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Capacity of coherent-state adaptive decoders with interferometry and single-mode detectors
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A class of adaptive decoders (ADs) for coherent-state sequences is studied, including in particular the most
common technology for optical-signal processing, e.g., interferometers, coherent displacements, and photon-
counting detectors. More generally we consider ADs comprising adaptive procedures based on passive multimode
Gaussian unitaries and arbitrary single-mode destructive measurements. For classical communication on quantum
phase-insensitive Gaussian channels with a coherent-state encoding, we show that the AD’s optimal information
transmission rate is not greater than that of a single-mode decoder. Our result also implies that the ultimate
classical capacity of quantum phase-insensitive Gaussian channels is unlikely to be achieved with the considered
class of ADs.
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I. INTRODUCTION

Quantum communication theory is a promising field for
the application of quantum technology since its predictions
could be applied in the short term in several settings of
practical relevance. An important example is communication
on free-space or optical-fiber links, which are well described
theoretically by quantum phase-insensitive Gaussian channels
[1–3], e.g., the lossy bosonic channel [4].

The maximum transmission rate of classical information on
a quantum channel, known as its capacity, is provided by the
Holevo-Schumacher-Westmoreland (HSW) theorem [5–9]. In
particular for quantum phase-insensitive Gaussian channels
the capacity at constrained average input energy can be
achieved [10–13] by a simple separable encoding, i.e., sending
sequences of coherent states [14], each of them constituting a
letter for a single use of the channel or communication mode.
This fact may seem surprising at first since coherent states are
among the simplest states of the electromagnetic field and often
are regarded as fundamentally classical. Nevertheless they
are sufficient to achieve the maximum communication rate
allowed by quantum mechanics on a broad class of channels
of considerable practical relevance. Unfortunately the truly
quantum challenge posed by these systems seems to reside in
the decoding procedures since all known capacity-achieving
measurements require joint decoding operations [8,9,15–26],
i.e., reading out entire blocks of letters at once by projecting
onto arbitrary entangled superpositions of the codewords.
Hence even the classical coherent-state encoding requires
a highly nontrivial quantum decoding to achieve capacity.
Such joint quantum measurements are difficult to design with
current technology [27–35] so that the quest for an optimal
decoder of separable coherent-state codewords that would
finally trigger practical applications is still open. Given the
difficulty of implementing truly joint quantum measurements,
research has then mainly focused on decoding coherent states
with the general class of adaptive decoders (ADs) depicted
in Fig. 1(a). The latter combines the available single-mode
technology, e.g., photodetectors and local transformations,
with multimode passive interferometers and classical feed-
forward control. The rationale behind this choice is that
introducing correlations between modes during the decoding
procedure may increase the transmission rate of simple

FIG. 1. Schematic of the class of (a) adaptive decoders (ADs)
and (b) separable decoders (SDs) considered, whose maximum
information transmission rate is proved to be equal. (a) In the AD
case the sender, Alice, encodes the message into separable sequences
of coherent states |α1〉1 ⊗ · · · ⊗ |αN 〉N and sends it to the receiver,
Bob, with N distinct uses of a quantum phase-insensitive Gaussian
channel � [yellow (light-gray) boxes], Eq. (2). Bob’s AD comprises
multimode passive Gaussian interferometers Ûj [blue (gray) boxes]
“Eq. (3)” and arbitrary destructive single-mode measurements Mj

[red (dark-gray) shapes] “Eq. (4)” adaptively dependent on the
measurement results of previous modes and applied successively
on the remaining modes. (b) In the SD case Alice uses the same
encoding, but Bob performs the same measurement M on each mode
and cannot use adaptive procedures.

separable measurements getting closer to the structure of joint
quantum measurements that seems to be ultimately necessary
to achieve the capacity of phase-insensitive Gaussian channels.

On the contrary, in this paper we prove that the maximum
information transmission rate of such channels with coherent-
state encoding and AD is equal to that obtained with a SD
employing the same measurement on each mode as shown
in Fig. 1(b). The general idea behind our proof is to map the
quantum AD into an effective classical programmable channel
with feedback to the encoder. Then we obtain our results by
extending Shannon’s feedback theorem [36,37] to this kind of
channel.
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Our paper gives several major contributions: (i) It implies
the conjecture by Chung et al. [38,39], namely, that adaptive
passive Gaussian interactions, single-mode displacements,
and photodetectors do not increase the optimal transmission
rate; (ii) if the HSW capacity of phase-insensitive Gaussian
channels is achieved only by joint measurements as the
evidence suggests so far, then it cannot be achieved with our
AD scheme; (iii) it extends the results of Takeoka and Guha
[30], who considered only Gaussian measurements; (iv) it
extends the analysis made by Shor [40] in the context of
trine states to coherent states and passive interactions. Our
results, although already envisaged in previous works on the
subject, have strong relevance for future research on practical
decoders: (i) they extend the study of decoders by considering
arbitrary single-mode manipulations before measurement, in-
cluding non-Gaussian and nonunitary ones; (ii) they exclude a
decoding advantage of adaptive passive Gaussian interactions,
which are the easiest to realize in practice, suggesting that
more difficult interactions are necessary to achieve capacity.
Furthermore the possibility of employing ancillary states is
partially included in our AD scheme: This is the case if
each ancilla is allowed to interact just with one mode before
being measured; otherwise, i.e., if the ancillae can interact
with several modes, the problem of determining the decoder’s
optimal rate remains open and could give a practical advantage
over SDs [41].

The article is structured as follows: In Sec. II we describe
in detail the communication protocol and the class of decoders
considered; in Sec. III we demonstrate that the AD’s optimal
rate is equal to the SD’s one; in Sec. IV we discuss implications
and draw our conclusions.

II. THE ADAPTIVE DECODER

Let us suppose that the sender, Alice, wants to transmit a
classical message on N -independent communication modes
employing coherent states of the electromagnetic field. The
latter are defined in terms of the field’s annihilation and
creation operators â, â† as displaced vacuum states of phase-
space amplitude α ∈ C, i.e., |α〉 = D̂(α)|0〉 with D̂(α) =
exp[αâ† − α∗â] as the displacement operator. The messages,
represented by the sequence of classical input random vari-
ables A(1,N) with letters Aj = {αj ∈ C} for each j = 1, . . . ,N ,
are encoded into a separable sequence of optical coherent states
|α(1,N)〉 = |α1〉1 ⊗ · · · ⊗ |αN 〉N , one for each mode |·〉j where
we have used the compact notation c(j,�), j � � to indicate
a sequence of quantities cj , . . . ,c� on different modes from
the j th to the �th one. Each message is chosen according to
a joint probability distribution PA(1,N) (α(1,N); E) at constrained
average input energy per mode E, i.e.,

∫
d2Nα(1,N)PA(1,N) (α(1,N); E)

N∑
j=1

|αj |2 � NE. (1)

Let us also suppose that the transmission medium is well
described by a quantum phase-insensitive Gaussian chan-
nel, represented by a linear completely positive and trace-
preserving map � on the Hilbert space of a single mode and
completely defined by its action on the displacement operator,

i.e.,

D̂(α)
�−→ D̂(μ1α)e−μ2

|α|2
2 , (2)

in terms of two parameters μi � 0 satisfying the constraint
μ2 � |1 − (μ1)2| [2]. As shown in Refs. [10–13], the separable
coherent-state encoding discussed above achieves the classical
capacity of � when its probability distribution is independent
and identically distributed and Gaussian on each mode.

The receiver, Bob, has an AD that outputs the sequence
of classical random variables Y(1,N), where Yj = {yj ∈ I} for
all modes j = 1, . . . ,N and I is the set of possible single-
mode outcomes, which can be discrete or continuous, e.g.,
I = R for homodyne detection. The probability distribution
of the output variables can be computed from the conditional
probability of obtaining an outcome sequence y(1,N) if the
input sequence α(1,N) was sent, i.e., PY(1,N)|A(1,N) (y(1,N)|α(1,N)).
The latter is determined by the specific decoding operations of
the AD, Fig. 1(a), comprising for all j = 1, . . . ,N :

(1) a multimode passive Gaussian unitary Ûj (y(1,j−1)), i.e.,
a network of beam splitters and phase shifters conditioned on
the outcomes of previous measurements, acting on the set of
modes from the j th to the N th as

Ûj (y(1,j−1))|α(j,N)〉 = |Uj (y(1,j−1))α(j,N)〉, (3)

where Uj is the (N − j + 1)-dimensional unitary matrix
representing Ûj in phase space, applied directly to α(j,N) as a
phase-space vector;

(2) single-mode operations and a final destructive mea-
surement, altogether represented by a local positive operator-
valued measure (POVM) Mj (λ(y(1,j−1))) chosen among a
set of possible POVMs that are labeled by the (discrete or
continuous) index λ ∈ � conditioned on the outcomes of
previous modes. Each POVM is defined by a collection of
positive operators corresponding to the possible single-mode
outcomes,

Mj (λ(y(1,j−1))) = {Êyj
(λ(y(1,j−1)))}yj ∈I , (4)

where the operators Êyj
sum up to the identity on the Hilbert

space of a single mode.
For our results to hold, a crucial assumption is that the

single-mode POVMs completely destroy the measured state
before any information is sent to the rest of the system; if
instead Bob can perform partial measurements the AD’s rate
may increase, see Ref. [40]. Let us also note that the generic set
of allowed POVMs described above can be restricted case by
case by properly choosing the Êy . For example the simplest
toolbox for optical-signal processing is that of the Kennedy
receiver [42] with POVMs of the form

Mken(λ) = {E0(λ),1 − E0(λ)}, (5)

E0(λ) = D̂†(λ)|0〉〈0|D̂(λ), (6)

where the index λ ∈ C is the amplitude of a phase-space
displacement in this case. Since the latter depends adaptively
on previous outcomes, the AD with a single-mode Kennedy
structure behaves similarly to a Dolinar receiver [43].

012317-2



CAPACITY OF COHERENT-STATE ADAPTIVE DECODERS . . . PHYSICAL REVIEW A 96, 012317 (2017)

III. THE OPTIMAL RATE

The performance of a quantum decoder for the transmission
of classical information can be evaluated by computing the
mutual information of its classical input and output random
variables. The latter is defined for our AD as

I (A(1,N):Y(1,N)) = H (Y(1,N)) − H (Y(1,N)|A(1,N)), (7)

i.e., the difference of the Shannon entropy [37] of Y(1,N)

and the Shannon conditional entropy of Y(1,N) given A(1,N).
The AD’s optimal information transmission rate then is
obtained by maximizing the mutual information (7) over the
input distribution with energy constraint E and the decoding
operations and regularizing it as a function of the number of
uses N , i.e.,

RAD(E) = lim
N→∞

max
PA(1,N) (α(1,N); E),

Ûj (y(1,j−1)),
λ(y(1,j−1)) ∈ �

I (A(1,N):Y(1,N))

N
. (8)

We want to compare the AD with the SD of Fig. 1(b),
comprising for each use of the channel � only a single-mode
POVM M(λ) chosen from the same set of those in the AD
parametrized by λ ∈ � “Eq. (4)” but without any interaction
or classical communication between modes. Obviously, the
optimal rate of this SD is obtained by maximizing the mutual
information of the single-mode input and output variables A1

and Y1 over the input distribution at constrained energy E and
the POVM’s parameter, i.e.,

RSD(E) = max
PA1 (α1;E),λ∈�

I (A1:Y1). (9)

In order to show that the optimization (8) reduces to (9), we find
it useful to consider a more general decoder comprising the AD
and a classical feedback link from Bob to Alice, that certainly
cannot decrease the optimal rate (8). Exploiting this feedback
and the phase-insensitive property of �, Alice can always
perform the Ûj instead of Bob. Hence all the AD’s interactions
are represented by a classical feedback to the encoder that
rearranges the remaining sequences α(j,N) ∈ A(j,N) into new
sequences β(j,N) ∈ B(j,N) with Bj = {βj ∈ C} for all modes
j = 1, . . . ,N , before transmission on the channel. Crucially,
each choice of Ûj corresponds to a different rearrangement
performed by the encoder in such a way that the total average-
energy constraint (1) still is respected by the joint probability
distribution PB(1,N) (β(1,N); E) of the new messages B(1,N).

As a function of the encoded variables βj , the rest of
the AD scheme can be rewritten as a single-mode classical
programmable channel, i.e., a channel with memory λ that
can be chosen adaptively depending on previous outcomes.
The corresponding conditional probability at the j th use then
is

PYj |Bj ,Y(1,j−1) (yj |βj ,λ(y(1,j−1)))

= Tr[Êyj
(λ(y(1,j−1)))�(|βj 〉〈βj |)], (10)

where Êyj
(λ)’s are the elements of the POVM Mj (λ) as in

Eq. (4).
In light of the previous observations we can conclude that

the AD of Fig. 1(a) with additional classical communication
from Bob to Alice is equivalent to the classical programmable

FIG. 2. Schematic of the classical communication scheme in-
duced by the quantum AD, Fig. 1(a). The input sequence α(1,N) ∈
A(1,N) is encoded [blue (gray box)] into single letters βj ∈ Bj that are
sent one by one on a classical memory channel [yellow (light-gray)
box] with output yj ∈ Yj for each j = 1, . . . ,N . The adaptive passive
interactions Ûj of the quantum scheme here correspond to a classical
feedback to the encoder, i.e., the encoding function that generates
each βj depends on the input message α(1,N) and on all previous
results y(1,j−1). The single-mode phase-insensitive channel � and
adaptive POVM Mj employed on each letter βj instead correspond
to several uses of a classical programmable channel, whose memory
at each use depends only on previous outcomes through the parameter
λ characterizing the measurement as in Eq. (10).

channel (10) with feedback as shown in Fig. 2. Hence the
AD’s optimal rate Eq. (8) is upper bounded by the feedback
capacity of (10). Similarly, the capacity of the programmable
channel without feedback for a single use is equal to the SD’s
optimal rate Eq. (9). Eventually, the two classical capacities
just defined are related via the following theorem, which is a
generalization of Shannon’s feedback theorem [36,37] to the
class of programmable channels considered:

Theorem 1. The feedback capacity of a classical pro-
grammable channel is equal to its capacity without feedback,
and it is additive.

Proof. Suppose we employ the channel to transmit a
classical message w ∈ W with probability distribution PW (w),
outputting yj ∈ Yj for each use j ; the most general technique
allows a feedback to the sender, who encodes the input message
into a sequence of letters βj ∈ Bj through an encoding
function βj = f (w,y(1,j−1)) for each use j . If β represents
the complex amplitude of a signal we must impose a total
average-energy constraint as in Eq. (1). The feedback capacity
of this classical programmable channel at constrained total
average energy per mode E is obtained by maximizing the
mutual information over the input distribution, the encoding
functions, and the programmable parameters λ(y(1,j−1)) for
each use,

Cf b
∞ (E) = lim

N→∞
max

PW (w),
f (w,y(1,j−1)),
λ(y(1,j−1)) ∈ �

I (W :Y(1,N))

N
. (11)

Similarly, for independent uses of the channel without feed-
back, the capacity at constrained average-energy E can be
defined as

C1(E) = max
PB1 (β1; E),

λ ∈ �

I (B1:Y1). (12)

Now let us note that Cf b
∞ (E) � C1(E) since among all adaptive

schemes involved in the optimization (11) there is one which
employs no feedback and the same single-mode measurements
that are optimal for Eq. (12). To prove the opposite consider
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the following:

I (W :Y(1,N)) =
N∑

j=1

I (Bj :Yj |Y(1,j−1))

�
〈

N∑
j=1

C1[Ej (y(1,j−1))]

〉
PY(1,N) (y(1,N))

� NC1(E), (13)

where the first equality follows from the chain rule of
mutual information and the fact that conditioning over W

and Y(1,j−1) is equivalent to conditioning over Bj and Y(1,j−1)

thanks to the encoding functions, i.e., H (Yj |W,Y(1,j−1)) =
H (Yj |Bj ,Y(1,j−1)). The first inequality instead is obtained
by employing the definition of Eq. (12) as an upper bound
on each mutual information term in the sum and writing
explicitly the average over the output distribution; the last
inequality follows from concavity of the classical capacity
as a function of the energy and the total average energy per
mode constraint, i.e.,

∑
j Ej (y(1,j−1)) = NE. Eventually by

plugging Eq. (13) into the definition (11) we obtain the upper
bound C

f b
∞ (E) � C1(E). �

This implies that the AD’s optimal rate is not greater than
the SD’s one. Since the former is certainly not smaller than the
latter, we conclude RAD(E) = RSD(E).

IV. IMPLICATIONS AND CONCLUSIONS

Our analysis implies that a broad class of adaptive decoders
for coherent communication on phase-insensitive Gaussian
channels, including a majority of those most easily realizable
with current technology, cannot beat the optimal single-mode-
measurement rate of information transmission. This in turn
seems to suggest that such decoders cannot achieve the HSW
capacity of phase-insensitive Gaussian channels; however
there is no actual proof that joint decoders are really necessary
for the task so that this possibility remains open. In any case our
result does not mean that block-coding techniques and adaptive
receivers are completely useless for practical applications;
indeed in general there may exist specific AD schemes that
are more convenient to implement than SD ones and perform
equally well, e.g., see the Hadamard codes [32–35].

Let us also note that, despite the fact that our result is very
powerful in decoupling the AD’s multimode structure for any
kind of single-mode POVM, still the difficult optimization of
the SD rate of Eq. (9) is left if one wants an explicit expression
of the rate for any set of POVMs. For example, we can simplify
this calculation for the set of single-mode receivers comprising

a coherent displacement followed by any other kind of single-
mode operation [the Kennedy receiver of Eq. (5) belongs to this
set]. Indeed let us define the variance of a single-mode input
probability distribution PA(α) over coherent states as V =
〈|α|2〉PA(α) − |〈α〉PA(α)|2; the energy is instead E = 〈|α|2〉PA(α).
One can decide to put a constraint either on the energy or on
the variance of the input signals, and the former is stricter
than the latter. It can then be shown that the net effect of the
displacement in a coherent-state receiver is simply to enlarge
the family of allowed input distributions from the energy- to
the variance-constrained ones so that the optimal rate (9) can
be computed on a shrunken set of allowed POVMs.

A particularly useful kind of single-mode receiver is that of
Kennedy, defined by Eqs. (5) and (6), employing a coherent
displacement and an on-off photodetector. The SD’s optimal
rate for this receiver has been computed in the low-energy limit
E 	 1 in Refs. [38,39], showing that it equals

Rken
SD (E) = E log

1

E
− E log log

1

E
+ O(E). (14)

Moreover the same authors have shown that an AD scheme
without unitaries has the same optimal rate and conjectured
that adaptive unitaries also do not help. Our result exactly
implies the validity of this conjecture for the particular choice
of POVMs (5),(6).

Eventually our result intersects with those of Refs. [30,40],
expanding the set of adaptive receivers whose optimal rate
is equal to that of separable ones. Indeed Ref. [30] com-
putes the capacity of coherent communication with arbitrary
adaptive Gaussian measurements showing it is separable; here
instead we considered a restricted interaction set, i.e., passive
Gaussians, but an extended single-mode measurement one,
i.e., arbitrary POVMs. As for Ref. [40], it is stated there that
adaptive schemes based on partial single-mode measurements
of all the modes may increase the optimal rate; here we
considered only destructive single-mode measurements but
included the simplest kind of interactions and still could
not surpass separable decoding rates. In particular, as stated
in Sec. I, our AD includes the use of ancillary systems
if they interact with just one of the received modes since
this process can be thought of as a part of the single-mode
destructive measurements. Unfortunately the interaction of
ancillary systems with multiple modes is not included since
it results in nondestructive measurements that could provide
an advantage over SDs. Future lines of research could be
as follows: studying the less-known, interesting class of
nondestructive adaptive decoders, computing explicitly the
optimal rate for other classes of POVMs, and exploring the
potential of squeezing and non-Gaussian interactions.
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