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Ground-state blockade of Rydberg atoms and application in entanglement generation
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We propose a mechanism of ground-state blockade between two N -type Rydberg atoms by virtue of the
Rydberg-antiblockade effect and the Raman transition. Inspired by the quantum Zeno effect, the strong Rydberg
antiblockade interaction plays a role in frequently measuring one ground state of two, leading to a blockade
effect for double occupation of the corresponding quantum state. By encoding the logic qubits into the ground
states, we efficiently avoid the spontaneous emission of the excited Rydberg state and maintain the nonlinear
Rydberg-Rydberg interaction at the same time. As applications, we discuss in detail the feasibility of preparing
two-atom and three-atom entanglement with ground-state blockade in closed and open systems, respectively,
which shows that a high fidelity of the entangled state can be obtained with current experimental parameters.
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I. INTRODUCTION

Neutral atoms are considered a good candidate for quantum
information processing. Their stable atomic hyperfine energy
states, especially suited for encoding logic qubits, are easily
controllable and measurable by making use of a resonant
laser pulse. On the other hand, they possess state-dependent
interaction properties. When an atom is excited to the high-
lying Rydberg states, the powerful dipole-dipole interaction
or van der Waals interaction will significantly shift its
surrounding atomic energy levels of Rydberg states, thereby
inhibiting the double or more excitations of Rydberg states,
and this is the so-called Rydberg blockade phenomenon. This
effect can make the atomic ensemble effectively behave as
a single two-level system; thus the idea of Jaksch et al.
[1] for using dipolar Rydberg interactions to implement a
two-qubit universal quantum gate was quickly extended to
a mesoscopic regime of many-atom ensemble qubits by Lukin
et al. [2]. In 2009, the mechanism of Rydberg blockade
was verified in experiment and two groups independently
claimed that a single Rydberg-excited rubidium atom blocks
excitation of a second atom set about 4 and 10 μm apart
[3,4], respectively. Recently, the Rydberg blockade has been
used extensively in various subfields of quantum information
processing, such as quantum entanglement [5–8], quantum
algorithms [9–11], quantum simulators [12,13], single-photon
switch [14], quantum repeaters [15–17], etc.

In contrast to the Rydberg blockade, as the shifting energy
of Rydberg states is compensated by the two-photon detuning,
the effect of the Rydberg antiblockade occurs, which favors a
resonant two-photon transition, but counters a single-photon
transition. The antiblockade in Rydberg excitation was initially
predicted by Ates et al. in the two-step excitation scheme
of creating an ultracold Rydberg gas [18] and then ob-
served experimentally by Amthor et al. using a time-resolved
spectroscopic measurement of the Penning ionization signal
[19]. With regard to quantum information processing, the
Rydberg antiblockade provides researchers with brand new
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ideas. Combined with asymmetric Rydberg couplings and
dissipative dynamics, the Rydberg antiblockade has been
exploited to generate high-fidelity two-qubit Bell states and
three-dimensional entanglement [20,21]. It has also been
instrumental in fast synthesis of multiqubit logic gates [22,23].

We note that a resonant excitation of the Rydberg state
is necessary for realizing most Rydberg-blockade-based
schemes. This requirement may cause decoherence to the
system of interest due to the spontaneous emission of
the excited Rydberg state, although it is considered that the
Rydberg state with a large principle quantum number has a
small decay rate [24]. If the excited-state blockade of Rydberg
atoms is replaced with a ground-state blockade, we are able
to minimize the effect of atomic decay and further improve
the quality of quantum information processing with Rydberg
atoms. Nevertheless, the interaction of natural ground-state
neutral atoms is less than 1 Hz at spacings greater than 1 μm
[25], which is unsuitable for fulfilling the blockade condition.

In this work, we put forward an efficient scheme for
blocking ground states of Rydberg atoms. Our idea comes
from the quantum Zeno effect [26,27], i.e., one can freeze
the evolution of a quantum system by measuring it frequently
enough in its known initial state, and the same conclusion can
also be made by making use of a strong continuous coupling
without resorting to von Neumann’s projections [28]. For
the current scheme, the dynamical evolution of the system
is governed by a weak Raman coupling with strength �eff .
A relatively strong Rydberg antiblockade interaction with
strength λ, acting as a measuring device, is used to observe the
evolution of the double occupation of a certain ground state. In
the limit λ/�eff � 1, the ground-state blockade for Rydberg
atoms is achieved. As its application, we discuss in detail
the prominent advantage of ground-state blockade in terms of
preparing entanglement via a shortcut to adiabatic passage and
quantum-jump-based feedback control, respectively.

The remainder of the paper is organized as follows. We first
establish the theoretical model of the ground-state blockade
mechanism in Sec. II. Then we investigate the robustness
for preparation of the maximally entangled state based on
the ground-state Rybderg blockade in a closed system and
in an open system, respectively, in Secs. III and IV. Then we
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FIG. 1. Schematic view of the atomic-level configuration. The
ground states |g〉 and |e〉 are dispersively coupled to the excited
state |p〉 with Rabi frequencies �a and �b, respectively. An
additional classical field drives the transition |e〉 ↔ |r〉 with the
Rabi frequency �c. �p(r) represents the corresponding single-photon
detuning parameter.

directly generalize the above schemes to the case of three-atom
entanglement in Sec. V. Finally, we give a summary of our
proposal in Sec. VI.

II. GROUND-STATE BLOCKADE MECHANISM
BETWEEN TWO ATOMS

We consider a system consisting of two N -type four-level
Rydberg atoms, and the relevant configuration of the atomic
level is illustrated in Fig. 1. The ground states |g〉 and |e〉 are
dispersively coupled to the excited state |p〉 by two classical
fields with Rabi frequencies �a and �b and a common
detuning −�p. And the ground state |e〉 can be pumped into
the excited Rydberg state |r〉 by a driving field with Rabi
frequency �c, detuned by −�r . In the interaction picture with
respect to a rotating frame, the Hamiltonian of the system reads
(h̄ = 1)

HI =
2∑

i=1

�a|p〉i〈g| + �b|p〉i〈e| + �c|r〉i〈e| + H.c.

−
2∑

i=1

�p|p〉i〈p| + (U − 2�r )|rr〉〈rr|, (1)

where U represents the Rydberg-mediated interaction as two
atoms simultaneously occupy the Rydberg state. This kind
of nonlinear interaction originates from the dipole-dipole
potential with energy C3/r3 or the long-range van der Waals
interaction C6/r6, with r being the distance between two
Rydberg atoms and C3(6) depending on the quantum numbers
of the Rydberg state [29,30]. Through the standard second-
order perturbation theory, we may adiabatically eliminate the

excited state |p〉 and the single-atom Rydberg state |r〉 in
the regime of the large detuning limits �p � {�a,�b} and
�r � �c. Then we obtain an effective Hamiltonian as

Heff =
2∑

i=1

�2
a

�p

|g〉i〈g| +
(

�2
b

�p

+ �2
c

�r

)
|e〉i〈e|

+
[

2�2
c

�r

|ee〉〈rr| +
2∑

i=1

�a�b

�p

|g〉i〈e| + H.c.

]

+
(

U − 2�r + 2�2
c

�r

)
|rr〉〈rr|. (2)

The first two terms cause unwanted shifts to our system, which
need to be canceled via introducing other ancillary levels. The
Stark shift in the last term 2�2

c/�r stems from the two-photon
transition |ee〉 ↔ 〈rr|. Now the above Hamiltonian can be
rewritten in a concise form:

Heff =
2∑

i=1

�eff|g〉i〈e| + λ|ee〉〈rr| + H.c. + �|rr〉〈rr|, (3)

where �eff = �a�b/�p, λ = 2�2
c/�r , and � = U −

2�r + 2�2
c/�r . We now divide Eq. (3) into two parts, i.e.,

Heff = Hα + Hβ , where Hα = ∑2
i=1 �eff(|g〉i〈e| + |e〉i〈g|)

describes the Raman transition of two ground states, and
Hβ = λ(|ee〉〈rr| + |rr〉〈ee|) + �|rr〉〈rr|, which represents
the Rydberg antiblockade interaction. The Hamiltonian
Hβ can be diagonalized by the eigenstates |�+〉 =
cos α|rr〉 + sin α|ee〉 and |�−〉 = sin α|rr〉 − cos α|ee〉,
corresponding to eigenvalues E+ = (� + √

�2 + 4λ2)/2 and

FIG. 2. The ratios R1 (upper surface) and R2 (lower surface)
are plotted as functions �/�eff and λ/�eff , where R1 =
|E+/(

√
2�eff sin α)| and R2 = |E−/(

√
2�eff cos α)|.
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TABLE I. Maximal populations of relevant quantum states
corresponding to three specific ratios of R1 (R2) at � = 0.

R1 R2 |gg〉 |T 〉 |ee〉
10 10 1.00 0.9673 0.0015
20 20 1.00 0.9916 1.0121 × 10−4

50 50 1.00 0.9963 2.7228 × 10−6

E− = (� − √
�2 + 4λ2)/2, respectively, and α =

arctan[2λ/(� + √
�2 + 4λ2)]. Thus we have

Heff =
√

2�eff|gg〉 1√
2

(〈ge| + 〈eg|) +
√

2�eff(sin α|�+〉

− cos α|�−〉) 1√
2

(〈ge| + 〈eg|) + H.c.

+E+|�+〉〈�+| + E−|�−〉〈�−|. (4)

It is shown that the ground state |gg〉 resonantly interacts with
the entangled state (|ge〉 + |eg〉)/√2 with coupling constant√

2�eff , and (|ge〉 + |eg〉)/√2 is then coupled to the state
|�+〉 (|�−〉) with strength

√
2�eff sin α (

√
2�eff cos α), de-

tuning E+ (E−). In the limits of R1 = |E+/(
√

2�eff sin α)| �
1 and R2 = |E−/(

√
2�eff cos α)| � 1, the high-frequency

oscillating terms may be neglected and an approximated
ground-state blockade Hamiltonian is obtained:

Hgb =
√

2�eff|gg〉 1√
2

(〈ge| + 〈eg|) + H.c.. (5)

In Fig. 2, the ratio R1 (R2) is plotted as a function of �/�eff

and λ/�eff , which is explicit to determine the values of λ

and � so as to get a better ground-state blockade effect. For
instance, Table I lists the maximal populations of states |T 〉 =
(|ge〉 + |eg〉)/√2 and |ee〉 from the initial state |gg〉. The cor-
responding results are extracted from the numerical simulation
of Eq. (1), which signifies that R1 (R2) = 20 is big enough for
the occurrence of ground-state blockade. In the following, we
reveal the advantage of ground-state blockade in the prepara-
tion of quantum entanglement by setting � = 0 for simplicity.

III. ROBUST ENTANGLEMENT VIA SHORTCUT
TO ADIABATIC PASSAGE

Before preparation of the entangled state, let us first discuss
the robustness of quantum state transfer for a single �-type
atom, in the presence of spontaneous emission. It has a guiding
significance on the choice of parameters for the experimental
realization of entanglement. The studied system is shown in
the box in Fig. 1; the atom can spontaneously decay with the
same rate γp/2 from the excited state |p〉 into the ground states
|g〉 and |e〉, respectively. Hence the complete master equation
describing the dynamics of this system reads

ρ̇sgl = −i[Hsgl,ρsgl] + γp

2

∑
m=g,e

D[σm
− ]ρsgl, (6)

where Hsgl = �a|p〉〈g| + �b|p〉〈e| + H.c. − �p|p〉〈p| and
D[σm

− ]ρsgl = σm
− ρsglσ

m
+ − {σm

+ σm
− ,ρsgl}/2. σm

− = (σm
+ )† is the

lowering operator of the atom from the excited state |p〉 to the
ground state |m〉. After adiabatically eliminating the excited
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FIG. 3. Population of state |e〉 in the process of quantum state
transfer for a single �-type atom versus a common dimensionless
time �eff t with different detuning and decoherence parameters, where
� = �a = �b is assumed for simplicity.

state |p〉 under the large detuning condition �p � {�a,�b},
the single-atom master equation is reduced to

ρ̇sgl = −i[Hrd,ρsgl] +
∑

m=g,e

D[Rmp]ρsgl, (7)

where Hrd denotes the effective Hamiltonian of Raman
transition between states |g〉 and |e〉 with coupling strength
�eff and

Rmp =
√

γp

2
|m〉

(
�a

�p

〈g| + �b

�p

〈e|
)

, (m = g,e), (8)

represents the effective decay operator [31–33]. Equation (8)
gives a quantitative relationship among the Rabi frequency
of classical fields, the frequency detuning parameter, and the
spontaneous emission rate of the atom. It can be directly seen
that the decaying rate is reduced to

γeff = γp

2

�2

�2
p

= γp

2�p

�eff, (9)

where we have assumed � = �a(b) for the sake of convenience.
Therefore, we may reduce the effect of spontaneous emission
by enlarging the value of the detuning �p for implementing the
quantum state transfer, even without changing the interaction
time of the system. Figure 3 characterizes the population
Pe(t) = 〈e|ρsgl(t)|e〉 of the state |e〉 in the process of quantum
state transfer from the initial state |g〉 corresponding to
different detuning and decoherence parameters. The effective
Raman coupling strength is fixed at �eff = 0.004�c. For
�p = 20�c, the maximal state transfer efficiency is 96.21%
as γp = �c (dotted line), and this value is promoted to 99.51%
for �p = 160�c (dash-dotted line), which is very close to the
ideal case 99.96% (solid line). Hence one can see that a large
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�p does provide an immune way to the spontaneous emission
of the atom.

The technology of a shortcut to adiabatic passage permits
a fast manipulation of quantum states in a robust way
against the fluctuation of parameters [34–38]. In order to
design a counteradiabatic Hamiltonian that can be realized
in experiment, we first consider a toy model below:

Hap(t) =
√

2�
′
a(t)|gg〉〈�| + �

′
b(t)|T 〉〈�| + H.c., (10)

where |�〉 = (|gp〉 + |pg〉)/√2. This Hamiltonian is equiva-
lent to a simple three-level system with an excited state |�〉 and
two ground states |gg〉 and |T 〉. The corresponding eigenstates
can be easily obtained:

|n0(t)〉 = cos[θ (t)]|gg〉 − sin[θ (t)]|T 〉, (11)

|n±(t)〉 = sin[θ (t)]√
2

|gg〉 ± 1√
2
|�〉 + cos[θ (t)]√

2
|T 〉, (12)

and the eigenvalues are ε0 = 0 and ε± = ±�
′
,

respectively, where θ (t) = arctan[
√

2�
′
a(t)/�

′
b(t)] and

�
′ =

√
2�

′2
a (t) + �

′2
b (t). According to Berry’s transitionless

tracking algorithm [39], the simplest form of reverse
engineering Hamiltonian Hcap(t), which is related to the
original Hamiltonian Hap(t), takes the form

Hcap(t) = i
∑

k=0,±
|∂tnk(t)〉〈nk(t)|

= iθ̇ (t)|gg〉 1√
2

(〈ge| + 〈eg|) + H.c., (13)

where θ̇ (t) = √
2[�̇

′
a(t)�

′
b(t) − �

′
a(t)�̇

′
b(t)]/�

′2. Comparing
Eq. (13) with Eq. (5), we are able to obtain an alternative
physically feasible Hamiltonian whose effect is equivalent to
Hcap(t):

H̃eff = i
�2

cap

�p

|gg〉 1√
2

(〈ge| + 〈eg|) + H.c., (14)

and the shortcut to adiabatic passage for preparation of
bipartite entanglement can be achieved as long as �a =
i�cap/

√
2, �b = �cap, and �2

cap/�p = θ̇ (t), i.e.,

�2
cap = �pθ̇ (t) =

√
2�p[�̇

′
a(t)�

′
b(t) − �

′
a(t)�̇

′
b(t)]

�
′2 , (15)

where the Rabi frequencies �
′
a(t) and �

′
b(t) are chosen as

�
′
a(t) = �0 exp

[
− (t − tc/2 − τ )2

T 2

]
, (16)

�
′
b(t) = �0 exp

[
− (t − tc/2 + τ )2

T 2

]
, (17)

in order to satisfy the boundary condition of the stimulated
Raman adiabatic passage on the one hand and meet the
requirement of the following ground-state blockade effect for
time-dependent Raman couplings on the other hand [40],∣∣∣∣1

2
S(tc)

∣∣∣∣ =
∣∣∣∣ i

2

∫ tc

0
e−iλ(tc−t) �a(t)�b(t)

�p

dt

∣∣∣∣ � 1. (18)
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FIG. 4. Population of the maximally entangled state (|ge〉 +
|eg〉)/√2 during the shortcut to adiabatic passage versus dimen-
sionless interaction time �ct for different detuning and decoherence
parameters. We have chosen tc = 300/�c, τ = 0.2tc, and T = 0.3tc
in Eqs. (16) and (17), and �r = 20�c.

We remark that Eq. (18) automatically degenerates to |�eff| �
|λ| for the time-independent Raman couplings of Eq. (5) in
the absence of �. In Fig. 4, we check the performance of
the shortcut to adiabatic passage in the generation of the
entangled state (|ge〉 + |eg〉)/√2 from the initial state |gg〉
by setting the operation time tc = 300/�c, τ = 0.2tc, and
T = 0.3tc. With the dissipation being considered, a conclusion
the same as in the single-atom case can be made that a
large detuning condition guarantees a high fidelity F (t) =
Tr

√
ρ1/2ρ(t)ρ1/2 = √

P (t) = 99.32%, corresponding to the
dash-dotted line.

IV. STEADY ENTANGLEMENT VIA
QUANTUM-JUMP-BASED FEEDBACK CONTROL

The above analysis has demonstrated that a regime of the
ground-state blockade effect functioning well is also immune
to the atomic decay. Therefore combined with cavity quantum
electrodynamics, the ground-state blockade provides a novel
approach to quantum state preparation, especially for the
cavity-loss-induced generation of entangled atoms [41–43].
In this section, we consider an atom-cavity interaction system,
as depicted in Fig. 5. The transition between the levels |g〉 ↔
|p〉 is coupled to the cavity mode resonantly with coupling
constant g. The transitions |e〉 ↔ |p〉 and |e〉 ↔ |r〉 are driven
by nonresonant classical laser fields with Rabi frequencies �b

and �c, respectively. The resonant coupling between ground
states |g〉 and |e〉 is realized by a microwave field with Rabi
frequency ω. Thus the master equation of system could be
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FIG. 5. Schematic view of the atomic-level configuration. Com-
pared with Fig. 1, the transition |g〉 ↔ |p〉 is replaced by a quantized
cavity field mode with coupling strength g, and a resonant transition
between |g〉 and |e〉 is driven by a microwave field with Rabi
frequency ω.

written as

ρ̇ = −i[H
′
I ,ρ] + γp

2

2∑
n=1

(D[|g〉n〈p|]ρ + D[|e〉n〈p|]ρ)

+ γr

2∑
n=1

D[|e〉n〈r|]ρ + κD[a]ρ, (19)

where the Hamiltonian H
′
I = ∑2

i=1 g|p〉i〈g|a + �b|p〉i〈e| +
�c|r〉i〈e| + ω|g〉i〈e| + H.c. − �p|p〉i〈p| + (U − 2�r )|rr〉
〈rr|, γr is the decaying rate of the Rydberg state, a is the
annihilation operator of the cavity mode, and κ is the loss rate
of the cavity. After adiabatically eliminating the excited state
|p〉 and the single-atom state |r〉, we have

H
′
eff =

2∑
i=1

(geffa
† + ω)|g〉i〈e| + λ|ee〉〈rr| + H.c., (20)

where geff = g�b/�p. In the regime of ground-state blockade,
{geff,ω} � λ, the double occupation of state |ee〉 is suppressed
and the above Hamiltonian is further simplified to

H
′
gb = (geffa

† + ω)|gg〉(〈ge| + 〈eg|) + H.c.. (21)

In this case, the effective master equation prompting the
evolution of two atoms becomes

ρ̇r = −i[H
′
gb,ρr ] +

2∑
n=1

D
[
R

′n
gp

]
ρr + D

[
R

′n
ep

]
ρr + κD[a]ρr,

(22)

with

R
′
gp = �b

�p

√
γp

2
|g〉〈e|, R

′
ep = �b

�p

√
γp

2
|e〉〈e| (23)
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FIG. 6. Populations of quantum states versus dimensionless time
geff t during preparation of the antisymmetric entangled state |S〉.
Other parameters: ω = geff , κ = λ = 10geff , and η = −0.5π .

being the effective decay operators from |e〉 to |g〉 and from |e〉
to |e〉, respectively. For a strongly damped cavity mode, κ �
{geff,ω}, we further adiabatically eliminate the populations
of the cavity mode and acquire the master equation for the
reduced density operator of atoms:

ρ̇r = −iω[(J+ + J−),ρr ] + �D[J−]ρr, (24)

where J− = J
†
+ = |gg〉(〈eg| + 〈ge|) is the collective lowering

operators of atoms and � = 4g2
eff/κ is the collective amplitude

damping rate. In Eq. (24), we also neglect the spontaneous
emission terms by supposing � � γp�2

b/(2�2
p). Once the

local feedback scenario is introduced, the cavity output is
measured by a photodetector whose signal provides the input to
the application of the feedback operator Ufb = exp[−iη(σx ⊗
I )], and the unconditioned master equation for this case is
derived as

ρ̇r = −iω[(J+ + J−),ρr ] + �D[UfbJ−]ρr . (25)

Note the local feedback operator is approximated to Ufb =
exp[−iη(|g〉1〈e| + |e〉1〈g|) ⊗ |g〉2〈g|], because of the ground-
state blockade effect. A simple inspection shows |S〉 = (|ge〉 −
|eg〉)/√2 is the unique stationary state solution of Eq. (25). In
Fig. 6, we numerically simulate the populations of quantum
states versus dimensionless time geff t during the preparation of
the antisymmetric entangled state |S〉 from an initial state |gg〉
with parameters ω = geff , κ = λ = 10geff , and η = −0.5π .
It only takes t = 13/geff to make the population of state |S〉
exceed 90% for the current scheme (solid line), compared
with t = 18/geff for the case where ground-state blockade
is not considered (dotted line). In this sense, the effect of
ground-state blockade can speed up the convergence time for
state preparation in an open system.
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FIG. 7. (a) Population of W state during the shortcut to adiabatic passage versus dimensionless interaction time �ct . Other parameters
are the same as those in Fig. 4. (b) Populations of quantum states versus dimensionless time geff t during preparation of the three-atom
decoherence-free state |DFS〉. Other parameters: ω = geff , κ = 10geff , λ = 20geff , and η = −0.5π .

V. GENERALIZATION TO THREE-ATOM
ENTANGLEMENT

In the scheme of utilizing a shortcut to adiabatic passage,
a three-atom W state (|egg〉 + |geg〉 + |gge〉)/√3 can be
prepared straightforwardly with the following time-dependent
Hamiltonian:

H̃eff =
√

3�a(t)�b(t)

�p
|ggg〉〈W | + H.c.. (26)

The counteradiabatic Hamiltonian is then received by selecting
�a = i�cap/

√
3, �b = �cap, and

�2
cap = �pθ̇ (t) =

√
3�p[�̇

′
a(t)�

′
b(t) − �

′
a(t)�̇

′
b(t)]

�
′2 , (27)

where �
′ =

√
3�

′2
a (t) + �

′2
b (t). At the same time, the condi-

tion of ground-state blockade should be satisfied:∣∣∣∣ i

2

∫ tc

0
e−iλ(tc−t)

√
2�a(t)�b(t)

�p

dt

∣∣∣∣ � 1. (28)

As for the quantum-feedback-based scheme, the local
feedback operator on the first atom Ufb = exp[−iη(|g〉1〈e| +
|e〉1〈g|) ⊗ |g2〉〈g2| ⊗ |g3〉〈g3|], along with the dissipation of
the cavity, will stabilize the system into a dark state of
the collective lowering operator J− = |ggg〉(〈egg| + 〈geg| +
〈gge|), i.e.,

|DFS〉N = 1√
6

(|gge〉 + |geg〉 − 2|egg〉). (29)

Figure 7 shows the populations of three-atom entanglement
as a function of time for both the closed system and the open
system. In Fig. 7(a), the solid line indicates an ideal situation
for the shortcut to adiabatic passage without dissipation,
and the final fidelity of the entangled state is 99.74%.

Even in the presence of spontaneous emission γp = �c

and γr = 0.001�c, a large detuning �p = 160�c preserves
the fidelity up to 99.23% (dash-dotted line). In Fig. 7(b),
starting from the initial state |ggg〉, the population of the
state |ggg〉 (dashed line) and the W state (dash-dotted line)
undergo rapid coherent oscillation with an envelope decaying,
while the three-atom decoherence-free state |DFS〉3 (solid
line) converges to 99.32% at a short time t = 25/geff with
parameters ω = geff , κ = 10geff , λ = 20geff , and η = −0.5π .

In experiment, the configuration of an N -type Rydberg
atom can be found in the 87Rb atom. The key components of
our proposal are the Raman transition of two ground states
and a two-photon transition between the ground state and
the Rydberg state. In Ref. [44], the authors demonstrate a
fast Rabi flopping at MHz between 5s1/2 ground hyperfine
states |0〉 = |f = 1,m = 0〉 and |1〉 = |f = 2,m = 0〉 that are
separated by 6.83 GHz of the neutral 87Rb atom, where each
ground state is coupled to the 5p3/2 excited by a detuning of
�p = 2π × 41 GHz. In Refs. [4,7], Browaeys et al. excite
a ground state of 5s1/2 to the Rydberg state of 58d3/2 via
a two-photon transition mediated by the optical state of
5p1/2, where an effective two-photon Rabi frequency �c ≈
2π × 7 MHz is achieved. In Refs. [8,45], the entanglement
of two neutral atoms and a corresponding controlled-NOT gate
are also demonstrated with N -type Rydberg atoms. Referring
to our model, the relevant energy level structure is shown
in Fig. 8. The ground states |g〉 and |e〉 correspond to the
atomic levels |f = 1,m = 0〉 and |f = 2,m = 0〉 of the 5s1/2

manifold; the excited state |p〉 corresponds to the 5p3/2

atomic state with a radiative decaying rate of γp = 2π × 3
MHz, and the decaying rate of the 97d5/2 Rydberg state
γr ∼ 2π × 1 kHz. The Raman transition between ground
states |g〉 and |e〉 is accomplished by σ+-polarized and π -
polarized 780-nm laser beams both tuned to transit towards
|f = 2,m = 0〉 of 5p3/2 by about �p = 2π × 3.2 GHz. The
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FIG. 8. Schematic view of the N -type Rydberg atom with the
relevant energy level structure of the 87Rb atom.

Rydberg excitation uses σ+-polarized 780- and 480-nm beams
tuned for excitation of the Rydberg state of 97d5/2, detuned
by �r = 2π × 200 MHz, leading to the coupling strength
between |e〉 and |r〉 of order �c ∼ 2π × 10 MHz. Note that
a two-photon transition between the ground state |g〉 and the
excited Rydberg state |r〉 cannot happen due to a large detuning
parameter, �p + �m − �r , on one hand, and the σ+-polarized
480-nm laser beam is unable to couple |f = 2,m = 0〉 of 5p3/2

to other hyperfine levels of 97d5/2 based on the selection
rule on the other hand. For the first scheme governed by
the shortcut to adiabatic passage, the Rabi frequency �cap is
completely determined by the value of the detuning parameter
�p, provided the operation time tc is fixed. Hence we can
obtain a high fidelity of two-atom entanglement of 99.14%.
For the second scheme based on quantum feedback control, the
experimentally available coupling strength between the atom
and the cavity g = 2π × 14.4 MHz and the cavity decaying
rate κ = 2π × 0.66 MHz should also be taken into account
[46–48]. In this case, we choose �p = 2π × 1.44 GHz and
�b = g in order to gain a fidelity of 98.95% at a short time of
about t = 50/geff ≈ 55.26 μs.

We remark that the theoretical assumption � = (U −
2�r + 2�2

c/�r ) = 0 made throughout this paper is only for
the sake of convenient discussion. In fact, the Rydberg-
mediated interaction U does not need to be limited to a specific
value, as long as the approximation in Eq. (5) is effective. We
take � = 5�eff as an example, which can be extracted from
Fig. 2. In this case, a selection of λ = 20�eff corresponding
to R1 ≈ 24.21 and R2 ≈ 16.65 is able to block the maximal
population of state |ee〉 at 5.18 × 10−4. In this sense the
mechanism of ground-state blockade proposed here can be
implemented for a wide range of parameters.

VI. SUMMARY

In summary, we have investigated how to actualize a
ground-state blockade effect via a weak Raman transition and a

strong Rydberg antiblockade. This mechanism has prominent
advantages in the preparation of the quantum entangled
state, since it reserves the nonlinear Rydberg interaction
and simultaneously provides a robust approach against the
spontaneous emission of the atom. In our future study, we will
concentrate on the application of the ground-state blockade
in terms of quantum computing and quantum algorithm. We
expect that our work may bring some new ideas on quantum
information processing with neutral atoms.
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APPENDIX: DETAIL DERIVATION OF THE
GROUND-STATE BLOCKADE HAMILTONIAN

In this appendix, we give the detail derivation of the ground-
state blockade Hamiltonian of Eq. (5). According to Fig. 1, the
Hamiltonian of our system in the Schrödinger picture reads
(h̄ = 1)

HS = H0 + HI , (A1)

H0 =
2∑

i=1

ωg|g〉i〈g| + ωe|e〉i〈e| + ωp|p〉i〈p| + ωr |r〉i〈r|,

HI =
2∑

i=1

�a|p〉i〈g|e−iωa t + �b|p〉i〈e|e−iωbt

+�c|r〉i〈e|e−iωct + H.c. + U |rr〉〈rr|,

where ωj (j = g,e,p,r) describes the frequency of the atomic
level |j 〉 and ωk(k = a,b,c) represents the driving frequency
of the classical field corresponding to the Rabi frequency �k .
Thus in the interaction picture, we have

HI = H 0
I + H 1

I , (A2)

H 0
I =

2∑
i=1

�a|p〉i〈g|e−i�pt + �b|p〉i〈e|e−i�pt + H.c.,

H 1
I =

√
2�c|ee〉〈χ |ei�r t +

√
2�c|rr〉〈χ |ei(�r+δ)t + H.c.,

where we have introduced the state |χ〉 = (|er〉 + |re〉)/√2
for simplicity and assumed the detuning parameters
�p = ωa − (ωp − ωg) = ωb − (ωp − ωe), �r = ωc − (ωr −
ωe), and U = (2�r + δ). Now the Hamiltonian HI has been
divided into two parts: one part, H 0

I , is the Raman interaction
of atoms and the other part, H 1

I , is the two-photon transition.
In the regime of the large detuning limit �p � {�a,�b}, we
can adiabatically eliminate the excited state |p〉 and obtain
the effective form of H 0

I with the Stark-shift term of the state
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|g〉(|e〉) and the effective Rabi frequency:

〈g(e)|H 0
I |p〉〈p|H 0

I |g(e)〉
�p

= �2
a(b)

�p

, (A3)

〈g(e)|H 0
I |p〉〈p|H 0

I |e(g)〉
�p

= �a�b

�p

. (A4)

Similarly, the large detuning condition �r � �c permits us
to eliminate the mediate state |χ〉; then H 1

I reduces to an
equivalent form with two-atom Stark shifts of levels |ee〉 and
|rr〉 and effective coupling between them:

〈ee|H 1
I |χ〉〈χ |H 1

I |ee〉
�r

= 2�2
c

�r

, (A5)

〈rr|H 1
I |χ〉〈χ |H 1

I |rr〉
�r + δ

≈ 2�2
c

�r

, (A6)

〈rr|H 1
I |χ〉〈χ |H 1

I |ee〉
�r

≈ 2�2
c

�r

eiδt , (A7)

〈ee|H 1
I |χ〉〈χ |H 1

I |rr〉
�r

≈ 2�2
c

�r

e−iδt , (A8)

where δ � �r has been assumed and 1/�r = [1/�r +
1/(�r + δ)]/2 ≈ 1/�r [49], i.e.,

Heff =
2∑

i=1

�2
a

�p

|g〉i〈g| +
(

�2
b

�p

+ �2
c

�r

)
|e〉i〈e|

+
[

2�2
c

�r

|ee〉〈rr|e−iδt +
2∑

i=1

�a�b

�p

|g〉i〈e| + H.c.

]

+ 2�2
c

�r

|rr〉〈rr|. (A9)

The Stark shifts of ground states are unwanted in our proposal,
which can be canceled by other ancillary levels yielding
opposite shifts of energy levels. After performing a rotation

with respect to U = exp(iδt |rr〉〈rr|), Eq. (A9) is rewritten in
the following time-independent form:

Heff =
2∑

i=1

�eff|g〉i〈e| + λ|ee〉〈rr| + H.c. + �|rr〉〈rr|,

(A10)

where �eff = �a�b/�p, λ = 2�2
c/�r , and � = δ +

2�2
c/�r . In order to further characterize the effective dynamics

of the system, we introduce the eigenstates of the two-
atom transition Hamiltonian (λ|ee〉〈rr| + H.c. + �|rr〉〈rr|)
as follows:

|�+〉 = cos α|rr〉 + sin α|ee〉 (A11)

and

|�−〉 = sin α|rr〉 − cos α|ee〉, (A12)

which correspond to eigenvalues E+ = (� + √
�2 + 4λ2)/2

and E− = (� − √
�2 + 4λ2)/2, respectively, with α =

arctan[2λ/(� + √
�2 + 4λ2)]. Through the above steps,

we recover the result of Eq. (4). The derivation from
Eq. (4) to Eq. (5) is straightforward as long as the lim-
iting conditions R1 = |E+/(

√
2�eff sin α)| � 1 and R2 =

|E−/(
√

2�eff cos α)| � 1 are established. To better illus-
trate this process, we perform another rotation with respect
to exp[−it(E+|�+〉〈�+| + E−|�−〉〈�−|)] on the basis of
Eq. (4) and obtain

Heff =
√

2�eff|gg〉〈T | + (
√

2�eff sin αeiE+t |�+〉
−

√
2�eff cos αeiE−t |�−〉)〈T | + H.c., (A13)

where |T 〉 = (|ge〉 + |eg〉)/√2. It can be seen clearly that the
Hamiltonian of Eq. (A13) incorporates the high-frequency
oscillating terms proportional to exp (iE±t), and these terms
can be neglected while the resonant transition between states
|gg〉 and |T 〉 is preserved; hence a perfect ground-state
blockade Hamiltonian of Eq. (5) is achieved.
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