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Single-laser-pulse implementation of arbitrary ZY Z rotations of an atomic qubit
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Arbitrary rotation of a qubit can be performed with a three-pulse sequence, for example, ZYZ rotations.
However, this requires precise control of the relative phase and timing between the pulses, making it technically
challenging in optical implementation in a short time scale. Here we show any ZYZ rotations can be implemented
with a single laser pulse, that is, a chirped pulse with a temporal hole. The hole of this shaped pulse induces
a nonadiabatic interaction in the middle of the adiabatic evolution of the chirped pulse, converting the central
part of an otherwise simple Z rotation to a Y rotation, constructing ZYZ rotations. The result of our experiment
performed with shaped femtosecond laser pulses and cold rubidium atoms shows strong agreement with the
theory.

DOI: 10.1103/PhysRevA.96.012326

I. INTRODUCTION

A qubit is the information stored in the quantum state
of a two-level system, routinely used as the smallest unit
of information processed in the quantum-circuit model of
quantum computation [1]. In order to construct a universal
computational gate set, single-qubit rotations about at least two
distinct rotational axes are required, as well as a two-qubit gate,
e.g., the controlled-NOT (CNOT) gate. Single-qubit rotation
gates, such as Hadamard and Pauli X, Y , and Z gates, have
been implemented in numerous physical systems, including
photons [2], ions [3], atoms [4], molecules [5], quantum dots
[6], and superconducting qubits [7].

Many single-qubit rotations in a sequence can also be
performed with a single arbitrary rotation gate, which sim-
plifies otherwise complex physical implementation of many
distinct rotations in a unified fashion. An arbitrary rotation
(of rotation angle φ and rotational axis n̂) can be constructed
with a minimum of three rotations that correspond to the set
of Euler angle rotations: for example, the three rotations in the
best-known ZYZ decomposition are given by

Rn̂(φ) = Rẑ(�2)Rŷ(�)Rẑ(�1), (1)

where R represents a rotational transformation, and n̂ and φ

are respectively given as a function of three rotation angles
�1, �2, and � [8]. In an optical implementation of two-level
system dynamics, Z rotations use either a time evolution or a
far-detuned excitation [9,10], and X or Y rotations a resonant
area-pulse interaction, both of which and their combinations
require a precise control of the relative phase and timing among
the constituent pulsed interactions.

In this paper, we show that an arbitrary rotation can be,
alternatively, performed with a single laser pulse, when the
pulse is programed to be a chirped pulse with a temporal
hole. As discussed in the rest of the paper, a single laser pulse
with the given pulse shape can implement ZYZ-decomposed
rotations all at once, where the temporal hole in the middle of a
chirped pulse induces a strong nonadiabatic evolution, which is
a Y rotation, amid an otherwise monotonic adiabatic evolution,
a Z rotation, due to the chirped pulse. The predicted behavior
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of the ZYZ decomposition is to be experimentally verified
with cold atomic qubits and as-programmed femtosecond laser
pulses.

II. THEORETICAL ANALYSIS

We consider the dynamics of a two-level atom, driven by a
chirped laser pulse with a temporal hole. The electric field of
the pulse, where both the main pulse and the hole are assumed
to be of Gaussian pulse shape, is given by

E(t) = A0(e−t2/τ 2 − ke−t2/τ 2
h ) cos(ω0t + αt2 + ϕ), (2)

where A0 is the amplitude, τ and τh are the widths of the
main pulse and the hole, respectively, k (0 � k � 1) is the
depth of the hole, α is the linear chirp parameter, and ϕ is
the carrier phase (see Appendix A). The contribution of the
carrier phase is a simple Z rotation, i.e., Rẑ(ϕ), so we first
consider the ϕ = 0 case. When the base vectors are defined by
|g〉 and |e〉 (of respective energies −h̄ω0/2 and h̄ω0/2), the
Hamiltonian in the adiabatic basis [11,12] (see Appendix B),
after the rotating-wave approximation, is given by

HA = h̄

2

[
λ− −2iϑ̇

2iϑ̇ λ+

]
, (3)

where λ± = ±√
�2 + �2 are the eigenvalues, for the Rabi

frequency � and the instantaneous detuning � = −2αt , and
ϑ is the adiabatic mixing angle defined by 2ϑ = tan−1 �/�

for 0 � ϑ � π/2. However, with Eq. (3), the phase of the state
diverges at t → ±∞, so we use an additional transformation
T� = exp (i

∫ t

0 T�dt ′/h̄) with T� = h̄
2 [−|�| 0

0 |�|] to remove
this rapidly oscillating phase. The resulting Hamiltonian that
represents the dynamics of the adiabatic state in the “detuning”
interaction picture is given by

H� = h̄

2

[|�| − √
�2 + �2 −2iϑ̇e−i|�|/2

2iϑ̇ei|�|/2
√

�2 + �2 − |�|
]
, (4)

and corresponding base vectors are |0(t)〉� and |1(t)〉�.
Figure 1 shows the behavior of the mixing angle ϑ ,

compared with the Rabi frequency � for various hole depth k

(first column), and the corresponding Bloch vector evolution
in the detuning interaction picture (second column) and in
the “atomic” interaction picture (third column). The pulse
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FIG. 1. Time dependence of Rabi frequency � and mixing angle ϑ plotted for (a) a chirped pulse, (b) a chirped pulse with a temporal hole
of width τh = 0.1τ and depth k = 0.65, and (c) a chirped pulse with a temporal hole of width τh = 0.1τ and depth k = 9. (d)–(f) Bloch vector
evolution of the adiabatic states in the “detuning” interaction picture, corresponding to (a), (b), and (c), where the x axis is the azimuthal angle
of the Bloch sphere and the y axis is the polar angle. In (d)–(f), the north pole (when polar angle is zero) is |0〉� and the south pole (when polar
angle is π ) is |1〉�. (g)–(i) Bloch vector evolution in the “atomic” interaction picture corresponding to (a), (b), and (c). In (g)–(i), the north pole
(when polar angle is zero) is |g〉ω0 and the south pole (when polar angle is π ) is |e〉ω0 . The thick red lines in (b), (c), (e), (f), (h), and (i) indicate
the −τh < t < τh region (see text). The horizontal dashed lines in (d)–(i) indicate the polar angles of the initial and final states, which show
that the amounts of change in the polar angle are the same between the detuning and atomic interaction pictures.

and the transformed base vectors are |g〉ω0 = Tω0 |g〉 and
|e〉ω0 = Tω0 |e〉. Then, using an arbitrary state ψ(t), the relation
between the interaction picture of the atomic basis (labeled
with ω0) and the interaction picture of the adiabatic basis
(labeled with �) is given by

|ψ(t)〉� = T�(t)R(ϑ(t))TωL
(t)T †

ω0
(t)|ψ(t)〉ω0, (5)

which, without a hole in Fig. 1(a), shows slow change in ϑ

and relatively large �, suggesting that the adiabatic condition,
2ϑ̇ � |λ+ − λ−|, is satisfied in all time. So, a pulse without
a hole induces an adiabatic evolution, i.e., a Z rotation in the
adiabatic basis, as depicted in Fig. 1(d).

On the other hand, the pulses with a hole in Figs. 1(b)
and 1(c) exhibit abrupt change in ϑ near t = 0. Therefore,
the overall dynamics can be decomposed to subdynamics in
three different time zones: t < −τh, −τh < t < τh, and t > τh,
as shown in Figs. 1(e) and 1(f). In the central time zone
(−τh < t < τh), the hole makes � small and rapid change

in ϑ occurs. Since the Hamiltonian is dominated by the
nonadiabatic coupling (the off-diagonal components), it is
approximately given by

H�(t ≈ 0) ≈ h̄

2

[
0 −2iϑ̇

2iϑ̇ 0

]
, (6)

which corresponds to the Y rotation with rotation angle

� ≈
∫ τh

−τh

2ϑ̇ dt = 2[ϑ(τh) − ϑ(−τh)]. (7)

In both side regions (t < −τh and t > τh), Z rotations occur
due to the adiabatic evolution of the chirped pulse. The rotation
angles are respectively given by

�1 ≈
∫ −τh

−∞
[|�(t)| −

√
�2(t) + �2(t)]dt, (8)

�2 ≈
∫ ∞

τh

[|�(t)| −
√

�2(t) + �2(t)]dt, (9)
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and, as a result, the total time evolution, including the Z

rotation due to the carrier phase Rẑ(ϕ), is given by

Rẑ(�2)Rŷ(�)Rẑ(�1 + ϕ)

=
[
e−i(�1+�2+ϕ)/2 cos �

2 −eiϕ/2 sin �
2

e−iϕ/2 sin �
2 ei(ϕ+�1+�2)/2 cos �

2

]
, (10)

which corresponds to an arbitrary ZYZ rotation with three
parameters �1 + ϕ, �2, and � that can be made fully
independent.

Although the ZYZ rotation in Eq. (10) is derived for the
adiabatic states in the detuning interaction picture, |ψ(t)〉� =
T�|ψ(t)〉A, the result is also valid for the corresponding
original atomic states in the atomic interaction picture,
|ψ(t)〉ω0 = Tω0 |ψ(t)〉 (see Appendix B for the definition),
because of the simple relation between these two states at
t = ±∞. The relation between these two states is given by

|ψ(t)〉� = T�(t)R(ϑ(t))TωL
(t)T †

ω0
(t)|ψ(t)〉ω0, (11)

where the TωL
and R(ϑ) are the transformation to the “field”

interaction picture and the adiabatic transform matrix (see
Appendix B for details). At extreme times, t = ±∞, the
overall transformation becomes simple, given by

T�(±∞)R(ϑ(±∞))TωL
(±∞)T †

ω0
(±∞) = R(ϑ(±∞)), (12)

with R(ϑ(−∞)) = (1 0
0 1) and R(ϑ(∞)) = (0 −1

1 0 ). The
base vectors in these two representations are identical
(|0〉� = |g〉ω0 , |1〉� = |e〉ω0 ) at t = −∞ and switched (|0〉� =
−|e〉ω0 , |1〉� = |g〉ω0 ) at t = ∞. Therefore, the time evolution
in Eq. (10), the ZYZ rotations, defined in the {|0〉�,|1〉�} basis
(the detuning interaction picture) can be also written as

R†(ϑ(∞))Rẑ(�2)Rŷ(�)Rẑ(�1 + ϕ) (13)

in the {|g〉ω0,|e〉ω0} basis (the atomic interaction picture).
The third column in Fig. 1 shows the corresponding time

evolution in the atomic interaction picture. The net changes
of the state vector between the initial and final states are the
same as those in the second column (the detuning interaction
picture). Otherwise complicated time evolutions of the state
vector, e.g., in the atomic interaction basis, can be easily
decomposed to the ZYZ rotations in our detuning interaction
picture.

Figure 2 demonstrates the arbitrary qubit rotations. The
numerical calculation in Fig. 2(a) shows Bloch sphere points
accessible by as-shaped pulses controlled with two parameters,
A (the pulse area) and ϕ (the carrier phase). When the pulse
envelope is symmetric as in Eq. (2), �1 equals �2. In this case
and also when the qubit starts from the initial state given by

|ψinit〉 = 1√
2
(|0(−∞)〉� + |1(−∞)〉�)

= 1√
2
(|g〉ω0 + |e〉ω0 ), (14)

any final positions on the Bloch sphere are accessible, as shown
in Fig. 2(a). Even without assuming such an initial state, full
arbitrariness can be achieved with an additional degree of
freedom in pulse shaping. When detuning δω is implemented
by a time shift, δt = δω/2α, of the main pulse, the electric
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FIG. 2. (a) Final states on the Bloch sphere in the “atomic”
interaction picture, spanned by the resonant chirped pulse with a
temporal hole (�1 = �2 case), for an initial state (|g〉ω0 + |e〉ω0 )/

√
2.

The carrier phase ϕ and the equivalent TL pulse area A, defined in
Eq. (16), were varied, while τ = 5.9 ps, α = 1.25 rad/ps2, τh = 0.5τ ,
and k = 0.95 were kept constant. (b) Detuning δf = 2αδt/2π ,
which is associated with the time shift δt in Eq. (15), was used
as an additional control parameter to show that (the second) Z- and
Y rotation angles, �2 and �, are fully spanned, where τ = 2.95 ps,
α = 2.5 rad/ps2, τh = 0.5τ , and k = 0.7.

field is given by

E(t) = A0[e−(t−δt)2/τ 2
(1 − ke−t2/τ 2

h )] cos(ω0t + αt2), (15)

where the hole is fixed at t = 0. As shown in Fig. 2(b), then
the full range range 2π for �2 and π for � are completely
spanned, ensuring the given ZYZ rotations to be arbitrary.

We note that the equivalent transform-limited pulse area,A,
in Fig. 2 is defined with the pulse area of a transform-limited
(TL) pulse that has the same pulse energy as the shaped pulse,
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which is given by

A = μ

h̄

∫ ∞

−∞
dtE0e

−t2/τ 2
0

= 2μ

h̄

√
τ0

√
π

2

∫ ∞

−∞
dt |Eshaped(t)|2, (16)

where τ0 is the pulse width of the TL pulse. With this definition,
the pulse energies of the shaped pulse and the TL pulse are
equal; i.e.,∫ ∞

−∞
dt |E0e

−t2/τ 2
0 cos(ω0t)|2 =

∫ ∞

−∞
dt |Eshaped(t)|2. (17)

III. EXPERIMENTAL VERIFICATION

In order to verify the ZYZ rotations, we performed a
proof-of-principle experiment with cold atomic qubits and
as-programmed femtosecond laser pulses (see Fig. 3). The
detail of our laser experimental setup is described in our
previous work [13,14]. Briefly, we used amplified optical
pulses from a Ti:sapphire mode-locked laser. Initial pulses
were produced at a repetition rate of 1 kHz from the laser,
wavelength-centered at the resonance wavelength 795 nm of
the rubidium transition from 5S1/2 to 5P1/2. The spectral
bandwidth was 2.5 THz in Gaussian width, equivalent to a
pulse duration of 212 fs [full width at half maximum (FWHM)]
for a TL Gaussian pulse. The pulses were then shaped with an
acousto-optic pulse programming device (AOPDF; Dazzler
from Fastlite) [15]. The two-level system was formed with
the ground and excited states, |g〉 = 5S1/2 and |e〉 = 5P1/2,
of atomic rubidium (87Rb) and the atoms were held in a

shutter shutter

BSTitanium-sapphire
laser amplifier optical

delay line

AOPDF
BBO HPF

f=500mm

f=400mm

dichroic
mirror

85Rb
MOT

5S1/2

5P1/2 Rb+

MCP

Rb+

① ②

③

①② ③

FIG. 3. Schematic of the experimental setup: Laser pulses were
from the femtosecond laser and programed to operate arbitrary
single-qubit rotations of cold-atom qubits in a magneto-optical trap.
The inset shows the energy level structure of the atomic qubit along
with ionization states. The arrows labeled with numbers illustrate the
experimental pulse sequence.

magneto-optical trap [9]. The inhomogeneity of the laser-atom
interaction [16], due to the spatial intensity profile of the laser,
was minimized by reducing the size of the atom cloud 2.3
times smaller than the laser beam. The size of the atom cloud
was 250 μm (FWHM).

The control experiment was conducted in three steps:
initialization, qubit rotation, and detection. The atoms were
first excited by a π/2-area pulse to initialize the atoms in
the superposition state |ψinit〉 defined in Eq. (14). Then, the
chirped pulse with a temporal hole rotated the state. Finally,
atoms in the excited state were detected through ionization,
using a frequency-doubled split-off of an unshaped laser pulse
and a microchannel plate (MCP) detector.

The laser pulses for the initialization and qubit rotation
were programed by the AOPDF. In the frequency domain, the
combined field is given by

Ẽ(ω) = Ẽinit(ω) + Ẽrot(ω)eiϕ, (18)

where Ẽinit(ω) is the π/2-area pulse, Ẽrot(ω) is the chirped
pulse with a temporal hole, and ϕ is the relative phase between
them. The total energy of these two pulses was up to 20 μJ
and the energy of each pulse was precalibrated through cross-
correlation measurements. The chirp parameter for the control
pulse was fixed at α = 8.15 rad/ps2, which corresponds to the
frequency chirp of 60 000 fs2 in the spectral domain.

Figure 4 shows a comparison between experimental and
theoretical results. When atoms, in the initial superposition
state |ψinit〉 in Eq. (14), undergo the rotation in Eq. (10), the
excited-state probability is given by

Pe(�,ϕ,�1) = |〈e|Rẑ(�2)Rŷ(�)Rẑ(�1 + ϕ)|ψinit〉|2
= 1

2 [1 − sin � cos(�1 + ϕ)]. (19)

The resulting behavior of Pe is an oscillatory function, of which
the amplitude and phase are determined by � and �1 + ϕ. In
Fig. 4(a), the measured probability is plotted as a function
of the equivalent (peak) TL pulse area A and the carrier
phase ϕ. The result strongly agrees with the calculation in
Fig. 4(b), performed with the corresponding time-dependent
Schrödinger equation (TDSE). Each point in Figs. 4(a) and
4(b) corresponds to a distinct Bloch vector evolution. A
few characteristic trajectories (in the “detuning” interaction
picture) are shown in Figs. 4(c)–4(h) (see the figure caption
for more detail).

Along the dashed lines in Figs. 4(a) and 4(b), data points are
extracted and compared in Fig. 4(i), where the excited-state
probabilities, Pe(ϕ|�,�1), are plotted as a function of ϕ at
fixed � and �1. The change of the peak oscillation point in
Fig. 4(i) is related to the E0 dependence of �1 as in Eq. (19); �1

is a monotonically decreasing function of E0, so the peaks in
Fig. 4(i) shift to the upper right corner as E0 increases. Also,
the change in the oscillation amplitude is related to the E0

dependence of �. As the electric-field amplitude E0 increases,
so does the rotation angle � of the Y rotation; however, it is up
to a certain maximum E0, above which the dynamics involved
with the hole gradually becomes adiabatic. Such behavior of
� is clearly demonstrated in Fig. 4(i), where the oscillation
amplitude given by sin � in Eq. (19) reaches a maximum, along
curve 2, and decreases as E0 increases. Therefore, the expected
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FIG. 4. (a) Measured excitation probability Pe(�,ϕ,�1) of atoms initially in |ψinit〉 = (|g〉ω0 + |e〉ω0 )/
√

2, probed as a function of the
equivalent TL pulse area A and the carrier phase ϕ, where the chirped pulse with a temporal hole is defined in Eq. (2) with k = 0.7 and
τh = 0.4τ . (b) The corresponding TDSE calculation. (c)–(h) Bloch vector dynamics (in the “detuning” interaction picture) at selected points:
(c) (ϕ,A) = (0, π ), (d) (π/2, π ), (e) (π, π ), (f) (3π/2, π ), (g) (3π/2, π/2), and (h) (3π/2, 3π/2). (i) Comparison between the experimental
results and calculation along the three dashed lines in (a) and (b).

behaviors of �1 and � in Eq. (19) are clearly observed in the
experimental results.

IV. CONCLUSION

In summary, we proposed and demonstrated the use of
hybrid adiabatic and nonadiabatic interaction for single-laser-
pulse implementation of arbitrary qubit rotations. The chirped
optical pulse with a temporal hole induced ZYZ-decomposed
rotations of atomic qubits all at once, in which the temporal
hole caused a nonadiabatic evolution amid an otherwise
monotonic adiabatic evolution due to the chirped pulse. The
proof-of-principle experimental verification of the given laser-
atom interaction was performed with programed femtosecond
laser pulses and cold atoms. The result suggests that laser
pulse-shape programming may be useful in quantum com-
putation through concatenating gate operations in a quantum
circuit.
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APPENDIX A: CHIRPED PULSES IN FREQUENCY
AND TIME DOMAINS

A linearly chirped pulse is defined with a second-order
phase in the spectral domain, which can be written as

Ẽchirp(ω) = E0√
2�ω

exp

[
− (ω − ω0)2

�ω2
− ic2

2
(ω − ω0)2

]
,

(A1)

where a Gaussian pulse with amplitude E0 and frequency chirp
c2 is assumed and the frequency is centered at the resonance
ω0 of the two-level system. Then, the time-domain electric
field is given by

Echirp(t) = E0

√
τ0

τ
e−t2/τ 2

cos [(ω0 + αt)t + ϕ], (A2)

where ϕ = − tan−1(2c2/τ
2
0 )/2 is the phase, τ0 = 2/�ω the TL

pulse width, τ =
√

τ 2
0 + 4c2

2/τ
2
0 the chirped pulse width, and

α = 2c2/(τ 4
0 + 4c2

2) the chirp parameter.

APPENDIX B: HAMILTONIAN TRANSFORMATION

The dynamics of a two-level system interacting with a
shaped chirped pulse is governed by the Hamiltonian

H =
[−h̄ω0/2 μE(t)

μE(t) h̄ω0/2

]
, (B1)
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where the two base vectors are defined as |g〉 and |e〉. Being
transformed to the “field” interaction picture [with respect
to the instantaneous laser frequency ωL(t) = ω0 + 2αt], the
Hamiltonian H becomes

HωL
= h̄

2

[−�(t) �(t)
�(t) �(t)

]
, (B2)

after the rotating-wave approximation, where �(t) = ω0 −
ωL(t) = −2αt is the instantaneous detuning and �(t) is the
Rabi frequency. The transformation matrix from H to HωL

is
given by TωL

= exp(i
∫ t

0 TωL
(t ′)dt ′/h̄) with

TωL
= h̄

2

[−(ω0t + αt2) 0
0 (ω0t + αt2)

]
, (B3)

where the base vectors in the “field” interaction picture are
|g〉ωL

= TωL
|g〉 and |e〉ωL

= TωL
|e〉.

Chirp pulses induce adiabatic evolution, which is a Z

rotation in the adiabatic basis. The adiabatic base vectors are
given by

|0(t)〉A = cos ϑ(t)|g〉ωL
− sin ϑ(t)|e〉ωL

,

|1(t)〉A = sin ϑ(t)|g〉ωL
+ cos ϑ(t)|e〉ωL

, (B4)

where the eigenvalues are

h̄

2
λ±(t) = ± h̄

2

√
�2(t) + �2(t) (B5)

and the mixing angle ϑ(t) is

ϑ(t) = 1

2
tan−1 �(t)

�(t)
for 0 � ϑ(t) � π

2
. (B6)

The state in the adiabatic basis is given by |ψ(t)〉A =
R(ϑ(t))|ψ(t)〉ωL

, where |ψ(t)〉ωL
= TωL

|ψ(t)〉 and R(ϑ(t)) is
the adiabatic transform matrix defined as

R(ϑ(t)) =
[

cos ϑ(t) − sin ϑ(t)
sin ϑ(t) cos ϑ(t)

]
. (B7)

The Schrödinger equation is then given in the adiabatic basis
{|0(t)〉A,|1(t)〉A} by

ih̄
d

dt
|ψ(t)〉A = (RHωL

R−1 + ih̄ṘR−1)|ψ(t)〉A, (B8)

and the adiabatic Hamiltonian is

HA = h̄

2

[
λ− −2iϑ̇

2iϑ̇ λ+

]
, (B9)

where 2ϑ̇ in the off-diagonal term is the “nonadiabatic
coupling” given by

2ϑ̇ = |�̇(t)�(t) − �(t)�̇(t)|
�2(t) + �2(t)

. (B10)

With the adiabatic Hamiltonian HA, the phase of the state
diverges at t → ±∞ because of the detuning. To remove
this phase before and after the pulse duration, we perform
an additional transform T� = exp (i

∫ t

0 T�(t ′)dt ′/h̄) with

T� = h̄

2

[−|�(t)| 0
0 |�(t)|

]
. (B11)

The resulting Hamiltonian in this “detuning” interaction
picture, also in Eq. (3), is given by

H� = h̄

2

[−�F (t) �F (t)
�∗

F (t) �F (t)

]
, (B12)

where the modified detuning and Rabi frequency are

�F (t) =
√

�2(t) + �2(t) − |�(t)|,
�F (t) = −2iϑ̇e−i|�(t)|/2, (B13)

and the base vectors are defined by |0(t)〉� = T�|0(t)〉A and
|1(t)〉� = T�|1(t)〉A.

On the other hand, the conventional “atomic” inter-
action picture uses the transformation, given by Tω0 =
exp(i

∫ t

0 Tω0 (t ′)dt ′/h̄) with

Tω0 = h̄

2

[−ω0 0
0 ω0

]
, (B14)

to remove the phase factor associated with the atomic energy
splitting ω0. In this representation (the atomic interaction
picture), the base vectors are given by |g〉ω0 = Tω0 |g〉 and
|e〉ω0 = Tω0 |e〉.
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