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One-step generation of continuous-variable quadripartite cluster states in a circuit QED system
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We propose a dissipative scheme for one-step generation of continuous-variable quadripartite cluster states
in a circuit QED setup consisting of four superconducting coplanar waveguide resonators and a gap-tunable
superconducting flux qubit. With external driving fields to adjust the desired qubit-resonator and resonator-
resonator interactions, we show that continuous-variable quadripartite cluster states of the four resonators can be
generated with the assistance of energy relaxation of the qubit. By comparison with the previous proposals, the
distinct advantage of our scheme is that only one step of quantum operation is needed to realize the quantum
state engineering. This makes our scheme simpler and more feasible in experiment. Our result may have useful
application for implementing quantum computation in solid-state circuit QED systems.
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I. INTRODUCTION

Quantum entanglement plays a central role in the field
of quantum optics and quantum information [1]. It is an
indispensable ingredient for implementing various quantum
information protocols, such as quantum teleportation and
quantum dense coding [2,3]. Among various kinds of en-
tangled states, cluster states are a type of highly entangled
state of multiple qubits and have more sophisticated quantum
correlations [4]. For example, different from other types
of multiparticle entangled states such as the W state or
Greenberger-Horne-Zeilinger (GHZ) state, cluster states are
more robust against projective measurement; that is, the quan-
tum entanglement cannot be eliminated by the measurement
on single qubits. Cluster states are especially useful in the
context of one-way quantum computation [5–7]. Moreover, it
has been demonstrated that any quantum circuits and quantum
gates can be implemented on a suitable cluster state [8–11].
Experimentally, the generation of cluster states has been
achieved with photonic qubits [12–14] and cold atoms trapped
in optical lattices [15].

In parallel, continuous-variable (CV) cluster states [16],
like the amplitude and phase quadratures of an electromagnetic
field, have also attracted much attention for implementing one-
way quantum computation and constructing quantum networks
[17–19]. Due to high efficiency in manipulation and detection
of CV quadrature components, the experimental generation of
CV cluster states has also been widely investigated [20–24].
By employing nondegenerate optical parametric amplifiers and
linear optics, CV cluster states can be created by linear optical
transformation of squeezed light with certain phase relations
[25,26]. However, it is hard to implement scalable quantum
computing with optical CV cluster states due to the inherent
limitation of large-scale integration for a linear optics system.
Schemes have also been proposed to create CV cluster states
with the collective excitations of separated atomic ensembles
located inside a ring cavity [27–29], as well as the microwave
fields of superconducting resonators [30]. In addition, the
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generation of CV cluster states has been considered in an
optomechanical system with the motional states of mechanical
resonators [31]. However, the procedures in those schemes are
relatively complex and require multiple steps to realize the
target states. Therefore, it is crucial to produce a cluster state
in just one step on a scalable circuit.

In this paper, we propose a one-step scheme for generation
of four-mode CV cluster states in a circuit QED system.
The solid-state superconducting circuit has many merits
such as controllability, tunability, and scaling on chip with
nanofabrication techniques [32,33]. It has become a leading
candidate for present-day realization of quantum information
processing [34–45]. The model under consideration consists
of four superconducting coplanar waveguide resonators and a
gap-tunable qubit. With the appropriate choice of frequencies
and phases of the external driving fields, we can tailor an
effective Hamiltonian; that is, the qubit is coupled to one of
the combined modes of the resonators via the squeezing-type
interaction, while the other three combined modes couples
with each other via the beam-splitter-type interaction. The key
idea of our work is to utilize dissipation of the qubit to directly
cool one of the combined modes into a squeezed state, while
the other modes are indirectly swapped into the squeezed state
via the intramode beam-splitter-type interactions. Thus, all
the combined modes are simultaneously driven into the same
single-mode squeezed vacuum state at steady state, which is
identical to steering the four resonators into a stationary CV
cluster state. The distinct advantage of our scheme is that
the CV cluster states can be achieved with only one step of
quantum operation. It is simpler and more feasible in the
experimental implementation. The present work may have
useful application for performing quantum computation in a
solid-state circuit QED system.

II. MODEL

In Fig. 1, a possible setup for the implementation of
the present proposal is shown. Four coplanar waveguide
resonators are connected one by one via superconducting
quantum interference devices (SQUIDs) and form a closed
resonator chain. On the other hand, resonators 1 and 2 are
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FIG. 1. A possible setup for four-resonator circuit QED with a
gap-tunable flux qubit. Four superconducting coplanar waveguide
resonators are linearly coupled with each other via SQUIDs, and a
gap-tunable superconducting flux qubit is coupled to resonator modes
a1 and a2 via the mutual inductance. The qubit has a low-inductance
dc SQUID loop which is used to realize energy gap tunability, denoted
by a red circle.

coupled by a gap-tunable flux qubit. The qubit functions as
a quantum switch to mediate switchable coupling between
resonators 1 and 2. As usual, a superconducting flux qubit
is composed of three Josephson junctions forming a loop, in
which two junctions have the same large critical currents but
the third junction has a smaller one. Note that the energy
gap of a flux qubit at the degenerate point strongly depends
on the critical current of the third junction. To realize a
gap-tunable flux qubit, the third junction is replaced by two
parallel junctions forming a low-inductance dc SQUID loop,
as shown in the dashed circle in Fig. 1, and the energy gap can
be tuned by applying an external magnetic field penetrating
the SQUID loop. If the applied magnetic field is periodic
and has multiple frequencies, one can create a σz driving
such as the one described by Eq. (4). In fact, the in situ
tunability of the minimum-energy gap of a superconducting
flux qubit has been experimentally demonstrated [46]. In
current experiments, there are several schemes for the real-
ization of the coupling between superconducting qubits and
coplanar waveguide resonators. For example, charge or flux
qubits can be fabricated on the ground plane of a coplanar
waveguide resonator, and thus, either the electrical coupling
[36,47,48] or magnetic coupling [49–51] can be realized. The
scheme using a single qubit to couple two coplanar waveguide
resonators may be implemented via capacitors at the two
ends of the resonators [40,52]. Here, we propose a scheme
in which the larger loop of the flux qubit, which contains the
three Josephson junctions, is transversely fabricated on the
surface of coplanar waveguide resonators 1 and 2 [53]. In
this way, the Jaynes-Cummings-type interaction between the
qubit and the resonators, described by the Hamiltonian (3),
may be realized via the mutual inductance. Here, we assume
that the couplings of the qubit with the two resonators are
identical and thus have the same strength. It is noted that the
coupling of a flux qubit with two microstrip resonators via
the mutual inductance has been proposed and investigated in
detail [54]. For the setup shown in Fig. 1, we have the following
Hamiltonians.

The free Hamiltonian of the whole system is described by
(h̄ = 1)

H0 = δ

2
σz +

4∑
j=1

ωja
†
j aj , (1)

where σz = |e〉〈e| − |g〉〈g| is the population-inversion oper-
ator of the qubit and a

†
j ,aj are the creation and annihilation

operators of bosonic resonator modes. The static qubit energy
gap between the ground state |g〉 and the excited state |e〉 is
δ, and the characteristic frequencies of the four resonators are
denoted by ωj .

We consider a time-dependent resonator-resonator interac-
tion, described by

HRR =
2∑

m=1

4∑
n=3

αmn(t)(a†
m + am)(a†

n + an), (2)

where αmn(t) = gmn cos(ωmnt + ϕmn) denotes the time-
dependent coupling strength between resonator modes am

and an and ωmn and ϕmn are the modulation frequencies and
phases, respectively. Experimentally, this Hamiltonian can be
implemented by means of a SQUID connecting two resonators
[55]. The SQUID is composed of a superconducting loop
interrupted by two identical Josephson junctions [56,57]. By
means of fluxoid quantization of the loop, the SQUID behaves
as a single Josephson junction with a tunable inductance
L(�ext) = (�0

2π
)2 1

2EJ cos(π�ext/�0) , in which �0 = h
2e

is the flux
quanta, �ext is the external flux threading the SQUID loop,
and EJ is the Josephson energy [58,59]. The variation of
the inductance of the SQUID can change the electrical
boundary condition of the resonators and their interaction.
When applying a fast-oscillating magnetic field with flux
�(t) threading the SQUID, one can realize a time-dependent
interaction between the two resonators [55].

The interaction between qubit and resonator modes a1 and
a2 is given by

HQR = (σ+ + σ−)
∑
i=1,2

gi(a
†
i + ai), (3)

where gi is the coupling strength between the qubit and
the ith resonator and σ+,σ− = |e〉〈g|,|g〉〈e| are the spin-flip
operators of the qubit. In addition, we apply two pairs of the σz

driving to the qubit, which is described by the time-dependent
Hamiltonian [60,61]

Hdrive(t) = −
2∑

l=1

2∑
k=1

ξlkωdlk cos(ωdlkt + φlk)σz, (4)

where ωdlk is the driving frequency, ξlk is the ratio between the
driving amplitude and frequency, and φlk is the phase of the
driving (k,l = 1,2). This Hamiltonian can induce sideband
transitions between the qubit and resonators, which is used
to modify the qubit-resonator interactions. This quantum
manipulation has been demonstrated in experiment with
various types of qubits, such as flux [46,62], charge [63], and
transmon [64] qubits.
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The time evolution of the whole system is governed by the
master equation

dρ

dt
= −i[H,ρ] + �D[σ−]ρ, (5)

where H = H0 + HRR + HQR + Hdrive(t), ρ is the density-
matrix operator, D[σ−]ρ = 2σ−ρσ+ − ρσ+σ− − σ+σ−ρ is
the standard Lindblad operator, and � is the energy relaxation
rate of the qubit. Here, we have assumed that the resonators
possess high-quality factors, i.e., with a negligible decay rate
κj . On the other hand, here, as discussed in the following,
we utilize the energy decay of the qubit from the excited
state to the ground state to bring the resonator modes to the
CV cluster states. Thus, the dephasing process of the qubit is
ignored since it cannot change the unique steady state of the
system.

III. GENERATION OF CONTINUOUS-VARIABLE
QUADRIPARTITE CLUSTER STATES

In this section, we discuss in detail how to generate
quadripartite CV cluster states of the four resonators by
one step via the dissipation of the qubit. For four enti-
ties, there are three kinds of cluster states: linear clus-
ter state, square cluster state, and T-shaped cluster state,
as shown in Fig. 2. For a continuous-variable quadripar-
tite cluster state, the variances of the entities obey the
condition [24]

V

⎛
⎝Pj −

∑
i∈Nj

Xi

⎞
⎠ → 0, j = 1,2,3,4, (6)

in the limit of infinite squeezing. In Eq. (6), the Hermitian
quadrature amplitude and phase operators Xj and Pj are
defined based on the relation aj = 1√

2
(Xj − iPj ), which is

the photon annihilation operator of j th mode, and j ∈ Ni

means that mode j is among the nearest neighbors of
mode i.

( )a

( )b
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Linear

( )c
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FIG. 2. Schematic of CV quadripartite cluster states: (a) linear
cluster state, (b) square cluster state, and (c) T-shaped cluster state.

For a linear cluster state, we readily have the following
quadrature combinations according to Eq. (6):

Pa1 − Xa2 = A
†
1 + A1,

Pa2 − Xa1 − Xa3 = A
†
2 + A2,

Pa3 − Xa2 − Xa4 = A
†
3 + A3,

Pa4 − Xa3 = A
†
4 + A4, (7)

where the linearly combined modes Aj are given by
⎛
⎜⎜⎜⎝

A1

A2

A3

A4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

− i√
2

− 1√
2

0 0

− 1√
2

− i√
2

− 1√
2

0

0 − 1√
2

− i√
2

− 1√
2

0 0 − 1√
2

− i√
2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

a1

a2

a3

a4

⎞
⎟⎟⎟⎠. (8)

Note that the four combined modes A1,A2,A3,A4 are not
orthogonal with each other and cannot be operated indepen-
dently. To orthogonalize the combined modes (8), we make
the unitary transformation

⎛
⎜⎜⎜⎝

Ā1

Ā2

Ā3

Ā4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

− i√
2

− 1√
2

0 0

− 1√
3

− i√
3

− 1√
3

0
i√
10

− 1√
10

− 2i√
10

− 2√
10

1√
15

i√
15

− 2√
15

− 3i√
15

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

a1

a2

a3

a4

⎞
⎟⎟⎟⎠. (9)

In terms of these new orthogonal combined modes, the
variances of the quadrature amplitude combinations (7) can
be written as

V1 = V (Pa1 − Xa2 ) = V (Ā1 + Ā
†
1),

V2 = V (Pa2 − Xa1 − Xa3 ) = 3

2
V (Ā2 + Ā

†
2),

V3 = V (Pa3 − Xa2 − Xa4 )

= 1

4
V (Ā1 + Ā

†
1) + 5

4
V (Ā3 + Ā

†
3),

V4 = V (Pa4 − Xa3 )

= 1

6
V (Ā2 + Ā

†
2) + 5

6
V (Ā4 + Ā

†
4). (10)

For a square cluster state, we consider the quadrature
combinations

Pa1 − Xa2 − Xa4 = − 1√
2

[i(a1 − a
†
1) + (a2 + a

†
2)

+(a4 + a
†
4)],

Pa2 − Xa1 − Xa3 = − 1√
2

[i(a2 − a
†
2) + (a1 + a

†
1)

+(a3 + a
†
3)],

Pa3 − Xa2 − Xa4 = − 1√
2

[i(a3 − a
†
3) + (a2 + a

†
2)

+(a4 + a
†
4)],

Pa4 − Xa1 − Xa3 = − 1√
2

[i(a4 − a
†
4) + (a1 + a

†
1)

+(a3 + a
†
3)]. (11)
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Introducing the orthogonal combined modes
⎛
⎜⎜⎜⎝

Ā1

Ā2

Ā3

Ā4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

i√
3

1√
3

0 1√
3

1√
3

i√
3

1√
3

0

− 2i√
15

1√
15

3i√
15

1√
15

1√
15

− 2i√
15

1√
15

3i√
15

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

a1

a2

a3

a4

⎞
⎟⎟⎟⎠ (12)

and their Hermitian conjugates, one can write the variances of
the quadrature combinations (11) as

V1 = V (Pa1 − Xa2 − Xa4 ) = −
√

6

2
V (Ā1 + Ā

†
1),

V2 = V (Pa2 − Xa1 − Xa3 ) = −
√

6

2
V (Ā2 + Ā

†
2),

V3 = V (Pa3 − Xa2 − Xa4 )

= −
√

6

3
V (Ā1 + Ā

†
1) −

√
30

6
V (Ā3 + Ā

†
3),

V4 = V (Pa4 − Xa1 − Xa3 )

= −
√

6

3
V (Ā2 + Ā

†
2) −

√
30

6
V (Ā4 + Ā

†
4). (13)

For a T-shaped cluster state, we consider the quadrature
amplitude combinations

Pa2 − Xa1 − Xa3 − Xa4 = − 1√
2

[i(a2 − a
†
2) + (a1 + a

†
1)

+(a3 + a
†
3) + (a4 + a

†
4)],

Pa1 − Xa2 = − 1√
2

[i(a1 − a
†
1) + (a2 + a

†
2)],

Pa3 − Xa2 = − 1√
2

[i(a3 − a
†
3) + (a2 + a

†
2)],

Pa4 − Xa2 = − 1√
2

[i(a4 − a
†
4) + (a2 + a

†
2)].

(14)

Introducing the four orthogonal combined modes Āj by the
unitary transformation

⎛
⎜⎜⎜⎝

Ā1

Ā2

Ā3

Ā4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

i√
2

1√
2

0 0
1
2

i
2

1
2

1
2

− i√
6

1√
6

2i√
6

0

− i

2
√

3
1

2
√

3
− i

2
√

3
3i

2
√

3

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

a1

a2

a3

a4

⎞
⎟⎟⎟⎠ (15)

and their Hermitian conjugates, one can write the variances of
the quadrature combinations (14) as

V1 = V (Pa1 − Xa2 ) = −V (Ā1 + Ā
†
1),

V2 = V (Pa2 − Xa1 − Xa3 − Xa4 ) = −
√

2V (Ā2 + Ā
†
2),

V3 = V (Pa3 − Xa2 )

= −1

2
V (Ā1 + Ā

†
1) −

√
3

2
V (Ā3 + Ā

†
3),

V4 = V (Pa4 − Xa2 ) = −1

2
V (Ā1 + Ā

†
1)

− 1

2
√

3
V (Ā3 + Ā

†
3) − 2√

6
V (Ā4 + Ā

†
4). (16)

Obviously, the variances of these three types of CV cluster
states are determined by the combined quadratures Āj + Ā

†
j .

If we can prepare the four orthogonal modes Ā1,Ā2,Ā3,Ā4

in amplitude squeezed vacuum states with a large squeezing
degree, the variances Vj will satisfy the conditions Vj → 0
in Eq. (6). This is equivalent to preparing the four resonator
modes a1,a2,a3,a4 in the CV cluster states. Therefore, the
main task of our work is to steer all the combined modes Āj

into single-mode squeezed vacuum states. In the following
we proceed to engineer an effective Hamiltonian which can
simultaneously cool down the four modes Ā1,Ā2,Ā3,Ā4 to
single-mode squeezed states via the dissipation of the qubit.
Since the strategies for the generation of the linear, square,
and T-shaped cluster states are similar, as an example, here,
we discuss only the case of preparing a linear cluster state.

In order to work out the effective Hamiltonian for the
generation of a linear cluster state, we perform a rotating
transformation U1 = e−iH ′t , with H ′ = δ

2σz + ∑4
j=1 ω0j a

†
j aj ,

to Eq. (5), where we have set ω01 − ω1 = 2�, ω2 − ω02 =
2�, ω03 − ω3 = 2�, ω4 − ω04 = 2�. Then, the resulting
Hamiltonian is

H = H ′
0 + H ′

QR + H ′
RR + Hdrive(t), (17)

where

H ′
0 = 2�(−a

†
1a1 + a

†
2a2 − a

†
3a3 + a

†
4a4), (18)

H ′
QR = σ+eiδt

∑
j=1,2

gj (a†
j e

−iω0j t + aj e
iω0j t ) + H.c., (19)

H ′
RR =

2∑
m=1

4∑
n=3

gmn cos(ωmnt + ϕmn)

×(a†
me−iω0mt + ameiω0mt )(a†

ne
−iω0nt + ane

iω0nt ).

(20)

In the next step, we perform another unitary transforma-
tion U2 = T e−i

∫
Hdrive(t ′)dt ′ , where T is the time-order op-

erator. Note that the Hamiltonian Hdrive(t) contains only
the operator σz and commutes at a different time. Thus,
directly working out the integral and sum, we have U2 =
exp[i

∑2
l=1

∑2
k=1 ξlk sin(ωdlkt + φlk)σz]. Under the unitary

transformation U2, the operators σ± acquire the total phases
factor exp[±i

∑2
l=1

∑2
k=1 ξlk sin(ωdlkt + φlk)]. If the driving

parameters ξlk are chosen to be small, we make a Taylor
expansion of the phase factor with respect to ξlk and keep
all the terms up to the first order of ξlk . Then, the Hamiltonian
H ′

QR can be written after the unitary transformation U2 in the
form

H ′
QR = σ+eiδt

∑
j=1,2

gj (a†
j e

−iω0j t + aj e
iω0j t )

×[1 −
2∑

l=1

2∑
k=1

ξlk(ei(ωdlk t+φlk) − e−i(ωdlk t+φlk))]

+H.c. (21)

In order to obtain the desired qubit-resonator interaction, we
choose external driving frequencies and phases to satisfy the
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following relations:

ωd11 = δ − ω01 = δ − ω1 − 2�,

ωd12 = δ + ω01 = δ + ω1 + 2�,

ωd21 = δ − ω02 = δ − ω2 + 2�,

ωd22 = δ + ω02 = δ + ω2 − 2�, (22)

and

φ11 = −π

2
,φ12 = π

2
,φ21 = φ22 = π. (23)

We retain the resonant terms while discarding those fast-
oscillating terms in Eq. (21) under the rotating-wave ap-
proximation condition {ωj ,δ,ωd1l ,ωd2l} � g,�. Then, the
Hamiltonian H ′

QR can be approximated to

H ′′
QR = σ+[ig1(ξ1a

†
1 − ξ2a1) − g2(ξ1a

†
2 + ξ2a2)] + H.c. (24)

Here, we have set ξ11 = ξ21 = ξ1 and ξ12 = ξ22 = ξ2.
To further simplify the resonator-resonator interaction, a

suitable choice of the driving frequencies ωmn allows us to
select the resonant interaction terms in Hamiltonian H ′

RR . By
choosing the frequencies to satisfy the relations

ω13 = ω01 − ω03 = ω1 − ω3,

ω23 = ω02 − ω03 = ω2 − ω3 − 4�,

ω14 = ω01 − ω04 = ω1 − ω4 + 4�,

ω24 = ω02 − ω04 = ω2 − ω4 (25)

and the phases

ϕ13 = π, ϕ23 = −π

2
, ϕ14 = π

2
, ϕ24 = 0 (26)

and performing the rotating-wave approximation under the
condition {ωcmn,ω0m,ω0n} � gmn and neglecting the fast-
oscillating terms in H ′

RR , we have

H ′′
RR = −�

2
a
†
1a3 − i

3�

2
a
†
2a3 + i

�

2
a
†
1a4 + �

2
a
†
2a4 + H.c.,

(27)

where g13 = g14 = g24 = � and g23 = 3�. Finally, we
achieve the effective Hamiltonian of the whole system,

Heff = H ′
0 + H ′′

QR + H ′′
RR

= 2�(−a
†
1a1 + a

†
2a2 − a

†
3a3 + a

†
4a4)

+
{

− �

2
a
†
1a3 − i

3�

2
a
†
2a3 + i

�

2
a
†
1a4 + �

2
a
†
2a4

+σ+[ig1(ξ1a
†
1 − ξ2a1) − g2(ξ1a

†
2 + ξ2a2)] + H.c.

}

(28)

In terms of Ā1,Ā2,Ā3,Ā4, we have

Heff = 1√
2
σ+

[ 1√
2
g+(ξ2Ā1 + ξ1Ā

†
1) − i√

3
�g(ξ2Ā2 − ξ1Ā

†
2)

+ 1√
10

�g(ξ2Ā3 + ξ1Ā
†
3) + i√

15
�g(ξ2Ā4 − ξ1Ā

†
4)

]

−i
√

6�Ā
†
1Ā2 + i

√
5

6
�Ā

†
2Ā3 − i

5√
6
�Ā

†
3Ā4 + H.c.,

(29)

where g+ = g1 + g2 and �g = g2 − g1.

As shown in Eq. (10), the linear cluster state requires that
variances of the four combined modes must simultaneously ap-
proach zero. Thus, one can realize the linear cluster state if the
four combined modes are simultaneously in squeezed states.
However, Eq. (29) shows that the combined modes Ā1,3 may
undergo the squeezing transformation C1,3 = cosh(r)Ā1,3 +
sinh(r)Ā†

1,3 and Ā2,4 may undergo the antisqueezing transfor-

mation C2,4 = cosh(−r)Ā2,4 + sinh(−r)Ā†
2,4, with cosh(r) =

ξ2/
√

ξ2
2 − ξ1

2 and sinh(r) = ξ1/
√

ξ2
2 − ξ1

2 via the qubit.
Thus, to get the four combined modes to be in squeezed
states, we first set g1 = g2 = g. In this ideal case, the effective
Hamiltonian is simplified to

Heff = gσ+(ξ2Ā1 + ξ1Ā
†
1) − i

√
6�Ā

†
1Ā2

+i

√
5

6
�Ā

†
2Ā3 − i

5√
6
�Ā

†
3Ā4 + H.c. (30)

The master equation (5) is now written as

dρ̃

dt
= −i[Heff,ρ̃] + �D[σ−]ρ̃, (31)

where ρ̃ = U
†
2U

†
1ρU1U2. It is seen that the first term in Hamil-

tonian (30) describes a squeezing-type interaction between
the qubit and mode Ā1. So the dissipator �D[σ−]ρ̃ will bring
mode Ā1 into the single-mode squeezed vacuum. Due to the
intramode interaction described by the rest of the terms of
Hamiltonian (30), the squeezing may be transferred from Ā1

to the other modes, Ā2,Ā3,Ā4. To make the process clearer
and more concrete, we apply the squeezing transformation
ρ̄ = S†ρ̃S to Eq. (31), in which S = ⊗4

j=1S(Āj ) and S(Āj ) =
exp(− 1

2 rĀ2
j + 1

2 rĀ
†2

j ) is the standard squeezing operator with

the squeezing degree r = tanh−1(ξ1/ξ2). Then, the master
equation (31) becomes

dρ̄

dt
= −i[H̄eff,ρ̄] + �D[σ−]ρ̄, (32)

where

H̄eff = g

√
ξ 2

2 − ξ 2
1 σ †Ā1 − i

√
6�Ā

†
1Ā2 + i

√
5

6
�Ā

†
2Ā3

−i
5√
6
�Ā

†
3Ā4 + H.c. (33)

In this transformed picture, the Hamiltonian H̄eff describes
a set of Jaynes-Cummings-type interactions. It is clear
that the qubit will continuously absorb energy from modes
Ā1,Ā2,Ā3,Ā4 and then decay back to its ground state with
the assistance of energy relaxation. According to the above
dissipative repumping process, the whole system will be
driven into the unique steady state, i.e., the ground state
⊗4

j=1|0Āj
〉 ⊗ |g〉, in which ⊗4

j=1|0Āj
〉 represents the tensor

product vacuum of the combined modes Ā1,Ā2,Ā3,Ā4. Going
back to the original representation, we will get the steady state
of the system,

|ψS〉 = ⊗4
j=1 exp

[
− r

2
(Ā†2

j − Ā2
j )

]∣∣0Āj

〉 ⊗ |g〉, (34)

with all the combined modes Āj stabilized onto the same
single-mode squeezed state at the stationary state, and the
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variances of quadrature combinations (10) will be

V1 = V (Ā1 + Ā
†
1) = e−2r ,

V2 = 3
2V (Ā2 + Ā

†
2) = 3

2e−2r ,

V3 = 1
4V (Ā1 + Ā

†
1) + 5

4V (Ā3 + Ā
†
3) = 3

2e−2r ,

V4 = 1
6V (Ā2 + Ā

†
2) + 5

6V (Ā4 + Ā
†
4) = e−2r . (35)

When the squeezing degree r is infinite, all four variances Vj

tend to zero. This means that the four resonators are prepared
in the steady-state linear cluster state. Compared with the
previous schemes [27–31], the distinct advantage of our work
is that it eliminates the complex procedures; that is, only one
step of quantum operation is needed to produce the CV cluster
state. Moreover, our scheme is based on a form of reservoir
engineering which can stabilize the CV cluster at steady state.
Hence, our scheme has significant advantages in practice and
is more feasible in experiment.

Now let us discuss the effects of several imperfect factors
to the preparation of the cluster state. For this purpose, we
numerically solve the master equation (31) with the effective
Hamiltonian (28). In the numerical simulation, the system is
initially set to be the ground state |g〉 ⊗ |0,0,0,0〉, and all the
parameters are chosen such that the approximations used in
deriving the effective Hamiltonian (28) are valid.

We first consider the ideal case without photon leakage
from the resonators. In Fig. 3, it is observed that the variances
V1, V2, V3, V4 converge to the constant close to zero. We can
further decrease the variances Vj by increasing the ratio ξ1/ξ2.
The numerical simulation proves that the steady state of the
four resonators is a CV linear cluster state.

In Fig. 3 the results with the nonzero resonator decay
rate are also shown. The decay rate of the resonators can
be written as κj = Qj/ωj , where Qj is the quality fac-
tor. If we set κj/2π = 0.001� = 10 kHz, corresponding to
a superconducting resonator with the frequency ωj/2π =
10 GHz and the quality factor Qj = 106, which is the most
achievable value in current experiments [39], as seen in Fig. 3,
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FIG. 3. Time evolution of variances (a) V1, (b) V2, (c) V3, and
(d) V4 for different values of the resonator decay rate. The parameters
are chosen as g/2π = 50 MHz, ξ2 = 0.2, ξ1 = 0.16, and �/2π =
5 MHz, �/2π = 10 MHz,�g = 0.

the variances deviate only slightly from those of the ideal
case. Actually, the rapid development in superconducting
quantum circuits holds great promise for implementing our
scheme. A transmission-line resonator with a quality factor
Q > 107 has been fabricated in experiment [65]. Additionally,
a superconducting qubit coupled to a high-quality microwave
resonator can easily reach the strong-coupling regime; that
is, g is approximately hundreds of megahertz [41,48], and
the time-dependent coupling strength αmn(t) between the two
resonators is several times ωj × 10−3 [55]. The present scheme
also needs the superconducting qubit with a large decay rate �,
which can be implemented by coupling it to an auxiliary bath,
such as an open transmission line that provides a relaxation
channel [61]. Therefore, the parameters in the numerical
simulation are reachable in current experiment.

For quantum information and computation on CV quan-
tum states, as usual, the homodyne measurement scheme
of quadrature components of fields is employed. In the
microwave-domain scheme, a single-mode resonator as the
field source is coupled to a transmission line via a leaky mirror,
and then linear amplifiers and a microwave quadrature mixer
using a local oscillator are used to measure the quadrature
amplitudes [66–68]. Thus, in a realistic situation, not only
the resonator loss due to coupling with various nonresonance
modes and intracavity imperfection but the loss of the leaky
mirror must be considered. In Fig. 3, the results with the
larger decay rate κ = 0.01� are also shown. By comparing
the results with different values of the resonator decay rate,
one can see that the present scheme can still be used to
prepare the CV cluster states even if the loss of the leaky
mirror in the homodyne measurement is included. On the
other hand, we may separate the preparation of CV states
from the measurement processes. For example, flux or charge
qubits used to measure intracavity modes may be synthesized
into the resonators. In the preparation step, the qubits are
detuned far from the resonators. In the measurement step after
the preparation, the qubits are tuned into resonance with the
resonators, and the resonator fields are extracted via the qubits
to the transmission lines or detectors. In this way, the loss of
the measurement to the preparation of the CV cluster states
may be ignored.

In the above discussions, we assume that the two coupling
strengths of the qubit with resonators 1 and 2 are equal. In
realistic situations, however, it is difficult to keep the couplings
the same. As pointed out above, the combined modes Ā1,3 may
undergo the squeezing transformation. and Ā2,4 may undergo
the antisqueezing transformation via the decay of the qubit
if the two coupling strengths are not equal. On the other
hand, there are swapping-type interactions between Ā1,2, Ā2,3,
and Ā3,4 in Eq. (29). Note that the swapping interactions are
invariable under the squeezing transformation, which means
that modes Ā2,4 may be brought into the squeezed state by the
swapping interaction if modes Ā1,3 are in the squeezed states.
Therefore, even if the two coupling constants are not equal, the
linear cluster state may also be created by properly balancing
the antisqueezing interaction and the swapping interaction.
In Fig. 4, the variances of the four combined modes for the
cases with �g = 0g,0.01g,0.03g are compared. It is clearly
observed that the coupling-constant difference which may
occur in the realistic case has no essential influence on the
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FIG. 4. Time evolution of variances (a) V1, (b) V2, (c) V3, and
(d) V4 for various values of the qubit-resonator coupling-strength
difference. The parameters are chosen as g/2π = 50 MHz, ξ2 = 0.2,
ξ1 = 0.16, and �/2π = 5 MHz, �/2π = 10 MHz.

present scheme. In other words, the present scheme is robust
against this imperfection.

In the present scheme, the two pairs of driving fields are
applied to the qubit. The fluctuation of either the amplitude
or phase of the driving fields may affect the present scheme.
In general, one should perform the statistical average of the
results over the fluctuation distribution of the amplitude or
phase of the driving fields. Since only the linear terms of the
amplitude ξlk are kept, the average over the noise distribution of
the amplitude leads to the replacement of ξlk by its mean value.
Thus, the fluctuation of the amplitude may have no strong
effect on the present scheme. In Hamiltonian (21), however,
the phase appears as eiφlk . In general, 〈eiφlk 〉 
= ei〈φlk〉. However,
to remove the time-dependent factors and extract the required
resonant interaction in Hamiltonian (21), the phase conditions
(23) have to be satisfied, and the exponential function eiφlk is
required. For this reason, the phases of the driving fields must

be strictly locked to the required values shown in Eq. (23).
Therefore, the phase fluctuation of the driving fields may have
a strong effect on the present scheme.

In the above investigation, only the amplitude decay of
the qubit is considered. When the Lindblad operator for
pure dephasing �φ

2 D[σz]ρ does not commute with the full
Hamiltonian, the unitary transformation used to diagonalize
the Hamiltonian alters the dissipation process and leads to
the phenomenon of dressed dephasing [69,70]. Note that the
Lindblad operator for pure dephasing �φ

2 D[σz]ρ is invari-
able under the unitary transformations U1 and U2. Thus, if
including the dephasing terms in Eq. (5), after the unitary
transformations, we obtain an equation the same as Eq. (31)
but with the additional term �φ

2 D[σz]ρ̃. Moreover, it can

easily be verified that �φ

2 D[σz]ρ̃ = 0, where ρ̃ = |ψS〉〈ψS | and

|ψS〉 = ⊗4
j=1 exp[− r

2 (Ā†2

j − Ā2
j )]|0Āj

〉 ⊗ |g〉. Thus, the pure
dephasing of the qubit will not affect the steady state of the
present scheme.

IV. CONCLUSION

In conclusion, we have proposed generating quadripartite
CV cluster states in a circuit QED system consisting of
four superconducting coplanar waveguide resonators and a
superconducting flux qubit. With a suitable choice of the qubit-
resonator and resonator-resonator interactions, we showed that
the dissipation of the qubit can be utilized to bring the four
resonators into CV cluster states at steady state. The distinct
advantage of our scheme is that a one-step quantum operation
is adequate for achieving the quantum state production, which
has a great advantage in experiment.
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