
going from γ = 0.58 to γ = 0.59. This suggests interference
effects, which needs further analysis.

Note added. Recently, there has been significant progress
in estimating tangles in general [24,25] and for the XY model
in particular [26].
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