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We present an error-correcting protocol that enhances the lifetime of stabilizer code–based qubits which are
susceptible to the creation of pairs of localized defects (due to stringlike error operators) at finite temperature,
such as the toric code. The primary tool employed is periodic application of a local, unitary operator, which
exchanges defects and thereby translates localized excitations. Crucially, the protocol does not require any
measurements of stabilizer operators and therefore can be used to enhance the lifetime of a qubit in the absence
of such experimental resources.
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I. INTRODUCTION

For the past two decades, significant effort has gone
into devising schemes for encoding quantum information
in reliable and retrievable forms. Stabilizer error–correcting
codes are thought to be an effective strategy for performing this
encoding, because they allow an efficient means of detecting
and correcting errors. Among these, topological stabilizer
codes (or topological quantum memories) are particularly
promising strategies for storing quantum information due to
their intrinsic robustness to errors at zero temperature, their
ability to be efficiently implemented via a local Hamiltonian
[1], as well as the existence of efficient strategies for per-
forming error detection and correction [2–4], which have been
demonstrated in recent experiments [5]. Several exhaustive
studies have been performed on calculating error thresholds for
these topological codes, such as Kitaev’s toric code, both in the
presence and absence of error-correcting protocols [2,3,6–8].

However, these topological codes are well known to be
poor passive quantum memories at finite temperature in less
than four spatial dimensions [9–18] (for a thorough review, see
Ref. [19]). For physically realistic coupling to an environment,
local noise processes drive the creation of localized defects. In
the absence of an error-correcting protocol, the propagation of
these defects can then lead to decoherence of the memory.
For the case of the toric code, these error strings are
particularly pathological and cause the maximum lifetime of
an encoded qubit to decay exponentially with temperature
with a timescale independent of system size [12]. While
experimentally intractable, fault tolerant topological quantum
memories are nevertheless known to exist in four and six
dimensions [20,21].

On the other hand, a variety of active error correction
protocols exist for efficient detection and correction of errors.
As long as error rates and the temperature are low or,
alternatively, as long as detection and correction are fast
enough, the lifetime of these codes can in principle be
extended indefinitely. But these decoding strategies implicitly
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rely on resources that may not always be available or
efficiently physically implementable. For example, performing
a measurement on a quantum system requires a fresh ancilla
qubit for each measurement. Thus, continuously measuring
any quantum system requires continuously recycling ancilla
qubits for measurement—a procedure that will necessarily be
rate limiting for near term quantum architectures [22].

An error-correcting strategy for topological codes without
the need for stabilizer measurement is desirable. At face value,
ignoring the power of the stabilizer group will assuredly
provide a suboptimal strategy. But given limited resources and
rates of measurement, it is worthwhile to understand the limits
of strategies that do not require syndrome measurements and
to determine if such strategies can augment known decoding
schemes.

We provide here a new protocol for error correction of
pairs of localized defects, using a periodic sequence of unitary
operators in the presence of thermal dissipation. The required
thermal dissipation may be due to an interaction with a physical
bath or engineered via a dissipative protocol, but our protocol
does not require explicit measurements of stabilizer operators,
thus significantly reducing the required physical resources.
This pattern of operators is designed to encourage defects in
the system to dissipate more quickly. In this work, we explicitly
treat the theory for the one-dimensional (1D) Ising model at
finite temperature and describe how this approach may be
extended to other stabilizer codes, such as the toric code.
While dissipative protocols have previously been employed
to generate Hamiltonians [23,24], to prepare encoded ground
states [25], to mediate long-range interactions [26–28], and
to “trap” defects [4,29], a measurement-free protocol that
explicitly targets stringlike error processes has not been
proposed to date. While it does not completely eliminate errors,
the protocol presented here provides a significant enhancement
of the lifetime of a finite-size system.

It is known that stabilizer Hamiltonians at finite temperature
in dimension less than three have a system-size–independent
upper bound to their lifetime [12,14,15,30–34]. These “no-go”
theorems necessarily limit the extent to which the method
proposed here can be carried out. In fact, a size-independent
constant enhancement of a system’s lifetime may be the best
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one can get with a purely local unitary protocol like the one
presented here. Thus, this scheme, by itself, will not generate a
topologically protected quantum memory at finite temperature
for one or two dimensions. It is nonetheless worthwhile to
understand how far purely local protocols can be pushed,
because a large constant increase in the lifetime of a quantum
architecture could mean the difference between a physically
realistic architecture that can be fault tolerantly operated versus
one that cannot, as discussed in Sec. V C.

The rest of the paper is structured as follows: in Sec. II, we
briefly review the theory of stabilizer codes, discuss where our
strategy falls on the continuum of different active and passive
strategies used in the literature for implementing these codes,
and sketch how they can be modeled at finite temperature. In
Sec. III, we describe how the 1D Ising model can be treated as
a stabilizer code and discuss the low-temperature dynamics of
the model. In Sec. IV, we construct our autonomous protocol,
built out of local unitary operators, and discuss the scaling
behavior of the protocol. We also demonstrate evidence for the
enhancement of the lifetime of the 1D Ising model. In Sec. V,
we sketch how our protocol generalizes to higher dimensions
and to other stabilizer codes, including the toric code.

II. STABILIZER CODES

A. Definitions

In this section, we briefly review the theory of stabilizer
error correcting codes [35,36]. Given n qubits, a collection
of operators Si , and 2k states |ψ〉i ,i = 1,..,2k , which span a
subspace in which k encoded qubits are defined as

Si |ψ〉i = +1|ψ〉i , (1)

[Si,Sj ] = 0, (2)

for all i,j . Furthermore, suppose there are m error operators
Ej ,j = 1,..,m, and that for each of them, there exists some
not necessarily unique operator Sj , such that

{Ei,Sj } = 0. (3)

Stabilizer codes are those collections of states |ψ〉i and
operators {Sj } which satisfy the above conditions for error
operators belonging to some subset of the Pauli group—tensor
products of Pauli operators with the identity.

For example, given three qubits, let |ψ〉1 = |↑↑↑〉 and
|ψ〉2 = |↓↓↓〉. Then the set of operators Si satisfying Eqs. (1)
and (2) is {σzσzI,Iσzσz}. One can easily determine that the
set of error operators Ei corresponding to these two stabilizer
operators is {σxII,IσxI,IIσx,σxσxI,σxIσx,Iσxσx}.

More transparently, this three-qubit stabilizer code encodes
two protected states. If some noise source were to apply any
single qubit σx operator, or any two-qubit σ i

xσ
j
x operator, mea-

surement of the set of stabilizer operators would indicate the
presence of an error. Furthermore, the code can actually detect
and correct single σx errors. For example, a measurement result
of −1,+1 of the stabilizers σzσzI and Iσzσz, respectively, indi-
cates either an error on the first qubit or two errors on the latter
two qubits. In a sufficiently noisy environment, these two errors
would be indistinguishable—i.e., degenerate—but for many
noise models, the single error situation is much more likely,

so that a single σx operator applied to the first qubit will more
often than not return the qubit back into the protected subspace.

B. Active state preservation versus dissipative
Hamiltonian engineering

Here we will refine our discussion by broadly classifying
error correcting approaches into (1) active state preservation
strategies and (2) Hamiltonian engineering strategies.

The target of both strategies is the same: the preservation of
an encoded stabilizer state. In state preservation, a stabilizer-
encoded state is preserved by the application of a sequence of
unitaries. However, ignoring noise sources, the natural Hamil-
tonian that describes the system is H = 0. The target of such a
strategy is preservation of the stabilizer state itself. Implicitly,
some sort of active error measurement and correction needs to
be performed once the state is initially prepared.

In contrast, in Hamiltonian engineering approaches [37],
the encoded state is preserved by implementing a Hamiltonian
on a set of qubits, which has a ground-state manifold
composed of stabilizer-encoded states. The encoded state is
then preserved by keeping the quantum system at a sufficiently
low temperature to suppress errors.

Combinations of these strategies exist. For example, one
could use a Hamiltonian engineering approach to generate
a stabilizer encoded state and then immediately turn off the
Hamiltonian once the desired encoded subspace was reached,
preserving or preparing a particular state at further times with
active error correction or other control fields. Alternatively, one
could use Hamiltonian engineering to preserve the state in the
encoded subspace and then use a combination of dissipation
with an additional protocol to detect or correct errors. We
shall focus here on this latter strategy. Specifically, we will
be concerned with systems being dissipatively driven toward
the ground-state subspace of a stabilizer Hamiltonian, and we
shall build an autonomous error correction protocol to mitigate
the ways in which dissipation alone fails to keep the state in
its initial encoded state. Furthermore, we are not explicitly
concerned with the process of state creation, and we always
assume that our systems are initialized to an encoded state.

C. Error-correcting master equation

To dissipatively generate a stabilizer code, one forms the
system Hamiltonian as the negative sum of the stabilizer
operators for the code of interest, i.e., H = −∑

i Si . This
guarantees that the ground state of that Hamiltonian will
be the encoded subspace. Furthermore, this ensures that
configurations of the system with errors present are excited
states.

To model dissipation in such a code, we employ here a
Lindblad master equation. Without loss of generality, but to
simplify analysis, we assume that the bath only operates on
the system with purely local errors, and that these local errors
correspond to the Ei [see Eq. (3)] of the stabilizer code of
interest. For the ground state, the dynamics may be described
by the Lindblad equation:

ρ̇ =
∑

ω

2cωρc†ω − c†ωcωρ − ρc†ωcω. (4)
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FIG. 1. A snapshot of a linear stabilizer code with detection and
correction operators O. The optimal error correction operator has
nontrivial system size scaling and in general depends on the particular
code being used.

Here, ρ is the system density matrix for some candidate
system and {cω} = {√γωLω} are Lindblad operators arising
from interactions with a bath, where the Lω act on the
system with characteristic rates γω. Error processes can
then be represented by products of the Lindblad operators:
{c1

ωc2
ω · · · cn

ω}.
A necessary condition for error correction to occur to nth

order in the error processes is to apply the inverses of the
error processes sufficiently rapidly. If we restrict ourselves to
stabilizer codes on lattices, then the recipe for error correction
is straightforward: measure the stabilizers of the code and
apply correction operations conditioned on the results of the
stabilizer measurements.

While it is in principle possible to measure all of the
stabilizers of a given system simultaneously because they
all commute, it will be convenient to decompose a given
correction protocol into groups of terms involving operators
only acting within a characteristic length scale λ. This is useful
because it provides a natural scale for treating stabilizer codes
with fixed resources, and it allows the interpretation of different
protocols as the implementation of a certain kind of effective
long-range interaction.

D. Error correction thresholds and scaling

Much of the power of stabilizer codes arises from the
existence of error thresholds. Specifically, as the stabilizer
code is made sufficiently large, the probability of returning to
the original code state goes to 1, as long as measurement
and correction cycles occur sufficiently fast compared to
the threshold error rate. This can give rise to a competition
between the resources necessary to perform error correction
and detection for stabilizer codes involving many qubits,
versus the scaling of the error rate of the code with system
size.

For concreteness, consider a stabilizer code, with correction
and detection steps idealized by operators O acting over a
length scale λ as in Fig. 1. How these operators scale with
system size depends crucially on the particular code and the
specific error correction scheme. For example, it is known [38]
that a purely local scheme with λ independent of system size

can achieve a threshold in the toric code via a cellular automata
construction at the expense of a reduction in the error threshold.
This scheme requires measurements and classical decoding. In
contrast, the naive implementation of minimum weight perfect
matching using Edmond’s algorithm [39] to error correct the
toric code requires measurements as well as global classical
processing—that is, the lengthscale λ of the error correcting
operator O, which implements Edmond’s algorithm grows
with system size, but with a larger resulting threshold. In this
way, global resources can be converted to local resources at
the expense of the magnitude of the fault tolerance threshold.

For protocols like the one presented here, which neither
yield a threshold nor use measurements, the tradeoff between
resources and system lifetime is less obvious. In anticipation
of the following sections, one might expect a larger λ protocol
would dominate over a smaller λ protocol, because the
larger λ protocol corrects “more” errors. However, this is not
generically the case, and the success of a given error-correcting
procedure depends nontrivially on λ, L, and the fundamental
noise rates of the system.

We spend a large fraction of the remainder of the manuscript
elaborating on our protocol’s scaling properties. Because we
seek a protocol without measurements, we first motivate
our construction with a summary of the conventional error
correction operator for the 1D Ising model in Sec. IV A,
discuss the most common finite temperature error processes in
Sec. IV B, and then detail our measurement-free construction
in Sec. IV C. Next, we explicitly derive how the lifetime of
the 1D Ising model is improved by our measurement-free
construction and connect the scaling of the enhanced lifetime
to the scaling properties of the protocol with λ in Sec. IV D.
Finally, we elaborate on how our protocol can be generalized
to higher dimensions in Sec. V, including its expected scaling
properties.

III. 1D ISING MODEL

A. 1D Ising model as a stabilizer code

The choice of three-qubit stabilizer code introduced in
Sec. II A was deliberate, because it can naturally be extended
and interpreted as the ground state of a 1D Ising model:

H1D Ising = −�

L∑
i=1

σ i
zσ

i+1
z . (5)

The ground state subspace of this model is twofold
degenerate and is composed of the states |↑ · · · ↑〉 and |↓ · · · ↓〉.
These ground states are exactly the L-qubit analogues of
the three-qubit code treated previously. These states are
stabilized by the set of all adjacent pairwise σz operators
{II · · · Iσ i

zσ
i+1
z I · · · I }, where i runs from 1 to L. These are

precisely the operators appearing in the Hamiltonian of the
1D Ising model. For the remainder of our analysis, we assume
without loss of generality that � = 1.

Furthermore, σx errors are equivalent to excited states.
In the simplest case, errors can be corrected by resorting to
a simple majority rule—if most spins point in a particular
direction, the correction protocol returns the state to the
encoded ground state corresponding to that direction.
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B. 1D Ising model at finite temperature

By coupling the Ising model to an external reservoir, one
might hope to dissipatively drive the 1D Ising model into one of
these encoded states. However, the 1D Ising model has no finite
temperature ordered phase, so at all finite temperatures, the
system evolves toward the unique thermal state. Furthermore,
this timescale over which the system relaxes to a thermal
state is known to be independent of the size of the chain,
given modest bath assumptions [40]. Thus, dissipation by
itself cannot protect the 1D Ising model, and an additional
protocol needs to be implemented in order to correct thermal
errors. While dissipation cannot protect the 1D Ising model
at finite temperature, it is instructive to understand the details
of how thermal fluctuations lead to instability in this simple
case, because very similar processes are responsible for the
instability of many other stabilizer codes at finite temperature.
In previous work, we examined the dynamics of this model,
as well as of the toric code, at finite temperature [18]. In
particular, we identified a low temperature regime where the
dynamics are well described by a simple random walk model.
We briefly summarize the analysis below.

When studying the error dynamics, it is convenient to
consider the dual lattice of the Ising model: we imagine a new
1D lattice with sites interleaved between the sites of Eq. (5)
and associate auxiliary spin values bi with them. The auxiliary
site’s spin values are uniquely determined by the products
bi = σ i

zσ
i+1
z , where site bi defined by this equation sits

between site i and i + 1. We can identify these extra variables
with domain walls. If adjacent spin variables disagree, then the
auxiliary site sitting between them will have bi = −1. If all but
a contiguous block of spins disagree, then all auxiliary sites
will have bi = 1, except for those two sites that sit at the two
boundaries of the contiguous blocks of spins. Describing the
dynamics of these domain walls is equivalent to describing the
spin dynamics, because if one knows all the auxiliary variables
plus any single spin value, σ i

z , one can reconstruct all of the

remaining spin variables σ
j
z .

For simplicity, we assume a bath that operates on the system
only by creating, destroying, or translating domain walls.
Then, for sufficiently low temperatures, occasionally the bath
will cause an adjacent domain wall pair to appear in the system.
Bath fluctuations will cause this pair of domain walls to fluctu-
ate across the system, effectively causing the domain walls to
undergo a 1D random walk. When domain walls are adjacent,
it is energetically favorable for them to be dissipated. If domain
walls fuse before traversing the length of the system, the
encoded state will be preserved. But if domain walls undergo a
random walk such that one winds entirely around the system,
this effectively performs an uncorrectable error on the encoded
qubit because the system will have transitioned from one
encoded ground state to the other encoded ground state [18].

C. Microscopic master equation

When the bath operates on the system with purely local
spin-flip errors, which only create, destroy, and translate
domain walls, the Lindblad operators are of the form

{cω} = {√γ0Tb,
√

γ+D
†
b,

√
γ−Db}. (6)

When resolved in the Pauli basis and factored, these
operators take a simple form:

D
†
b = 1

4 (IσxI )(1 + Iσzσz)(1 + σzσzI ),

Db = 1
4 (IσxI )(1 − Iσzσz)(1 − σzσzI ),

Tb = 1
4 (IσxI )(1 − Iσzσz)(1 + σzσzI ). (7)

A short calculation verifies
∑

i LiL
†
i = I . Physically, these

operators represent the creation of a domain wall pair at dual
lattice sites b and b + 1 (D†

b), annihilation of a pair of domain
walls at dual lattice sites b and b + 1 (Db), and the translation
of a domain wall from b to b + 1 (the adjoint translates
b + 1 to b) (Tb). Intuitively, these operators are built from
projectors (1 ± Iσzσz) which pick out those configurations
relevant to each process. For example, the combination
(1 + Iσzσz)(1 + σzσzI ) projects onto the subspace with no
domain walls between the first and second or second and third
spins. The leftmost (IσxI ) term then performs the spin flip,
effectively creating a domain wall.

Additionally, these operators only connect diagonal ele-
ments of the density matrix to other diagonal elements. This
reduces the time evolution of the diagonal matrix elements to
a classical master equation:

dPn

dt
= γ0

∑
n0

(
Pn0 − Pn

) +
∑
n+

(γ−Pn+ − γ+Pn)

+
∑
n−

(γ+Pn− − γ−Pn), (8)

where Pn := ρnn, and the indices n0, n+, and n− run over those
eigenstates connected to nth state by a single application of
the operator Tb,D

†
b, or Db, respectively. The rates with which

these operators are applied, i.e., γ0, γ+, and γ−, are set by the
specific choice of bath model. For simplicity, we consider here
a Markovian bath. The rates of such a bath are determined by

γ (ω) = ξ

∣∣∣∣ ωn

1 − e−βω

∣∣∣∣, (9)

where ω is the amount of energy exchanged when a particular
Lindblad operator acts on the system. The relevant rates for our
study are γ−, γ+, and γ0, corresponding to domain wall pair
annihilation, pair creation, and translation, with energy scales
of −4�, 4�, and 0, respectively. Different n correspond to
different types of baths—for n = 1 the bath is ohmic, and for
n � 2, the bath is superohmic [13]. For our purposes, it will
be more convenient to treat γ0 as a tunable parameter to study
the scaling behavior of our protocol. Qualitatively, γ0 scales
linearly with T for ohmic baths and equals zero for superohmic
baths. For simplicity, we work in units where ξ = 1.

For more details of the master equation approach used to
study this model, see Ref. [18].

IV. THE PROTOCOL

A. Protocol considerations for the 1D Ising model
with measurements

While we are interested in developing protocols that
do not use measurements, we first review a conventional
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|q1〉
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•
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FIG. 2. Circuit for performing error suppression for a subregion
of the 1D Ising model. Qubits q1 through q4 are lattice sites on an
Ising chain. s1 through s3 are ancillas used to read out the syndrome
measurements of ZZ on the nearest-neighbor Ising lattice sites. Based
on the results of the syndrome measurements, the conditional unitary
operator CU corrects the errors present. A table that defines CU

is provided in Appendix A. This entire circuit represents a possible
realization of one such operator O from Fig. 1.

measurement-based protocol for performing error correction
in the 1D Ising model.

In the absence of resource constraints, it is straightforward
to construct the operators that correct errors in the 1D Ising
model. According to the schematic shown in Fig. 1, the
λ = 2 analog of O is simply the domain-wall annihilation
operator, Db from Eq. (7). In more generality, for larger λ the
corresponding O is the operator which, given an even number
of domain walls, annihilates all domain wall pairs in the region
being operated upon. For example, the circuit for the λ = 3
version of this operator is depicted in Fig. 2. Note that for
an odd number of domain walls, there is not an unambiguous
choice for how to annihilate domain walls because a free,
unpaired domain wall is always left over.

Thus, the most straightforward conventional error-
correcting protocol is simply to measure the system’s stabi-
lizers often enough that one can unambiguously locate pairs
of domain walls and then perform correction operations, as
indicated in Fig. 2. This can be represented by a sequence
of measurement operators, the stabilizer for the 1D Ising
model, Si , interleaved by conditional application of corrective
unitaries: DSWAP and DWALL. These operators have the
following representation in the Pauli basis:

DWALL = 1
2 (III + IσxI − σzIσz + σzσxσz), (10)

DSWAP = 1
2 (III + IσxI + σzIσz − σzσxσz), (11)

where there is a pair of these operators for each triple of
lattice sites. In Fig. 2, the details of the four-qubit operator
CU are abstracted away (see Appendix A), but it can be
decomposed into applications of DSWAPs and DWALLs,
conditioned on syndrome measurements. A simple calculation
shows [HIsing,DSWAP] = 0 and [HIsing,DWALL] = +4�.

Intuitively, DWALL destroys (creates) a domain wall pair at
the dual lattice site in-between the three qubits being operated
on if and only if a domain wall pair is present (or, all of the
spins are aligned), respectively. DSWAP translates a domain
wall, either left or right, if and only if a single domain wall
exists between the three spins being operated on.

Error correction protocols for the 1D Ising model can thus
be understood as procedures for efficiently dissipating domains
walls before they propagate too far. We leverage this intuition
in the following sections to build a procedure that dissipates
domain walls without explicit knowledge of the locations of
those domain walls.

B. A protocol without measurements

Because we seek a protocol without explicit measurements,
the natural operators for such a procedure are DWALL and
DSWAP. DWALL is inconvenient, both because the bath
already acts to dissipate excitations and because it can lead
to the generation of extra, uncontrolled domain walls more
easily than the DSWAP operator. Consequently, we only use
DSWAPs in our protocols.

If we restrict our attention to the low-temperature regime
with the rate assumption Lγ+ � 1, then the lifetime of the
Ising chain is governed by the dynamics of single pairs of
defects. For error correcting purposes, it is convenient to
classify the common geometries of pairs of domain walls. First,
correctable errors are those errors for which the pair of domain
walls is not yet separated by L/2 or more. Noncorrectable
errors are those domain wall configurations in the complement
of this set. In the language of error correction, the distance
for this code is �L/2�—more transparently, correctable errors
are those errors that will be correctly matched by a perfect
decoder. Furthermore, we need to distinguish between trivial
and nontrivial defect pairs. A domain wall pair is trivial if
two domain walls sit on neighboring dual lattice sites. Again,
assuming we operate in the low-temperature regime, these
trivial defect pairs annihilate with rate γ−—that is, much faster
than other time scales of the problem. Nontrivial pairs are those
pairs that are not on neighboring dual lattice sites.

Designing a successful protocol for the Ising model
amounts to designing a sequence of DSWAPs that efficiently
dissipates nontrivial, correctable defect pairs. If we let χ be
the rate at which DSWAPs can be applied, then we expect an
enhanced lifetime given the following rate assumptions:

γ− 	 χ/O[poly(L)] ∼ γ0 > γ+. (12)

To wit, DSWAPs are applied at a rate much slower than the
inherent annihilation rate of the system—this is so DSWAPs
do not turn trivial defect pairs into nontrivial defect pairs.
Furthermore, χ is chosen to be close to the inherent translation
rate so that correctable, nontrivial defect pairs can be brought
adjacent to one another and then be dissipated by the bath
before they have time to translate out of the correctable range
of the protocol. The O[poly(L)] factor multiplying χ accounts
for the fact that different protocol require some polynomial in
L number of swaps to sweep across the entire lattice. For a
proof of the polynomial scaling in L; see Appendix B.

In the absence of a corrective protocol, this intrinsic hopping
rate of the Ising model gives rise to a simple, background error
rate [18,40],

�0 = γ0

1 + e�/T
. (13)

Thus, the natural lifetime of the system in the absence of
any corrective protocols can be defined as 1/�0.
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|q1〉

D D D|q2〉

D D D D D D|q3〉

|q4〉

D D|q5〉

D|q6〉

|q7〉

FIG. 3. Sequence of DSWAPs, denoted C, for a λ = 3 λ-mixing
protocol. If a pair of domain walls exist anywhere between sites q1

through q7, then they will necessarily be brought adjacent to each
other by this sequence of swaps. Gates are applied sequentially with
waiting time 1/χ between each gate.

C. Protocol construction

In this section, we construct an autonomous error correction
protocol for the 1D Ising model with a variable length-scale
λ. The design of the protocol reduces to attempting to perform
a sequence of DSWAPs that will necessarily cause any
arbitrarily placed pair of domain walls within a region of length
2λ to become neighbors. We refer the reader to Appendix B
for a more complete discussion of this strategy.

There are a variety of ways to construct protocols that
achieve this in a number of DSWAPs that scales polynomially
in the length of the system. Here we focus on protocols that
we call λ-mixing. By definition, these are protocols which, in
the absence of errors, never translate domain walls a distance
λ or greater. For an Ising model of length L, λ runs from 1 to
�L/2�. In the language of error correction, the protocol can be
designed to correct errors of distance 1 to distance �L/2�.

First, the dual lattice is subdivided into nonintersecting
subregions of length λ. Then, two adjacent regions are chosen,
and a λ-mixing protocol is applied over that subregion of
total length 2λ. DSWAPs are chosen to move defects toward
the shared boundary of the two regions but not to mix defects
between the boundaries. The nonintersection of the two regions
is crucial: if the protocol did not have this feature, it would
actually increase the error rate, effectively increasing the
inherent translation rate, and thus diffusion rate of defects
in the system. Figure 3 depicts a circuit for this protocol
for λ = 3, and Fig. 4 depicts the same circuit acting on the

|b1〉
D D D

|b2〉
D D D D D D

|b3〉

|b4〉
D D

|b5〉
D

|b6〉

FIG. 4. The same sequence from Fig. 3 but shown acting on
domain-wall variables. Here, it is clear that the sequence of DSWAPs
is designed not to mix domain walls between the two regions of size
λ = 3. Site b1 sits between q1 and q2, b2 between q2 and q3, etc.

(a)

(b)

(c)

FIG. 5. One possible snapshot of the error correction process. (a)
A system with two domain walls present, each sitting in adjacent
λ-domains. (b) The state of the system after the protocol has been
applied—domain walls have been shuttled to the shared boundary. In
(c), the bath dissipates the domain walls, and the system returns to
the ground state.

domain wall variables. Figure 5 illustrates a snapshot of this
entire procedure for a representative error process involving
two domain walls sitting in neighboring λ domains.

This circuit should be reminiscent of the illustration in
Fig. 1. For our purposes, the operator O from Fig. 1 is the full
sequence of DSWAPs in Fig. 3 dressed by the probabilistic
action of creation, annihilation, and translation operators by
the bath on the system.

We provide code for this algorithm in the Appendix C,
including how the λ-mixing subprotocols are constructed.

D. Error modes and scaling

In this section, we examine how uncontrollable thermal
errors lead to loss of the qubit in the presence of the protocol.

In the presence of a corrective protocol, and assuming the
correction rate χ is close to the translation rate of the system
but still much less than the annihilation rate, the rate of the
lowest-order error process is given by

�̃ = Lγ+
γ0

λχ

γ0

γ−

1

L − 2 − 2λ

f (λ)

L
. (14)

This rate is the product of (i) the baseline production rate
of defect pairs, Lγ+, (ii) the probability of a defect pair
not immediately annihilating, γ0

γ−
, (iii) the probability of a

defect exiting a corrective region, γ0

λχ
, (iv) the probability of

a nontrivial random walk across the chain 1
L−2−2λ

, divided
by a factor proportional to the number of correcting regions
on the lattice. Thus, for fully parallel application f (λ) ∝ λ.
Without the protocol, the probability that a pair of domain
walls undergoes a random walk that winds around the entire
system scales like 1

L−2 , but when the protocol is implemented,
the effective lattice size is slightly reduced: the particle need
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only come within approximately a distance 2λ of its partner
for the protocol to fuse them. Thus, �̃ is the leading order
estimate for the rate at which domain wall pairs are “missed”
by the protocol and cause uncontrolled transitions between the
two ground states of the model.

This effective rate is valid as long as χ is fast enough
to compete with γ0, but not so fast as to compete with pair
annihilation, γ−, and other higher-order processes in γ0

γ−
and

γ0

χ
. Further, we assume that random walks occur much faster

than the intrinsic creation rate, or γ0/L
2 	 γ+, and that we

can model the random walk as occurring instantaneously—
for sufficiently large lattice sizes, the breakdown of this
assumption would introduce an additional γ0 dependence into
this error rate to account for the nonzero amount of time it
takes defects to traverse the lattice. For regimes studied here,
γ0 and χ run from 10 000 to 100 000 times faster than the
intrinsic pair creation rate, γ+.

It might be tempting to examine the form of Eq. (14) and
expect that errors vanish in the limit of γ0 → 0, but a new
effective translation rate appears once γ0 � γ+. In this regime,
two pairs of domain walls can appear next to one another,
and a consecutive annihilation event produces a lone pair of
domain walls separated by two dual-lattice sites. In this way,
an effective translation rate is set by the rate at which these
doubled-pair creation events occur. We do not consider this
limit further, but it is the natural error process for superohmic
baths at low temperature.

To model the breakdown of Eq. (14) as χ is varied, we
can approximate the error timescale, 1

�̃
, as being effectively

reduced by some factor proportional to χ :

1

�̃
→ 1

�̃

{
1 − χg(λ,L,γ0,γ−,γ+)+O

[(
χ

γ−

)2

+
(

χ

γ0

)2
]}

,

(15)

with g(λ,L) a protocol-dependent scaling function. Heuristi-
cally, for fixed λ, one expects that g should scale linearly with
the number of parallel domains of size λ because, for twice
as many domains, twice as many pairs will be pulled apart
by the protocol that would have otherwise fused. At the same
time, for a fixed number of domains, i.e., fixed L

λ
, any given

pair of lattice sites is only ever operated on by a DSWAP for
a fraction of the corrective cycle. So, for fixed χ and fixed L

λ
,

as λ is increased, domain walls may spend a longer amount of
time sitting on a boundary before being caught by the protocol.
For the protocol used in this paper, this is cubic in λ. Thus,

g(λ,L,γ0,γ−,γ+) ∝ g(γ0,γ−,γ+)λ3 L

λ
= g(γ0,γ−,γ+)λ2L.

(16)

This scaling behavior suggests a critical cycling rate, χc,
at which the lifetime is maximally improved by the protocol.
Differentiating Eq. (15) with respect to λ yields the critical
rate, up to the rate function g,

χc = 1

2λ2Lg(γ0,γ−,γ+)
, (17)

where any residual prefactors and terms involving γ0, γ+, and
γ− have been absorbed into g.

E. Memory enhancement and scaling

We now present numerical results demonstrating the en-
hanced lifetime of the Ising model when subjected to λ-mixing
protocols in serial and in parallel. For serial application, only
a single corrective operation was applied every 1/χ units of
time. For parallel application, L/(2λ) simultaneous corrective
operations were applied every 1/χ , where each operation acted
on a nonintersecting region of length (2λ).

For the following analysis, we define the lifetime as the
average time it takes a 1D Ising model initialized to the spin-up
state to transition to the spin-down state. In the absence of the
protocol, that is, in the low-χ limit, this lifetime asymptotes to
approximately the lifetime given by Eq. (13).

For the details of the Monte Carlo algorithm, see Ref. [18].
The only nontrivial choice required at the level of simulation is
how to treat the competition between the application DSWAPs
and bath operators. For simplicity, we assume if a bath operator
takes longer than 1/χ to occur, that the DSWAP occurs unhin-
dered. Likewise, if a bath operator takes less than 1/χ to occur,
the transformation associated with that bath operator occurs
unhindered, be that a pair creation, pair annihilation, or single
translation. More complicated choices could be made, like
choosing a probabilistic failure rate of a DSWAP as a function
of the ratio of the competing timescales, but we do not expect
the result of a such a treatment to greatly affect our analysis.

Figure 6 depicts the scaling of the 1D Ising model’s lifetime
with λ at fixed L, where a smaller λ results in more domains
being operated on in parallel. Specifically, for parallel simula-
tions, the protocol was performed simultaneously on L/(2λ)
domains. These domains were chosen such that DSWAPs were
only being applied on nonoverlapping regions of characteristic

10−2 10−1 100

χ/γ0

10−1

100

101

(Γ
/
Γ

0
)−

1

λ=16

λ=12

λ=8

λ=6

λ=4

λ=3

FIG. 6. Measured lifetime of the Ising model, �−1, expressed
in terms of inverse units of �0 (i.e., Eq. (13)) as a function of the
correction rate, χ , rescaled by the translation rate, γ0, for different
values of λ and for fixed system size L = 96, temperature, T =
.07, and translation rate, γ0 = .0007. Protocols were implemented in
parallel on 48/λ blocks (see text). In the absence of the protocol,
the lifetime of the Ising model for these parameters corresponds to
approximately �−1

0 , i.e., Eq. (13). This is the value which all three
protocols converge toward in the limit of χ/γ0 � 1. Note the decrease
in lifetime for χ/γ0 ≈ 1, as well as the universal scaling in the lifetime
up until the λ-dependent cutoff (i.e., Eq. (17)), which increases as λ

decreases. The only remaining mismatch between the curves is due
to the residual λ dependence in the 1/(L − 2 − 2λ) term of Eq. (15).
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10−1 100

χ/γ0

10−1

100

(Γ
/
Γ

0
)−

1

λ=6

λ=4

λ=3

FIG. 7. Lifetime of the Ising model as a function of the correction
rate, χ , rescaled by the translation rate, γ0, for different values of
λ, and for fixed system size, L = 96, temperature, T = .07, and
translation rate, γ0 = .0007. Protocols were implemented serially (see
text). The scaling of lifetime with χ is characteristically similar to
the parallel case; however, the maximal lifetime is correspondingly
smaller for the serial implementation. Note that smaller λ still yields
a larger enhanced lifetime.

size λ. Here, increasing parallelization manifestly increases the
lifetime of the model. For small χ , the protocol does nothing,
and the memory converges to the value of the memory in
the absence of any corrective protocol, i.e., Eq. (13). For
χ approaching γ−, the protocol begins to compete with the
process of pair annihilation, and begins turning trivial defect
pairs into nontrivial pairs. This actually reduces the lifetime
below that of the protocol-free value. In the intermediate
regime, the optimal lifetime grows linearly with the number of
parallel blocks employed in the algorithm. For this particular
protocol, the number of parallel blocks was 48/λ.

Figure 7 depicts the scaling of lifetime with λ, as in
Fig. 6, but for a serial application of the protocol. For serial
application, only a single DSWAP operator ever operates on
the system over a timescale χ−1. Decreasing λ also manifestly

0.0 0.5 1.0 1.5 2.0 2.5 3.0

χ/γ0

1

2

3

4

5

6

7

8

(Γ
/Γ

0
)−

1

L=48

L=96

L=192

FIG. 8. Lifetime of the Ising model as a function of the correction
rate, χ , rescaled by the translation rate, γ0, for different values of
system size, L, and for fixed λ = 3, T = .07, γ0 = .0007. Protocols
were implemented in parallel on L/2λ blocks (see text). Note the
linear scaling in χ for small values, as well as the shift in the maximum
of the lifetime as a function of L.

0 50 100 150 200

χL/γ0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(Γ
/
Γ̃
)−

1

L=48

L=96

L=192

FIG. 9. This figure contains the same data as Fig. 8, but with the
χ axis rescaled to χL, and the 1/� axis rescaled by Eq. (14). Hence,
the linear scaling in χ , and the slight residual system size dependence
have been removed. Note the steep, sudden dropoff in lifetime after
χL ∼ 55.

increases the maximum enhanced lifetime of the protocol.
Thus, for fixed-resource architectures, smaller λ necessarily
outperforms larger λ implementations.

Figures 8 and 9 depict the scaling of the lifetime with L at
fixed λ for parallel application. Remarkably, the L dependence
of the models can be completely removed by rescaling the data
by Eq. (14), and rescaling χ to χL as depicted in Fig. 9. This
rescaling reveals the turnaround in the scaling of the lifetime
for χL/γ0 = 54.2 ± 2.8, whereafter it transitions from linear
scaling in χ to a power law decay.

Figure 10 depicts the scaling of the critical cycling rate χc

versus the inverse system length 1/L. This scaling agrees with
the error ansatz of Eq. (17).

We note that substituting χc from Eq. (17) into Eq. (14)
yields 1/�̃ ∼ L−2−2λ

L
—or that the maximum enhanced life-

time is asymptotically independent of system size. Thus, even
for much larger system sizes, the maximum achievable lifetime
will not greatly exceed the maximum lifetime for the L = 192
result in Fig. 8.

0.010 0.015 0.020 0.025 0.030 0.035 0.040

1/L

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

χ
c
/γ

0

FIG. 10. The critical cycling rate, χc, rescaled by the translation
rate, γ0, as a function of 1

L
for λ = 3, T = 0.07, γ0 = 0.0007.

Protocols were implemented in parallel on L/2λ blocks. This scaling
is consistent with the error model ansatz in Eq. (17). Fit to 1/L in
red. Errors are dominated by systematic effects, not sampling error.
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V. HIGHER DIMENSIONS AND GENERALIZATION

A. The toric code

The argument and construction from the previous section
immediately generalizes to any higher-dimensional stabilizer
codes with stringlike error operators. The immediate analog
is Kitaev’s toric code, whose Hamiltonian is defined as a sum
over vertex and plaquette operators acting on the edges of a
square lattice,

HTC = −Je

∑
v

Av − Jm

∑
p

Bp, (18)

Av ≡
∏
j∈v

σ z
j , Bp ≡

∏
j∈p

σ x
j . (19)

The low-temperature dynamics of the toric code are
governed by the proliferation of localized excitations that are
created by stringlike error operators, with dynamics similar
to to those of the 1D Ising model. However, toric code
dynamics differ in two ways: first, there are now two types
of defects in the toric code—defined as −1 eigenstates of the
Av and Bp operators, located on the vertices and plaquettes
of the square lattice, respectively. Because of the nontrivial
braiding statistics of these two defects, a nontrivial winding
resulting from the interaction with the bath gives rise to
uncontrolled errors that can be mapped onto logical Z and
logical X operations, depending on which type of defect
incurs the nontrivial winding. These erroneous operations
can be suppressed by operating at low temperature and by
tuning the relative strength of the plaquette and star terms
in the Hamiltonian. Second, both of these defects undergo
two-dimensional random walks rather than one-dimensional
random walks. This difference in dimension gives rise to
a modified form of the toric code’s finite temperature error
rate, due to the differing nontrivial topological random walk
probability for two dimensions versus one.

Operationally, these differences only require small modi-
fications of the autonomous protocol. Namely, there need be
two DSWAP operators:

DSWAPe
vv′ = 1

4σx
vv′ (1 − Av)(1 + Av′ )

+ 1
4σx

vv′ (1 + Av)(1 − Av′ )

+ 1
4 (1 − Av)(1 − Av′ )

+ 1
4 (1 + Av)(1 + Av′ ),

DSWAPm
pp′ = 1

4σ z
pp′(1 − Bp)(1 + Bp′)

+ 1
4σ z

pp′(1 + Bp)(1 − Bp′)

+ 1
4 (1 + Bp)(1 + Bp′)

+ 1
4 (1 − Bp)(1 − Bp′). (20)

These unitary operators translate an A-type (B-type)
excitation from a vertex v (plaquette p) to an adjacent vertex v′
(plaquette p′). Second, the λ-mixing protocol shuttles defects
towards a shared boundary of length λ between subdomains
of characteristic area λ2.

Because subregions share a boundary of length λ rather
than a single site, as in the one-dimensional case, the cycling

protocols require at most a factor of λ more swaps to complete
a cycle. The protocol then takes the following simple form:

(1) Choose a species of quasiparticle.
(2) Divide the lattice into domains of characteristic area λ2.
(3) Pick two λ-domains which share a boundary.
(4) Pick two candidate defect locations within these two

λ-domains.
(5) If these defect locations are within the same λ-domain,

apply DSWAPs until they would be nearest neighbors. If they
are in different λ-domains, apply DSWAPs until they meet at
the shared boundary.

(6) Repeat step 5 until all pairs of defect locations are
exhausted.

(7) Repeat steps 3 through 6 until all pairs of λ domains
which share a boundary are exhausted.

(8) Repeat steps 1 through 7 until all species of quasiparticle
are exhausted.

This protocol is also highly parallelizable, both by operating
on multiple pairs of λ domains and by acting on simultaneous
pairs of defect sites within pairs of λ domains.

B. The general problem

We can always divide a d-dimensional lattice into N ≡
Ld/λd domains and try to devise an algorithm that fuses
defects between adjacent domains. For our protocol, defects
are shuttled toward d − 1-dimensional boundaries between
adjacent domains of volume λd . From this, we can generalize
the low-temperature dynamics of Eq. (14) to the d-dimensional
case as follows:

�̃ ∝ Ldγ+
γ0

λχ

γ0

γ−
P d


(L,λ)
f (λd )

Ld
, (21)

where L is the edge length of the d-dimensional volume
enclosed by the system, P d


(L,λ) encodes the probability of
a nontrivial topological random walk of a pair of defects in d

dimensions with system size L and domain lengthscale λ, and
f (λd ) ∝ λd is a protocol-dependent function that depends on
the implementation details of the algorithm.

Theorem Eq. (B1) guarantees that an algorithm exists that
can perform the cycling in a number of steps polynomial in
the dimension of the lattice. However, this theorem does not
guarantee that a λ-mixing protocol exists which solves the
problem. In general, for higher dimensions, there are always
defect patterns of distance O(λ), which are uncorrectable by
our λ-mixing protocol. The design strategy is then to try and
maximize this minimum uncorrectable distance by careful
tiling of the graph of interest.

To be more explicit, if a single pair of defects appears on
the graph, uncorrectable errors are generated only when one
of the defects escapes to an adjoining region that does not
share a boundary with its pair. An illustration of this process
is depicted in Fig. 11. For one dimension, this cannot happen
in one step after an adjacent pair of defects appears. More
specifically, if a single pair of adjacent defects appears on the
lattice, no single DSWAP will cause such an error to occur,
by design, and no single bath operation will cause an adjacent
pair of defects to be in nonadjacent regions of size λ. In one
dimension, at worst a pair will be created, shuttled around by
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FIG. 11. A single random application of the bath-hopping opera-
tor causes a defect to move between adjacent regions of size λ. Once
a pair of defects are separated by this distance, the protocol will not
be able to correct them with certainty.

the protocol, and then translate by a bath operator across a
boundary, resulting in an uncorrectable error.

This distinction is important because poor choice of tiling in
higher dimension can result in uncorrectable errors that occur
in a single step after pair creation. For example, compare the
single hop in the upper half of Fig. 12 to the lower half. A defect
pair appearing at a corner can transition to an uncorrectable
configuration in a single step, whereas in the lower tiling,
this is not possible for any initial configuration of adjacent
defect pairs. This can be checked by simple enumeration of
the possible defect locations and single-hop geometries.

This shifted square lattice tiling depicted in the lower half
of Fig. 12 generalizes to three dimensions and is necessary for
Eq. (21) to describe the leading order error process.

C. Hybrid DSWAP-stabilizer codes

While we have demonstrated that our protocol gives rise
to an enhanced lifetime for a topological code with string-like

FIG. 12. A single random application of the bath-hopping opera-
tor causes a defect to move between nonintersecting regions of size λ,
depicted in (a) and (b). (c) A new lattice tiling where no single swap
can move defects into two λ regions that do not share a boundary.

error operators, it is also possible and desirable to use our
DSWAP cycling protocol with a more traditional stabilizer
detection-correction scheme simultaneously. We postpone
numerical analysis of such a scheme for future work, but we
sketch such a protocol in this section.

For concreteness, we specialize here to the case of the toric
code. Error detection and correction in the toric code requires
(1) measurement of all stabilizer syndrome operators and
(2) application of a perfect-matching algorithm to determine
which pairs of defects to fuse. Whether or not such an
algorithm will be successful depends on the density of errors
at the time of measurement. Given a stabilizer measurement
rate γ , in the “infinite temperature” limit (i.e., T → ∞ in
Eq. (9)), each edge is acted upon by an error operator with an
error probability p. Operationally, the bath is equally likely
to create a pair of defects as it is to dissipate a pair. The
resulting dynamics are analogous to an uncorrelated “white
noise” model.

It is well known that if p is below some critical value, pc, it
is possible to correct the errors in the toric code with certainty.
Equivalently, pc sets the minimum rate at which measurement
must occur so that detection is possible in principle. Call this
rate γc.

For the protocol to have an effect, we must operate in a
regime where pair annihilation is favored over pair creation.
For simplicity, we work in the low-temperature regime where
single-defect pairs dominate. In this regime, an uncorrectable
error has occurred when a single pair of defects becomes sepa-
rated by more than half the linear lattice dimension. In the pres-
ence of the DSWAP cycling protocol, the rate associated with
such an event occurring is modified by some constant factor:

1

�Toric Code Cycling
= g

1

�Toric Code
, (22)

where �Toric Code Cycling is the error rate of the toric code in the
presence of a cycling protocol, and �Toric Code is the error rate
in the absence of the protocol.

For g > 1, i.e., when our protocol actually enhances the
lifetime of the code, this effectively reduces the critical
detection rate γc by the same factor. This is because the
protocol effectively reduces the rate at which undetectable
pairs are created.

Thus, if a physical realization of a stabilizer error detection
and correction cycle is rate limited due to hardware or
fundamental noise constraints, the DSWAP cycling protocol
provides one avenue toward reducing the critical measurement
and detection rate purely by application of local unitaries.

VI. DISCUSSION

In summary, we have provided a dissipative error correction
protocol that enhances the lifetime for models with stringlike
defects (see Sec. IV C). In particular, we have combined a local
dissipative thermal protocol with carefully designed unitaries,
in order to further encourage defect dissipation. Furthermore,
we have derived an enhanced lifetime for the one-dimensional
Ising model in the presence of our protocol, i.e., Eq. (14),
determined the scaling behavior of the optimal protocols, i.e.,
Eq. (17), and provided numerical evidence for the enhanced
lifetime of the Ising model in the presence of our protocol
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given certain rate assumptions (see Figs. 6–10). Practically,
this algorithm increases the lifetime of the system linearly with
system size up to a system-size independent cutoff, illustrated
in Fig. 8, as anticipated from no-go theorems. Furthermore,
we have sketched how this protocol can be generalized to
higher-dimensional models like the toric code and used in
conjunction with traditional stabilizer error detection and
correction schemes (see Secs. V A and V C).

The efficacy of these sorts of protocols is intimately
related to the scaling of the protocol with system size and
protocol parameters, as we have demonstrated. Notably, the
best performing versions of our protocol have small λ, and, in a
sense, only correct the shortest distance errors. This may seem
counterintuitive from the perspective of designing protocols,
which correct as many errors as possible. For example, suppose
we wish to compare a λ = 3 protocol with total cycle time τ

to a λ = 4 protocol with the same cycle time τ . Note that
by fixing total cycle time, we are implicitly requiring that
the λ = 4 protocol be performed more quickly at the level of
individual application of DSWAPs (because there are more
DSWAPs in a complete λ = 4 cycle than a λ = 3 cycle), but
we require that the complete error-correcting cycle of each
protocol is completed in the same amount of time. Naively,
we would expect the λ = 4 protocol to do better, because it is
dissipating errors over a longer length scale, but in the same
amount of time. Figure 7 indicates a narrow region where this
is the case, but, generically, this is not the case.

This can be traced to the poor scaling of the maximal
lifetime with λ, as represented by Eq. (17). Essentially, the
protocols which correct larger distance errors—i.e., large
λ-fixing protocols—employ so many gates that all of the
gains of correcting longer distance errors are erased by the
time it takes to actually perform the protocol, even when
implementing the protocol in parallel.

Additionally, the form of Eq. (14) suggests that larger
systems manifestly have lower error rates, because �̃ ∝ 1

χŁ
for low temperature and L 	 λ. For sufficiently large systems
this once again breaks down due to Eq. (17) (see also, Fig. 10).
Namely, for a fixed cycling rate χ0, making the system larger
only increases the lifetime so long as χ0 < χc. Thus, the more
favorable scaling of the lifetime with χ at larger system sizes
is precisely offset by the poor scaling of χc. This can be
seen immediately by inserting χc from Eq. (17) into Eq. (14).
This replacement yields the expected scaling of our “best”
measurement-free protocol, which scales asymptotically as
∼ L−constant

L
—i.e., upper bounded by a constant.

These shortfalls could be circumvented by allowing for
longer-range unitaries. For example, the DSWAP operator
could be replaced by a generalized operator DSWAPλ, which
transports domain walls over longer distances. Our insistence
on building the protocol entirely out of local DSWAP gates was
to perform as honest an analysis as possible with respect to the
power of this type of protocol. But if a particular architecture
could exchange defects over long distances just as easily as
short ones, this would immediately allow for algorithms with
better scaling. We hope to examine the optimality of these
sorts of protocols in future work.

In the long term, this program is meant to identify the sim-
plest possible set of ingredients necessary to provide protection
for a stabilizer code based quantum memory. Many partial

ingredients are known, like the no-go theorems mentioned in
Sec. I. Practically, the goal is a protocol designed around the
dynamics of the excitations of the stabilizer codes of interest
with minimal usage of resources but which still results in an
error threshold so that a state can be preserved indefinitely.
With this work, we have demonstrated a constant factor
improvement with only local unitaries dressing the system.
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APPENDIX A: SYNDROME DECODING FOR 1D
ISING MODEL

The corrective operator CU in Fig. 2 can be written as a
collection of conditional applications of DSWAP and DWALL,
where the applications of the operators are conditioned on the
measurements of the stabilizers. We adopt the notation U123

to indicate the application of the unitary U on qubits 1, 2, and
3. The operator U is given explicitly in Table I for several
syndrome measurements of the stabilizers.

APPENDIX B: MATCHSEQ AND ERROR CORRECTION

1. Polynomial scaling

Define the game MATCHSEQ as follows: two nonadjacent
vertices on a simply connected graph G are colored black,
called defects, the rest are white. The player is allowed to
perform a conditional swap, or DSWAP, on any two adjacent
vertices, which exchanges black vertices and white vertices,
and does nothing to pairs of white vertices. If black vertices
become adjacent, they immediate fuse and become white
vertices. Crucially, the player does not know which vertices
are colored black.

“Winning” MATCHSEQ amounts to performing a se-
quence of moves that guarantees that a pair of arbitrarily placed
vertices fuses.

Define the pairing sequence M(Gv) to be the sequence of
conditional swaps necessary to bring any configurations of two
defects adjacent to one another at least once on a graph G with
v vertices. Define the pairing number |M(Gv)| to be the pairing

TABLE I. Corrective operations given certain measurements of
the stabilizers s1 through s3 in Fig. 2. If an odd number of domain
walls are detected, the identity is applied.

s1 s2 s3 U

1 1 1 I

1 1 −1 I

1 −1 1 I

1 −1 −1 DWALL234

−1 1 1 I

−1 1 −1 DSWAP123DWALL234

−1 −1 1 DWALL123

−1 −1 −1 I
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TABLE II. Minimum number of DSWAPs required to necessarily
fuse any two defects on a linear chain with open boundary conditions.
Computed via breadth first search.

|M(3)| 1
|M(4)| 3
|M(5)| 6
|M(6)| 10
|M(7)| 18

sequence with minimal length. Table II tabulates the first few
nontrivial pairing numbers for the special case of G equal to a
linear chain of length L. See Fig. 13 for an illustration of the
application of a winning pairing sequence to a graph with four
vertices.

Theorem B.1. The number of DSWAPs necessary to win
MATCHSEQ for an arbitrary finite, connected graph G is
polynomial in the number of vertices in the graph G.

Proof. Let M∗(G) be a winning strategy on an arbitrary
graph G. Suppose an arbitrary vertex is added to G, called
v∗, with up to |G| edges. Call this modified graph G′. Then,
performing M∗(G) on G′ either fuses two arbitrarily placed
defects, or there’s a single defect on the new vertex, and
the remaining vertex has just been permuted around in G. A
candidate M(G′) is then: 1. Perform M∗ on G. 2. Pick a vertex,
v′, on G. Supposing a defect is on v′, perform a sequence of
DSWAPs that brings that defect adjacent to the new vertex, v∗.
3. Perform the reverse of the sequence of DSWAPs in step 2,
and repeat step 2 with a new v′. 4. Repeat steps 2 and 3 until
all vertices in G are exhausted.

The number of DSWAPs needed for step 2 is at most |v|,
i.e., the number of vertices in G. Thus, the total complexity of
steps 2 through 4 is O(|v|2). This admits a recurrence relation:

|M(Gv+1)| � |M(Gv)| + b ∗ |v|2, (B1)

where b is a constant �1. b = 1 corresponds to the case that
the new vertex is only connected to one vertex in the original

FIG. 13. An example of the result of applying a winning sequence
M(G) to a graph with defect pairs present. No matter where the defects
are, the sequence of DSWAPs brings pairs adjacent, whereupon they
immediately fuse.

graph G. Solving this recurrence relation in the limit that
the inequality is always saturated yields |M(Gv)| � O(|v|3).
It is worth emphasizing that this is not the minimal such
solution to MATCHSEQ, just one that is easily provably
polynomial in |G|. The likely graph structures of interest to an
experimentalist, i.e., linear chains, square lattices, admit more
favorable algorithms with softer polynomial scaling.

2. Strategies

For a given winning strategy, M∗(G), it will be convenient
to classify the strategy based on the maximum distance that any
given defect is moved. In the sequel, we will construct M∗(G)
out of a concatenation of M∗(Gi), where Gi are subgraphs of
G. Thus, if only a single defect happens to be in the subgraph
Gi , we would like to bound the maximum displacement of that
defect by the strategy.

Let d(M) be the maximum distance any given defect is
moved by a given strategy. For winning strategies, d(M) is at
least half of the maximum distance between defects and at most
permutes defects around the entire graph, so |v| � d(M) �
|v|/2. Define a strategy M∗(G) to be k-mixing if d(M) = k.

We introduce this terminology because most physical
realizations of MATCHSEQ will have a background rate
of uncontrollable DSWAPs, driven by coupling to a bath.
k-mixing strategies are necessary in such cases to be partially
resilient to these random “error” DSWAPs.

3. Mapping onto 1D Ising model

Vertices in the problem setup for MATCHSEQ correspond
to the dual lattice of the Ising chain, and the process of fusion
is simply dissipation of adjacent domain wall pairs by the bath.

However, we caution that the mapping onto MATCHSEQ
is only partial: defects on the Ising chain hop in the absence
of any experimental intervention, so the Ising chain is more
akin to a game of MATCHSEQ with a random, background
DSWAP rate. Further, there can be more than two pair of
excitations on the Ising chain, but for low temperature, the
regime where the protocol works best, this is exceedingly rare.
Last, defect pairs don’t necessarily fuse immediately—fusion
happens at the timescale set by the system-bath coupling, the
type of bath model, and the temperature, so rate at which
DSWAPs are applied must be chosen carefully for optimal
lifetime enhancement.

APPENDIX C: ALGORITHM FOR 1D ISING MODEL

Here we provide python code for a λ-mixing algorithm for
the Ising chain. The output of the algorithm is a sequence of
locations. Our convention is such that location i indicates a
DSWAP should be applied that exchanges defects between
sites i and i + 1. Heuristically, the algorithm attempts to
shuffle defects toward the shared boundary of the disjoint
sites 0, 1, 2,..., λ − 1 and λ, λ + 1,..., 2λ − 1. That is,
it attempts to translate defects so that they are adjacent to
each other at sites λ − 1 and λ. After completing this cycle,
the algorithm repeats for the next two adjacent domains,
λ,...,2λ − 1 and 2λ,...,3λ − 1. This continues until the lattice
has been exhausted.

The following python code generates a complete sequence
of DSWAPs given a lattice size and λ length.

012311-12



ENGINEERING AUTONOMOUS ERROR CORRECTION IN . . . PHYSICAL REVIEW A 96, 012311 (2017)

def SwapProtocol(L, lamb):

prot = []

numofdomains = L / lamb

for d in xrange(numofdomains):

for k in xrange(lamb):

for m in xrange(k):

prot.append((lamb-1-k+m+d*lamb)%L)

for i in xrange(lamb):

for j in xrange(i):

prot.append((lamb+i-j-1+d*lamb)%L)

return prot

The protocol is parallelized by operating simultaneously
on specific pairs of domains. To be more explicit: denote
the first λ sites as λ1, the next λ sites λ2, and so on. The
algorithm can be naturally partitioned into a sequence of
DSWAPs that translates defects to the shared boundary of
λ1 and λ2 (call this sequence (λ1,λ2)), followed by a sequence
that translates defects to the shared boundary between λ2 and
λ3 (call this sequence (λ2,λ3)), etc. To parallelize, apply the
sequence (λ1,λ2) simultaneously with (λ3,λ4), (λ5,λ6), etc.
When complete, apply the sequence (λ2,λ3) with (λ4,λ5), etc.
This exhausts the protocol.
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