PHYSICAL REVIEW A 96, 012306 (2017)

Factoring with qutrits: Shor’s algorithm on ternary and metaplectic quantum architectures

Alex Bocharov, Martin Roetteler, and Krysta M. Svore
Quantum Architectures and Computation Group, Station Q, Microsoft Research, Redmond, Washington 98052, USA
(Received 19 September 2016; published 5 July 2017)

We determine the cost of performing Shor’s algorithm for integer factorization on a ternary quantum computer,
using two natural models of universal fault-tolerant computing: (i) a model based on magic state distillation that
assumes the availability of the ternary Clifford gates, projective measurements, classical control as its natural
instrumentation set; (ii) a model based on a metaplectic topological quantum computer (MTQC). A natural
choice to implement Shor’s algorithm on a ternary quantum computer is to translate the entire arithmetic into a
ternary form. However, it is also possible to emulate the standard binary version of the algorithm by encoding
each qubit in a three-level system. We compare the two approaches and analyze the complexity of implementing
Shor’s period-finding function in the two models. We also highlight the fact that the cost of achieving universality
through magic states in MTQC architecture is asymptotically lower than in generic ternary case.

DOI: 10.1103/PhysRevA.96.012306

I. INTRODUCTION

Shor’s quantum algorithm for integer factorization [1] is
a striking case of superpolynomial speedup promised by a
quantum computer over the best-known classical algorithms.
Since Shor’s original paper, many explicit circuit constructions
over qubits for performing the algorithm have been developed
and analyzed. This includes automated synthesis of the
underlying quantum circuits for the binary case (see the
following and references therein: [2—10]).

It has been previously noted that arithmetic encoding
systems beyond binary may yield more natural embeddings
for some computations and potentially lead to more efficient
solutions. (A brief history note on this line of thought
can be found in section 4.1 of [11].) Experimental imple-
mentation of computation with ternary logic, for example
with Josephson junctions, dates back to 1989 [12,13]. More
recently, multivalued logic has been proposed for linear ion
traps [14], cold atoms [15], and entangled photons [16].
In topological quantum computing it has been shown that
metaplectic non-Abelian anyons [17] naturally align with
ternary, and not binary, logic. These anyons offer a natively
topologically protected universal set of quantum gates (see,
for example, [18]), in turn requiring little to no quantum error
correction.

It is also interesting to note that qutrit-based computers
are in certain sense space optimal among all the qudit-based
computers with varying local quantum dimension. Thus, in
[19] an argument is made that, as the dimension of the
constituent qudits increases, the cost of maintaining a qudit in
fully entangled state also increases and the optimum cost per
Hilbert dimension is attained at local dimension of [e] = 3.

Transferring the wealth of multiqubit circuits to multiqutrit
framework is not straightforward. Some of the binary primi-
tives, for example, the binary Hadamard gate and the two-qubit
controlled-NOT (CNOT) gate, do not remain Clifford operations
in the ternary case. Therefore, they cannot be emulated by
ternary Clifford circuits. We resolve this complication by
developing efficient non-Clifford circuits for a generic ternary
quantum computer first. We then extend the solution to the
metaplectic topological quantum computer (MTQC) platform
[17], which further reduces the cost of implementation.

2469-9926/2017/96(1)/012306(17)

012306-1

A generic ternary framework that supports the full ternary
Clifford group, measurement, and classical control [20] also
supports a distillation protocol that prepares magic states for
the Py gate:

Py =5 10)(0] + 1) (1] + @9 [2) 2], wg = 7. (1)

The Clifford + Py basis is universal for quantum computation
and serves a similar functional role in ternary logic as the
Clifford + T basis in binary logic (see [20,21] for the more
general qudit context). We show in more detail further that
the primitive R gate available in MTQC is more powerful in
practice than the Py gate.

Arguably, a natural choice to implement Shor’s algorithm
on a ternary quantum computer is to translate the entire
arithmetic into ternary form. We do so by using ternary
arithmetic tools developed in [22] (with some practical im-
provements). We also explore alternative approach: emulation
of binary version of Shor’s period-finding algorithm on ternary
processor. Emulation has notable practical advantages in some
contexts. For example, as shown in Sec. IIT A, using a binary
ripple-carry additive shift consumes fewer clean Py magic
states than the corresponding ternary ripple-carry additive shift
(cf. Table III).

We also show that on a metaplectic ternary computer the
magic state coprocessor is asymptotically smaller than a magic
state distillation coprocessor, such as the one developed in [20]
for the generic ternary quantum computer. Another benefit of
the MTQC is the ability to approximate desired non-Clifford
reflections directly to the required fidelity, thus eliminating the
need for magic states. The tradeoff is an increase in the depth
of the emulated Shor’s period-finding circuit by a logarithmic
factor, which is tolerable for the majority of instances.

The cost benefits of using exotic non-Abelian anyons for
integer factorization has been previously noted, for example
in [23], where hypothetical Fibonacci anyons were used. It
is worthwhile noting that neither binary nor ternary logic
is native to Fibonacci anyons, so the NOT, CNOT, or Toffoli
gates are much harder to emulate there than on a hypothetical
metaplectic anyon computer.

The paper is organized as follows. In Sec. II we state
the definitions and equations pertaining to the two ternary

©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.96.012306

ALEX BOCHAROV, MARTIN ROETTELER, AND KRYSTA M. SVORE

architectures used, and give a quick overview of the Shor’s
period-finding function. In Sec. III we perform a detailed
analysis of reversible classical circuits for modular exponenti-
ation. We compare two designs of the modular exponentiation
arithmetic. One is emulation of binary encoding of integers
combined with ternary arithmetic gates. The other uses ternary
encoding of integers with ternary gates. In Sec. IV we develop
circuits for the key arithmetic gates based on designs from [22]
with further optimizations. In Sec. V we compare the resource
cost of performing modular exponentiation. An interesting
feature of ternary arithmetic circuits is the fact that the
denser and more compact ternary encoding of integers does
not necessarily lead to more resource-efficient period-finding
solutions compared to binary encoding. The latter appears to
be better suited in practice for low-width arithmetic circuit
designs (hence, e.g., for smaller quantum computers).

We also compare the magic state preparation requirements.
We highlight the huge advantage of the metaplectic topological
computer. Magic state preparation requires width that is linear
inlog(n) on an MTQC, whereas it requires width in O [log3(n)]
on a generic ternary quantum computer.! All the circuit
designs and resource counts are done under assumption of
a fully connected multiqutrit network. Factorization circuitry
optimized for sparsely connected networks, such as nearest
neighbor for example, is undeniably interesting (cf. [24]), but
we had to set this topic aside in the scope of this paper.

II. BACKGROUND AND NOTATION

A common assumption for a multiqudit quantum computer
architecture is the availability of quantum gates generating the
full multiqudit Clifford group (see [20,21]). In this section,
we describe a generic ternary computer, where the full ternary
Clifford group is postulated; we also describe the more specific
metaplectic topological quantum computer (MTQC) where
the required Clifford gates are explicitly implemented by
braiding non-Abelian anyons [17,25]. For purposes of this
paper, each braid corresponds to a unitary operation on qutrits.
Braids are considered relatively inexpensive and tolerant to
local noise. Universal quantum computation on MTQC is
achieved by adding a single-qutrit phase flip gate (FLIP in
[17], Rz in [26], and our Sec. IID). In contrast with the
binary phase flip Z, which is a Pauli gate, the ternary phase
flip is not only non-Clifford, but it does not belong to any
level of Clifford hierarchy (see, for example, [22]). Intuitively,
one should expect this gate to be very powerful. Level C3
of the ternary Clifford hierarchy is emulated quite efficiently
on MTQC architecture, while the converse is quite expensive:
implementing phase flip in terms of C; requires several ancillae
and a number of repeat-until-success circuits.

A. Ternary Clifford group

Let {|0),11),12)} be the standard computational basis for a
qutrit. Let w3 = ¢?™ /3 be the third primitive root of unity. The

't requires width in O[log” (n)] in the binary Clifford + T archi-
tecture, where y can vary between log,(3) and log;(15) depending
on practically applicable distillation protocol.

PHYSICAL REVIEW A 96, 012306 (2017)

ternary Pauli group is generated by the increment gate
INC = [1){0] + |2)(1] + |0)(2], 2
and the ternary Z gate
Z = |0){0] + w3 1)(1] + @3|2)2]. (3)

The ternary Clifford group stabilizes the Pauli group is
obtained by adding the ternary Hadamard gate H

1 .
H=ﬁ2w§"m<k|,)
the Q gate
Q = 10)(0] + [1){1] + w3|2) (2, 5)

and the two-qutrit SUM gate
SUM|j,k) =|j,j + k mod 3), j,k e {0,1,2} (6)

to the set of generators of the Pauli group.

Compared to the binary Clifford group, H is the ternary
counterpart of the binary Hadamard gate, Q is the counterpart
of the PHASE gate S, and SUM is an analog of the CNOT
(although, intuitively it is a “weaker” entangler than CNOT,
as described below).

For any n, ternary Clifford gates and their various tensor
products generate a finite subgroup of U(3"); therefore, they
are not sufficient for universal quantum computation. We
consider and compare two methods of building up quantum
universality: by implementing the Py gate as per Eq. (1) and
by expanding into the metaplectic basis (Sec. IID). Given
enough ancillae, these two bases are effectively and efficiently
equivalent in principle (see Appendix A), and the costs in
ancillae create practical tradeoffs depending on the given
application.

B. Binary and ternary control

Given an n-qutrit unitary operator U, there are different
ways of expanding it into an (n 4 1)-qutrit unitary using the
additional qutrit as “control.” Let |c) be a state of the control
qutrit and |¢) be a state of the n-qutrit register. We define

Co(U)le)t) = le) @ (U*)]t), € €{0,1,2}

wherein § denotes the Kronecker delta symbol. We refer to
this operator as a binary-controlled unitary U and denote it in
circuit diagrams as

14
T

We omit the label £ when £ = 1. We also define the ternary-
controlled extension of U by
A)e)|r) = lc) @ (U 1))

and denote it in circuit diagrams as

012306-2

FACTORING WITH QUTRITS: SHOR’s ALGORITHM ON ...

oo 1
) H%C/v /j\‘w

Cy,m— Pslinput)

[input)

FIG. 1. Exact representation of the Py gate by state injection.
C,..m stands for a certain precompiled ternary Clifford gate, classically
predicated by the measurement result m.

It is paramount to keep in mind that
SUM = A(INC)

[see Egs. (2) and (6)]. Another useful observation is that for
any unitary U we have that A(U) = C(U) [Co(U)]*. More
detail can be found in [22].

C. The Py gate and its corresponding magic state

It is easy to see that the Py gate in Eq. (1) is not a Clifford
gate, e.g., it does not stabilize the ternary Pauli group. However,
it can be realized by a certain deterministic measurement-
assisted circuit given a copy of the magic state

=510+ 1) +wl2), wg =" ()

An appropriate deterministic magic state injection circuit,
as proposed in Ref. [20], is shown in Fig. 1. For completeness,
Cpum = (PyINC P{)™ INC". Note that Py INC P; is a Clifford
gate since Py is at level 3 of the ternary Clifford hierarchy
(cf. [22]).

Such magic state naturally exists in any multiqudit frame-
work with qudits of prime dimension [20]. When the frame-
work supports the full multiqudit Clifford group, projective
measurements, and classical control, then it also supports stabi-
lizer protocols for magic state distillation based on generalized
Reed-Muller codes. In particular, a multiqutrit framework
supports a distillation protocol that requires O[log*(1/8)] raw
magic states of low fixed fidelity in order to distill a copy of
the magic state p at fidelity 1 — 8. The distillation protocol
is iterative and converges to that fidelity in O {log[log(1/6)]}
iterations. The protocol performance is analogous to the magic
state distillation protocol for the T gate in the Clifford + T
framework [27].

One architectural design is to split the actual computation
into “online” and “offline” components where the main part of
quantum processor runs the target quantum circuit whereas the
(potentially rather large) “offline” coprocessor distills copies
of a magic state that are subsequently injected into the main
circuit by a deterministic widget of constant depth. Discussing
the details of the distillation protocol for the magic state u
is beyond the scope of this paper and we refer the reader
to Ref. [20].

D. Metaplectic quantum basis

The ternary metaplectic quantum basis is obtained by
adding the single-qutrit axial reflection gate

Rpay = [0){0] + [1)(1] — [2)(2] ®)

PHYSICAL REVIEW A 96, 012306 (2017)

+(al0) + b|1) + ¢|2))

+(—al0) + b|1) + ¢|2))

*(al0) — bl1) +¢[2))

+(al0) + b[1) — c|2))

FIG. 2. Markov chain for repeat-until-success implementation of
the injection of the Ry gate [17]. Starting point is a general input
al0) + b|1) + ¢|2), where a,b,c € C. Arrows indicate transitions
between single-qutrit states. Each arrow represents a single trial
including measurement and consumption of the resource state |¢/),
where each of the transitions is labeled with the measurement result.
The absorbing state corresponds to successful implementation of the
R gate and is denoted by double borders.

to the ternary Clifford group. It is easy to see that Rj,) is a non-
Clifford gate and that Clifford + R, framework is universal
for quantum computation.

In Ref. [17], this framework has been realized with certain
weakly integral non-Abelian anyons called metaplectic anyons
which explains our use of the “metaplectic” epithet in the
name of this universal basis. In Ref. [17], Ry is produced by
injection of the magic state

1Y) =10) — 1) +|2). (€))

The injection circuit is coherent probabilistic, succeeds in three
iterations on average, and consumes three copies of the magic
state i) on average.

For completeness, we present the logic of the injection
circuit on Fig. 2. Each directed arrow in the circuit is labeled
with the result of standard measurement of the first qutrit in
the state SUM; ; (|¥) ® |input)). On m = 0 the sign of the third
component of the input is flipped; on m = 1,2 the sign of the
first or second component respectively is flipped.

In the original anyonic framework, the |) state is produced
by a relatively inexpensive protocol that uses topological
measurement and consequent intraqutrit projection (see [17],
Lemma 5). This protocol requires only three qutrits and
produces an exact copy of |{) in % trials on average. This
is much better than any state distillation method, especially
because it produces a copy of |¢) with fidelity 1.

In [26] we have developed effective compilation methods to
compile efficient circuits in the metaplectic basis Clifford +
Ryy. In particular, given an arbitrary two-level Householder
reflection r and a desired target precision &, then r is
effectively approximated by a metaplectic circuit of R count
at most 8 log;(1/¢) + O{log[log(1/¢)]}, where R count is
the number of occurrences of non-Clifford axial reflections
in the circuit. This allows us to approximate the CNOT and
Toffoli gates very tightly and at low cost over the metaplectic
basis (see Sec. IV B). Moreover, if we wanted constant-depth
high-fidelity widgets for CNOT and Toffoli we can do so by
emulating, rather than distilling, the magic state |u) of (7) by
a metaplectic circuit and thus obtain a high-fidelity emulation
of the Py gate at constant online depth (see Sec. IV A).

As we show in Appendix A, the converse also works. With
available ancillae and enough reversible classical gates we

012306-3

ALEX BOCHAROV, MARTIN ROETTELER, AND KRYSTA M. SVORE

can prepare the requisite magic state |1/) exactly on a generic
ternary computer. The particular method in the Appendix is
probabilistic circuit for the magic state |¢) of (9) using the
classical non-Clifford gate C,(INC). Our current method for
the latter gate is to implement it as an ancilla-free circuit with
three Py gates.

E. Top-level view of Shor’s integer factorization algorithm

The polynomial-time algorithm for integer factorization
originally developed in Ref. [1] is a hybrid algorithm that
combines a quantum circuit with classical preprocessing and
postprocessing. In general, the task of factoring an integer can
be efficiently reduced classically to a set of hard cases. A hard
case of the factorization problem comprises factoring a large
integer N that is odd, square-free, and composite.

Let a be a randomly picked integer that is relatively prime
with N. By Euler’s theorem, a?™) = 1 mod N, where ¢ is the
Euler’s totient function, and thus the modular exponentiation
function ¢, : x — a* mod N is periodic with period ¢(N) <
N. Let now 0 <r < N be a period of the ¢,(x) function
[e.(x +7) = e,(x), V x] and suppose, additionally, that r is
even and a’/> # —1 mod N. Then, the gcd(a’/?> — 1,N) must
be a nontrivial divisor of N. The greatest common divisor is
computed efficiently by classical means and it can be shown
that the probability of satisfying the conditions » = 0 mod 2
and a’/?> # —1 mod N is rather high when a is picked at
random. Therefore, in Shor’s algorithm a quantum circuit is
only used for finding the small period r of e,(x) once an
appropriate a has been randomly picked.

One quantum circuit to solve for r consists of three stages:

(1) Prepare quantum state proportional to the following
superposition:

NZ
> lk)la* mod N). (10)

k=0

(2) Perform in-place quantum Fourier transform of the first
register.

(3) Measure the first register.

The process is repeated until a classical integer state j ob-
tained as the result of measurement in step 3 enables recovery
of a small period r by efficient classical postprocessing.

Shor has shown [1] that the probability of successful
recovery of r in one of the iterations is in {1/ log[log(N)]}.
Therefore, we will succeed “almost certainly” in finding a
desired small period r in O{log[log(N)]} trials.

Given the known efficiency of the quantum Fourier trans-
form, most of the quantum complexity of this solution falls
in step 1, where the state (10) is prepared. Specific quantum
circuits for preparing this superposition have been proposed
(cf. [2,3,5-10,28]).

In the context of this paper, distinguish between two types
of period-finding circuits. One type, as in Ref. [2], is width
optimizing and uses approximate arithmetic. These circuits
interleave multiple quantum Fourier transform and inverse
Fourier transform blocks into modular arithmetic circuits,
which in practice leads to significant depth overhead. We
forego the analysis of circuits of this type for the lack of space
leaving such analysis for future research.

PHYSICAL REVIEW A 96, 012306 (2017)

The second type are framed as exact reversible arithmetic
circuits. Their efficient ternary emulation amounts to efficient
emulation of CNOT and Toffoli gates, possibly after some
peephole optimization. We discuss two typical circuits of this
kind in detail in Sec. I11.2

It is important to note that, with a couple of exceptions, the
multiqubit designs for Shor state preparation assumed ideal
CNOT and Toffoli gates. However, in Clifford + T framework,
for example, the Toffoli gate is often only as ideal as the T gate.
The question of the required fidelity of CNOT and Toffoli gates
for the quantum period-finding loop to work is an important
one.

If the superposition (10) is prepared imperfectly, with
fidelity 1 — ¢ for some & in O[1/+/log(log(N)], then the
probability of obtaining one of the “useful” measurements will
be asymptotically the same as with the ideal superposition,
ie., in Q{1/log[log(N)]}. (For completeness, we spell out
the argument in Appendix B.) Therefore, if d is the depth of
the corresponding quantum circuit preparing the state, then the
bound on the required precision of the individual gates in
the circuit may be in O{1/[d +/log(log(N)]} in the context of
Shor’s algorithm.

In the rest of the paper, we explore ternary emulations
of binary period-finding circuits and compare them to truly
ternary period-finding circuits with ternary encoding of inte-
gers. We demonstrate that the fidelity and non-Clifford cost of
such ternary circuits are reduced to those of the C(INC) gates.
We also demonstrate that efficient emulation of binary period
finding requires mostly binary Toffoli gates with some use of
C(INC).

III. MULTIQUTRIT AND MULTIQUBIT ARITHMETIC
ON GENERIC TERNARY QUANTUM COMPUTER

We explore two options for cost-efficient integer arithmetic
over the ternary Clifford + Py basis: (a) by emulating arith-
metic on binary-encoded data and (b) by performing arithmetic
on ternary-encoded data, based on tools developed in [22].

Circuits for reversible ternary adders have been explored
earlier. (See, for example, [29-31].) Since this field has been
in the early stages so far, there is a lot of divergence in
terminology: however, in [29-31] the key non-Clifford tool
for the circuitry is an equivalent of the C/(INC) gate, in our
notation. As pointed out in [22], our use of this tool is more
efficient, mainly due to the design of “generalized” carry gates
and other reflection-based operations.

Our ternary circuits for emulated binary encoding of
integers have been developed specifically for the purposes
of this analysis. The emulated binary and genuine ternary
versions of integer arithmetic have different practical
bottlenecks, although they are asymptotically equivalent in
terms of cost. With the ripple-carry adders, the emulated
binary encoding wins, in practice, in both width and depth
over the ternary encoding, whereas with carry-lookahead
adders the ternary encoding achieves smaller width but yields

2Alternative circuits exist based on the variety depth and width
tradeoff.

012306-4

FACTORING WITH QUTRITS: SHOR’s ALGORITHM ON ...

bo ;-‘.‘ ; S0

agp 4—_’ {—"J ap

bl %l; % 81

ay = . = aq

= <

bn_1 S = Sn—1
Gn-1 -] P [Gn—1

an < = an

z i Z @ 8nt+1

FIG. 3. Ripple-carry adder from [32].

no notable non-Clifford depth advantage in the context of
modular exponentiation.

To give the study a mathematical form, let us agree to
take into account only non-Clifford gates used with either
encoding and let us agree to count a stack of non-Clifford
gates performed in parallel in one time slice as a single unit of
non-Clifford depth. We call the number of units of non-Clifford
depth in a circuit the non-Clifford depth of the circuit.

Throughout the rest of the paper, we use the following:

Definition 1. For integer n > 0 let | j), |k) be two different
standard basis vectors in the n-qudit Hilbert space. We call the
classical gate

iy = 1% = 1)1 = 1R KL+ 1)KL+ 1K) G (D)

a two-level axial reflection in n qudits.
As a motivation for this term, note that ;)) can be
rewritten as the two-level Householder reflection

19" = 2{u)(ul,|u) = (1) — k))/v/2.

Clearly, in binary encoding, the CNOT, the Toffoli, and any
variably controlled Toffoli gate is a two-level axial reflection
in the corresponding number of dimensions.

A. Ternary circuit for binary ripple-carry additive shift

We discuss emulating an additive shift circuit improving on
a quantum ripple-carry adder from [32]. Let a be a classically
known n-bit integer and b be a quantumly stored n-qubit basis
state. We are looking for a quantum implementation of the
function |b) — |a + b). More specifically, we are looking
for a precompiled quantum circuit C, parametrized by a
which is known at compilation time. Consider the well-known
quantum ripple-carry adder from [32] (in particular, the circuit
illustrated on Fig. 4 for n = 6 there that is copied, for
completeness, into our Fig. 3).

The adder uses 2n 4 2 qubits. It performs a ladder of n
majority (MAJ) gates to compute all the carry bits, including
the top one. The top carry bit is copied unto the last qubit
and the ladder of n uncompute majority and do addition
(UMA) gates is performed. Each UMA gate uncomputes the
corresponding MAJ function and performs the three-way Z,
addition a; ® bi D c;.

It is somewhat hard to fold in the classically known a in
the multiqubit framework using this design. Note, however,
that a solution along these lines is offered in [7]. However, it
is easy to fold in « in ternary emulation using the third basis

PHYSICAL REVIEW A 96, 012306 (2017)

state of the qutrit. We show that it takes exactly n + 2 qutrits
to emulate the binary shift |b) > |a + b).

Consider n + 2 qutrits where the top and the bottom ones
are prepared in |0) state and the remaining n encode the binary
bits of the |b). We will be looking for reversible two-qutrit gates
Yy,Y; such that

Yaj |Cj,bj> = |C},Cj+1>, (12)

where ¢, is the correct carry bit for ¢; +a; + b; and ¢, is
an appropriate trit.

Since all the bits of a are known, we can precompile a
ladder of Y gates that correctly computes the top carry bit ¢,
and puts the modified carry trit c} on each b; wire. Having
copied ¢, onto the last qutrit, we sequentially undo the Y gates
in lockstep with computing partial Z, sums b; @ c¢; on all the
b; wires using gates of CNOT type.

We note that Yj,Y; are ternary gates used, however, in a
narrow context of a truth table with just four columns. One
would intuitively expect that their restriction to the context
can be emulated at a relatively small expense.

Indeed, note the following:

Proposition 2. Label the ¢; wire by 0 and b; wire by 1 In
the context of binary data the gates

Yy = Cz(INC)(T),lSUMl,o(T\O),u) ®1I)
and
Y1 = Co(INC)o,1 (I ® T)0),11))SUM 0(® Tj0), 1))

satisfy the condition (12).

Here, the C,(INC) is the binary-controlled increment
Co(INC) : | j,k) = |j.k+6;2).

Proof. By direct computation, note that we do not care
what either of these two circuits does outside of the binary
data subspace as long as the action is reversible. |

The C,(INC) gate is also denoted as C>(X) in Ref. [22],
where its cost and utility is discussed in detail (see also further
discussion in Sec. IV). The non-Clifford cost of either Y; gate
is equal to the non-Clifford cost of C»(INC) which is known
to be 3 Py gates. Allowing one ancillary qutrit, the C»(INC) is
represented by a circuit of Py depth of 1 and Py width of 3.

Aside from the generalized carry computation, the additive
shift circuit also needs to perform the bitwise mod 2 addition
by emulated gates of CNOT type. Recall that CNOT gate cannot
be exactly represented by a ternary Clifford circuit (cf. [22],
Appendix A). As shown further in Proposition 4, the non-
Clifford cost of ternary-emulated CNOT on binary data only
is an equivalent of two C,(INC). Thus, the additive shift takes
roughly 12n Py gates to complete (not counting the Clifford
scaffolding). With one ancilla this can be done at Py depth of
4n and Py width of 3.

However, Shor’s period-finding functions rely on controlled
and doubly controlled versions of the additive shift. It suffices
to control only the bitwise addition gates. Thus, adding one
level of control produces n additional Toffoli gates and adding
the second level of control turns these gates into controlled
Toffolis. This is the bottleneck of the emulated solution: as
per Corollaries 8 and 9 in the section following, an emulated
Toffoli takes 12 Py and the binary-controlled Toffoli takes
18 Py gates, respectively. Thus, overall the controlled shift

012306-5

ALEX BOCHAROV, MARTIN ROETTELER, AND KRYSTA M. SVORE

TABLE I. Truth table for ¢; 4, givena; = 1.

PHYSICAL REVIEW A 96, 012306 (2017)

TABLE III. Cost of ripple-carry additive shift: ternary vs emu-
lated binary. n is the bit size of the arguments.

i 0 0 0 1 1 1

b; 0 1 2 0 1 No. Py: emulated No. Py:

Citl 0 0 1 0 1 1 Circuits binary ternary
Simple additive shift 12n 19n
Controlled additive shift 18n >21n

takes 18n Py and the doubly controlled shift takes 24n Py Doubly controlled additive shifts 24n ~33n

gates. Allowing, again, an ancillary qutrit the Py depths of the
corresponding circuits can be made 6n and 8n, respectively.

For what it is worth, the Py counts in this solution are similar
(and in fact marginally lower) than the T counts required for
running the original binary adder [32] on the more common
binary Clifford 4+ T platform. Indeed, each of the MAJ and
UMA gates shown on Fig. 3 is Clifford equivalent to a Toffoli
gate that takes 7 T gates to implement. Adding one level
of control to the adder increases the non-Clifford complexity
by an additional n Toffoli gates to the total T count of 21n.
Adding the second level of control, conservatively, brings in
2n additional modified Toffoli gates to yield the total 7' count
of 29n. We also note that the width of the ternary emulation
circuit is equal to n + 2 qutrits, whereas the original purely
binary design appears to require 2n + 2 qubits.

The construction of Corollaries 8 and 9 requires 1 and 2
ancillae, respectively. These ancillae can be shared along the
depth of the circuit inflating the overall width by two qutrits.

B. Ternary circuit for ternary ripple-carry additive shift

Consider ripple-carry implementation of the quantum func-
tion |b) > |a + b), where |b) is quantumly encoded integer
and a is an integer that is classically known. Suppose a
and b are encoded as either bit strings with at most n bits
or as trit strings with at most m = [log;(2)n] trits [with
log;(2) ~ 0.63093]. Since a is classically known, we strive
to improve on the ternary ripple-carry adder of [22] by folding
in the trits of a. However, we are no longer able to encode all
of the quantum information for b and the carry on the same
qutrit. The additive shift thus requires roughly 2m — w,(a)
qutrits to run [where w(a) is the number of trits equal to 1 in
the ternary expansion of a]. The ternary additive shift in this
design has somewhat higher non-Clifford time cost compared
to the emulated binary shift of Sec. III A.

For the classical additive shift we do not physically encode
the trits of a and instead precompile different generalized
carry circuits for different values of these trits. Tables I and
II show the truth tables for the consecutive carry c;y; given,
respectively, a; = 1 and O (the case of a; = 2 is symmetric
to the case ag and yields the came conclusions). The case of
a; = 1 does not require any ancillary qutrits since the c; 4 is
a balanced binary function that can be produced reversibly on
the pair of qutrits encoding ¢; and b; by ternary SWAP gate
followed by [01) < |20).

TABLE II. Truth table for ¢;;; given a; = 0.

¢ 0 0 0 1 1 1
bi 0 1 2 0 1
Cint 0 0 0 0 0 1

However, in the case of a@; = 0, the ¢;; = 0 in five cases
(respectively, for a; = 2 the ¢;; = 1 in five cases) and such
five basis vectors cannot be represented in two-qutrit state
space. These cases thus require an ancillary qutrit to encode
ci+1. In the case of a; = 0, we simply take the ancilla in the
|0) state and apply doubly controlled INC gate with the ternary
control on ¢; and binary control on b;. In the case of ¢; = 2,
it suffices to additionally use the Clifford tjy |, gate on the
ciy+1. Assuming a is generic with w;(a) ~ m/3, we get an
average width of the additive shift circuit of roughly 5/3m
which eliminates the space savings afforded by denser ternary
encoding [5/3 log;(2) &~ 1.05].

Let us now make case for the second observation. We
start by assessing the clean magic state counts for simple
uncontrolled additive shift. We note that for any classical
value of the a; trit, the non-Clifford cost of the carry gate is
the same and equals 15 clean magic states. Indeed, depending
on ¢; and in terminology of [22] we either need one gate of
So1.10 type or one gate of Co(SUM) type. In Sec. 5.1 of [22]
both types are reduced to 5 binary-controlled increments and
consequently to 15 Py gates. The concluding trit-wise addition
is done by Clifford SUMs at negligible cost. Thus, the overall
cost of the circuit is roughly 30m ~ 19n Py gates. Allowing an
ancillary qutrit, the Py depth of the circuit can be made equal
to 10m > 6n.

Adding one ternary control to the circuit turns all the
finalizing SUMs into “Horner” gates A(SUM) that overall takes
4m additional Py gates to the total non-Clifford cost of
34m > 21n Py gates. A subtle point discussed in Sec. III E
is that the second control that is routinely added to the additive
shift gate S, is in fact strict control that turns it into a C ;(S,)
gate f € {1,2} where S is activated only by the control basis
state | f). This turns each of the the m “Horner” gates into
a four-qutrit C;[A(SUM)] gate. We do not have an available
ancilla-free design for a synthesis of this gate. Our best design
described in Proposition 11 sets the non-Clifford cost at 23
Py gates given one clean ancilla. Thus, adding the required
second (strict) control inflates the overall cost of the ternary
circuit to 53m > 33n Py gates.

Again, with available ancilla the circuit can be restacked
to Py width of 3 reducing the Py depth by the factor of 3 (to
roughly 19m in case of doubly controlled additive shift), which
is less than the non-Clifford cost of the emulated binary n-bits
doubly controlled additive shift. The comparative cost of the
binary and ternary options is summarized in Table III.

We demonstrate in Sec. III D that the best-known ternary-
controlled modular shift circuit requires 4 instead of 3 additive
shift blocks on roughly half of the modular addition cases, so,
in the context of the required modular addition, the emulated

012306-6

FACTORING WITH QUTRITS: SHOR’s ALGORITHM ON ...

binary encoding appears to be a practical win-win when a low
width ripple-carry adder is used.

C. Circuits for carry lookahead additive shift

The resource layout is different for known carry lookahead
solutions. For the sake of space, we forego detailed analysis
and only sketch the big picture. We assume that the integers a
and b are encoded as either bit strings with at most n bits or as
trit strings with at most m = [log;(2)n] trits. We use carry
lookahead additive shifts based on the in-place multiqubit
carry lookahead adder [33] and the in-place multiqutrit carry
lookahead adder [22].

The non-Clifford depths of the corresponding circuits are
4 log,(n) and 4 log,(m), respectively, up to small additive con-
stants. Because log,(m) = log,(n) + log,[log;(2)], there is no
substantial difference in non-Clifford depths. The non-Clifford
layers of the binary adder are populated with Toffoli gates and
for the ternary adder they are populated with carry status merge
and unmerge widgets (the M and Mt widgets of [22]). The
cost of ancilla-free emulation of the former or, respectively,
execution of the latter is identical with 15 Py gates.

When levels of control are added to the shift circuit,
putting ternary control on ternary widgets is more expensive
than building multicontrolled Toffoli gates, as the discussion
in Sec. IIT A implies. But, in the context of carry lookahead
circuits, the multicontrolled gates are located in just two layers
out of O[log(n)], thus, the impact of this cost distinction is
both asymptotically and practically negligible.

Note that the widths of the binary and ternary circuits are
roughly proportional to n and m = [log;(2)n], respectively.
This means that the purely ternary solution has roughly m/n =~
log;(2) smaller width.

Since the depth overhead percentage is moderate, we should
prefer purely ternary encoding when implementing Shor’s
period finding on small quantum computer.

D. Circuits for modular additive shifts

We review layout for modular additive shift and controlled
modular additive shift in both emulated binary and genuine
ternary setups. Let N > 0 and a < N be classically known
integers. The commonly used scheme to compute the quantum
modular additive shift |b) — |(a 4+ b) mod N) is to compute
|a + b), figure out whethera + b < N and, if not, then subtract
N. In order to do it coherently without measurement, we need
to do the following:

(1) Speculatively compute the |(@a — N) + b) shift; struc-
ture it so that the top carry bit ¢, is 1 iff (@ — N) + b < 0.

(2) Copy c,+1 to aclean ancilla x.

(3) Apply the shift by + N controlled by the ancilla x.

(4) Clean up the ancilla x.

Surprisingly, the last step is less than trivial. We need to
compare the encoded integer |y) after step 3toa. Then, y > a
if and only if ¢, = 1. Therefore, we must flip the ancilla if
andonly if y > a. We do this by taking a circuit for comparison
to classical threshold and wiring the NOT x into it in place of the
top carry qubit. Itis easy to see that performing the comparison
circuit has the exactly the desired effect on the ancilla x. A
top-level layout of the modular additive shift is shown in Fig. 4.

PHYSICAL REVIEW A 96, 012306 (2017)

b) — —
H(a—N) +N
10) — Sa? |
N i -
Y D

FIG. 4. Top-level layout of modular additive shift for binary
encoding.

We note that the three-stage layout shown in the figure is not
entirely new. It is very similar to designs proposed in [7,8].
Clearly the non-Clifford depth of this scheme is roughly triple
the non-Clifford depth of the additive shift circuit in either
binary or ternary framework.

In the context of ternary encoding of integers and allowing
for ternary control, the logic turns out to be more involved.
Depending on whether 2a < N or not, which is known at
compilation time, we need to compile two different circuits.
When 2a < N we need to speculatively precompute b + ca —
N where ¢ is the quantum value of the control trit. This
is different from adding ternary control to the additive shift
+(a — N). A straightforward way to do this is by taking the
controlled shift +c(a — N) followed by strictly controlled
shift C,(4+N). Aside from this additional shift box, the circuit
in Fig. 4 still works as intended, which is easy to establish:
the speculative b 4+ ca — N is corrected back to b + ca if and
only if the eventual result is >ca which is the condition for
the ancilla cleanup.

When 2a > N we can precompile ternary control on the
entire +(a — N) box, which then precomputes the y = b +
c(a — N) for us. However, here we still get some overhead
compared to the binary encoding context. Indeed, we need to
correct the speculative state ytoy = b + c(a — N) + N when
y < 0 and it is easily seen that the result is >c(a — N) + N
if and only if y was negative and the correction happened.
Thus, the ancilla cleanup threshold is t = c(a — N) + N on
this branch. Since c is the quantum control trit, the comparison
to ¢ is somewhat more expensive to engineer than comparison
to ca.

To summarize, a purely ternary modular shift circuit
allowing for ternary control would be similar to one shown
in Fig. 5, where the extra dashed C,(4+N) box is inserted at
compilation time when 2a < N. The latter case constitutes
the critical path where we have to use an equivalent of four
additive shifts instead of three.

E. Circuits for modular exponentiation

For modular exponentiation |k)|1) > |k)|a® mod N), we
follow the known implementation proposed in the first half of
Ref. [10].

We denote by d the dimension of the single qudit. d is
assumed to be either 2 or 3 where it matters. Suppose that
a,N are classically known integers a < N, and #n is an integer
approximately equal to log,(N). Suppose |k) is quantumly

012306-7

ALEX BOCHAROV, MARTIN ROETTELER, AND KRYSTA M. SVORE

cla—N) +N

| -

FIG. 5. Top-level layout of ternary modular additive shift. In
case 2a < N, the circuit is compiled with the additional C,(+N)
shift controlled on ¢ = 2 and using the threshold ¢ = ca. In case
2a > N, the additional shift is not needed, but the threshold
t=cla— N)+ N.

o
0
>

[0)

N

encoded, k = Z?igl k; d/ is base-d expansion of k, where k;
are the corresponding qudit states. First, we observe that

2n—1
a* mod N = 1_[(a” mod N)k/ mod N. (13)
=0

Note that (¢¥ mod N) are 2n classical values that are
known and easily precomputable at compilation time. Thus,
|a¥ mod N) is computed as a sequence of modular multiplica-
tive shifts, each quantumly controlled by the |k;).

Suppose we have computed the partial product

m
pem =[] (a” mod N)" mod N,
j=0

and let

n—1

14
Pk.m = Z pk,m,fd
=0

be the base-d expansion of py ,,. Then,

n—1

Dk,m+1 = Z Dk,m.¢ (d‘za“m+1 mod N)k”’+1 mod N.
=0

Observe, again, that
{(da”" mod N)' mod N|f e[l...d =11} (14)

is the set of fewer than d precomputable classical values known
a priori. Therefore, promoting p ,, t0 pi.m+1 is performed as
a sequence of modular additive shifts, controlled by py ,, ¢ and
km+1~

Herein lies a subtle difference between the case of d = 2
and the case of d > 2 (e.g., d = 3). In the case of d =2 we
do the modular shift by 2¢a>"" mod N if and only if py ¢ =
kin+1 = 1. Thus, the corresponding gate is simply the doubly
controlled modular additive shift.

In case of d > 2 the d — 1 basis values of k,,4; lead to
modular additive shift by one of the d — 1 potentially different
values listed in Eq. (14). Thus, we need a (d — 1)-way quantum
switch capable of selection between the listed values. Let
Sp,f €ll...d—1] be the modular additive shift by the
fth value in (14). Then, the desired switch can be realized

PHYSICAL REVIEW A 96, 012306 (2017)

coherently as the product C1(Sy) ... C4—1(S4—1) where C¢(Sy)
is the S, activated only by the basis state k,,..1 = | f).

This implies the following difference in the circuit makeup
between the case of d = 2 and the case of d = 3. For d = 2,
modular exponentiation takes roughly 2n2 doubly controlled
modular additive shifts; for d = 3, it takes roughly 4m? doubly
controlled modular additive shifts (where m is the trit size of
the arguments), each with one ternary and one strict control
on one of the two ternary values.

When comparing the option of performing the circuit in
emulated binary encoding against the option of running it in
true ternary encoding we find a practical dead heat between the
two options in terms of circuit depth. Indeed, in counting the
number of doubly controlled additive shift boxes we find that
4m* =2 [log3(2)]2 (2n?) =~ 0.796 x (2n?). But, we should be
aware of possible factor ;—‘ overhead in the number of additive
shifts per a ternary modular shift as suggested, for example,
by Fig. 5. (Of course, % x 0.796 ~ 1.06.)

To summarize, solutions based on emulation of binary
ripple-carry adders are still win-win over the comparable true
ternary ripple-carry designs in the context of the modular
exponentiation; when carry lookahead adders are used, the two
options have nearly identical non-Clifford depth numbers, but
there is notable width reduction advantage [factor of log;(2)]
of using true ternary solution over the emulated binary one.

F. Circuits for quantum Fourier transform

In the solutions for period finding discussed so far, the quan-
tum cost is dominated by the cost of modular exponentiation
represented by an appropriate reversible classical circuit. In
this context, just a fraction of the cost falls onto the quantum
Fourier transform. Nevertheless, for the sake of completeness
we discuss some designs for emulating binary quantum Fourier
transform on ternary computers and implementing ternary
Fourier transform directly in ternary logic.

0dd radix Fourier transforms appeared in earlier quantum
algorithm literature. In particular, [28] outlines the benefits
of “trinary” (ternary) Fourier for low-width Shor factorization
circuits and also briefly sketches how ternary Fourier transform
can be emulated in multiqubit framework. On a more general
level, Ref. [34] describes quantum Fourier transform over Z ,.
In Sec. IIIF2 we develop specific circuitry for a version of
such a transform over Z , where p is some integer power of 3.

1. Case of emulated binary

A familiar binary circuit for approximate Fourier trans-
form in dimension 2" with precision § consists of roughly
®[n log(n/5)] controlled phases and n binary Hadamard gates
(see [35], Sec. 5). In known fault-tolerant binary frameworks,
the phases ¢ /%, k € Z, occurring in the Fourier transform
have to be treated just like generic phases. Of all the possible
ways to emulate a controlled-PHASE gate we will focus on just
one with minimal parametric cost. This is the one with one
clean ancilla, two Toffoli gates, and one uncontrolled-PHASE
gate. (Itis not clear when exactly this design has been invented,
but cf. [36], Sec. 2 for a more recent discussion.)

Given the control qubit |¢) and target qubit |z) the
controlled-PHASE gate C[P(¢)],|¢| = 1 is emulated by apply-
ing Toffoli[/ ® I ® P(¢)] Toffoli to the state |c)|¢)|0). Ternary

012306-8

FACTORING WITH QUTRITS: SHOR’s ALGORITHM ON ...

emulation of Toffoli gate is discussed in detail in Sec. IV.
Somewhat surprisingly, ternary emulation of uncontrolled-
PHASE gates in practice incurs larger overhead than emulation
of classical gates. Also, the binary Hadamard gate is a Clifford
gate in the binary framework, but cannot be emulated by a
ternary Clifford circuit. This introduces additional overhead
factor of {1 + ®[1/log(1/8)]}.

2. Case of true ternary

We develop our own circuitry for quantum Fourier trans-
form over Z3» based on the textbook Cooley-Tukey procedure.
Quantum Fourier transform in the n qutrit state space is given
by the unitary matrix

T = (5], (15)

where §3j,,k is the 3"th root of unity. In particular, the T3QF
coincides with the ternary (Clifford) Hadamard gate. The
following recursion for n > 1 is verified by straightforward
direct computation:

Y = 1, (AD)ITY, (16)

where I1,, is a certain n-qutrit permutation,

D, = diag(1,¢,....¢0 7Y, (17)

and where A is the ternary control.
By further direct computation we observe that

n—2

D, =[] diag(1.c5. .¢3%). (18)

k=0

The permutation gate IT, is not computationally important
since it amounts to O(n) qutrit swaps which are all ternary

Clifford. Aside from this tweak we have decomposed ’Z;QF

recursively into O(n?) gates of the form A[diag(l,;“;,f ,§32mX3k)]
which are ternary analogs of familiar controlled-PHASE gates.

Similar to the binary case, it is known in general (cf. [34])
that once we are allowed to approximate the quantum Fourier
transform to some fidelity 1 — §, we can compute the ap-
proximate quantum Fourier transform with ®[n log(n/§) +
log(1/8)?] gates. This is because controlled-PHASE gates with
phases in some O(6/n) can be dropped from the circuit without
compromising the fidelity.

3. Implementation of binary and ternary controlled
phase gates in the Clifford + R\ basis

In the ternary framework, a P(p) = [0)(0] + ¢ |1)(1],]¢| =
1 can be emulated exactly by the balanced two-level gate
P'(¢) =10)(0] + ¢ |1)(1| + ¢! |2)(2| which is a composi-
tion of the Clifford reflection H? and the non-Clifford reflec-
tion P"(p) = 0)(0] + ¢ |1)(2| + ¢~ ' |2)(1]. Also, the binary
Hadamard gate 7 = (]0)(0] 4 |0)(1]| + |1){0] — |1)(1|)/«/§ is
a two-level Householder reflection. As per [26,37], both
P”’(p) and h can be effectively approximated to precision
6 by Clifford + Ry circuits with R counts <C log;(1/8) +
O{log[log(1/5)]} and the constant C in-between 5 and 8. For
reference, in the Clifford + 7 framework, the T count of §
approximation of a generic phase gate is in 3 log,(1/8) +
O {log[log(1/8)1}.

PHYSICAL REVIEW A 96, 012306 (2017)

Thus, emulation of the binary circuit for a binary Fourier
transform incurs no surprising costs.

In pure ternary encoding we need to implement the
ternary analog of controlled-PHASE gate: gates of the form
Aldiag(1,¢,¢0%)], |¢| = 1. This is not difficult after some
algebraic manipulation:

Proposition 3. Given a phase factor ¢,|¢| =1 and an
arbitrarily small § > 0 the gate Al[diag(1,¢,¢?)] can be
effectively approximated to precision § by a metaplectic circuit
with at most 40 (log;(1/8) + O{log[log(1/8)1}) Rpy gates.

Alternatively, such a § approximation can be effectively
achieved by a metaplectic circuit with at most 24 (log;(1/8) +
O({log[log(1/8)]}) Ry gates and a fixed-cost widget with at
most 30 Py gates.

Proof. We note that

A(diag(l,tp,fpz)) = ¢ diag(1,1,1,0*,1,¢,1,1,1)
x diag[1,1,1,1,1,1,(9")%, 1,¢7]
x [diag(p*,1,0) ® I1. 19)

Each of the three factors in this decomposition is a product
of two two-level reflections. It is also notable that one
particular reflection, the 7,2y coming from diag(e*,1,¢) =
Tj0),12) (@ 10) (2] 4+ [1) (1] 4+ @* |2)(0]), is in fact ternary Clifford.
Therefore, we are having a total of five non-Clifford reflections
in this decomposition, two of which are nonparametric
classical reflections.

As per [26], any two-level reflection can be effectively
(6/5) approximated by metaplectic circuit with at most
8 (log;(1/8) + O{log[log(1/8)1}) Rz gates, and this can be
applied to all five non-Clifford reflections. Alternatively, each
of the two classical ones can be represented exactly as per [22]
using five C,(INC) or, respectively, 15 Py gates.]

Thus, implementation of either version of quantum Fourier
transform circuit is never a cost surprise in the metaplectic
Clifford + R,y basis. Although numerologically the R depth
of the required approximation circuits is a good factor higher
than the 7 depth of corresponding circuits required in the
Clifford + T framework, we need to keep in mind that the
Ry is significantly easier to execute on a natively metaplectic
computer since, unlike the 7' gate, it does not require magic
state distillation.

4. Implementation of binary and ternary controlled-PHASE
gates in the Clifford + Py basis

At the time of this writing, emulation of quantum Fourier
transform circuits on a generic ternary computer is not entirely
straightforward. First of all, we currently do not know an
efficient direct circuit synthesis method for Householder
reflections in the Clifford + Py basis. If follows from [38]
that any ternary unitary gate can be also approximated to
precision § by an ancilla-free Clifford + Py circuit of depth in
O[log(1/8)]; but, we do not have a good effective procedure
for finding ancilla-free circuits of this sort, neither do we have
aclear idea of the practical constant hidden in the O[log(1/6)].

As a bridge solution, we show in Appendix A that the
requisite magic state |y) [see Eq. (9)] for the gate Rp can
be emulated exactly and coherently by a set of effective
repeat-until-success circuits with four ancillary qutrits and

012306-9

ALEX BOCHAROV, MARTIN ROETTELER, AND KRYSTA M. SVORE

expected average Py count of 27/4. Thus, we can approx-
imate a required uncontrolled-PHASE gate with an efficient
Clifford + Ryp circuit and then transcribe the latter into a
corresponding ancilla-assisted probabilistic circuit over the
Clifford + Py basis. In order to have a good synchronization
with the Clifford + Ry circuit execution, it would suffice
to have the magic state preparation coprocessor of width
somewhat greater than 27. Since the controlled-PHASE gates
and hence the approximating Clifford 4+ Ry circuits are
performed sequentially in the context of the quantum Fourier
transform, this coprocessor is shared across the quantum
Fourier transform circuit and thus the width overhead is bound
by a constant.

On the balance, we conclude that ternary execution of the
quantum Fourier transform is likely to be more expensive
in terms of required non-Clifford units, than, for example,
comparable Clifford 4+ 7" implementation. However, the non-
Clifford depth overhead factor over Clifford + T is upper
bounded by an {« + ®[1/log(1/5)]} where « is a small
constant.

G. Comparative cost of ternary emulation
vs true ternary arithmetic

With the current state-of-the-art ternary arithmetic circuits,
modular exponentiation (and hence Shor’s period finding) is
practically less expensive with emulated binary encoding in
low width (e.g., small quantum computer); however, when
O[m?log(m)] depth is desired, pure ternary arithmetic allows
for width reduction by a factor of log;(2) compared to
emulated binary circuits, while requiring essentially the same
non-Clifford depth.

IV. IMPLEMENTING REFLECTIONS ON GENERIC
TERNARY AND METAPLECTIC TOPOLOGICAL
QUANTUM COMPUTERS

State-of-the-art implementation of the three-qubit binary
Toffoli gate assumes the availability of the Clifford + T basis
[35]. It has been known for quite some time (cf. [39]) that a
Toffoli gate can be implemented ancilla free using a network
of CNOTs and 7 T*! gates. It has been shown in [40] that this
is the minimal 7' count for ancilla-free implementation of the
Toffoli gate.

In Sec. IV A, we develop emulations of classical two-level
reflections (which generalize Toffoli and Toffoli-type gates)
on generic ternary computer endowed with the Clifford + Py
basis as described in Sec. II C. We also introduce purely ternary
tools necessary for implementing controlled versions of key
gates for ternary arithmetic proposed in [22]. This implies of
course an emulation of the three-qubit Toffoli gate with 6 Py
gates and one clean ancilla.

In Sec. IV B, we reevaluate the emulation cost assuming
a metaplectic topological quantum computer (MTQC) with
Clifford + Ry basis as described in Sec. I D. In that setup, we
get two different options both for implementing non-Clifford
classical two-way transpositions (including the Toffoli gate)
and for circuitizing key gate for proper ternary arithmetic.

One is direct approximation using Clifford + R)y circuits.
The other is based on the Py gate but it uses magic state

PHYSICAL REVIEW A 96, 012306 (2017)

preparation in the Clifford 4 Ry basis instead of magic state
distillation. This is explained in detail in Sec. IV B. The
first option might be ideal for smaller quantum computers.
It allows circuits of fixed widths but creates implementation
circuits for Toffoli gates with the R count of approximately
8 log;(1/6) when 1 — § is the desired fidelity of the Toffoli
gate. The second option supports separation of the cost of the
Py gate into the “online” and “offline” components (similar
to the Clifford 4+ T framework) with the “online” component
depth in O(1) and the “offline” cost offloaded to a state
preparation part of the computer, which has the width of
roughly 9 log;(1/8) qutrits but does not need to remain always
coherent.

A. Implementing classical reflections in the Clifford + Py basis

The synthesis described here is a generic ternary coun-
terpart of the exact, constant 7-count representation of the
three-qubit Toffoli gate in the Clifford + 7 framework. One
distinction of the ternary framework from the binary one is
that not all two-qutrit classical gates are Clifford gates. In
particular, the t10),;11y reflection which is a strict emulation of
the binary CNOT is not a Clifford gate; neither is the 710, jo1
which which is a strict emulation of the binary SWAP. However,
while binary SWAP can be emulated simply as a restriction
of the (Clifford) ternary swap on binary subspace, the CNOT
cannot be so emulated.

A particularly important two-qutrit building block is the
following non-Clifford gate:

Ci(NO)|j) k) = [j)](k +8;,1) mod 3).

A peculiar phenomenon in multiqudit computation (in dimen-
sion greater than two) is that a two-qudit classical non-Clifford
gate [such as C;(INC)] along with the INC gate is universal for
the ancilla-assisted reversible classical computation (cf. [41]),
whereas a three-qubit gate, such as Toffoli, is needed for the
purpose in the multiqubit case.

The following is a slight variation of a circuit from [22]:

T|02),[2,00 = TSWAP Cl(INC)qu Cl(INC)Lz
x C1(INC)y,; C1(INC)1 2 C{(INC)2,1,

where TSWAP is the ternary (Clifford) swap gate. This suggests
using five copies of C;(INC) gate for implementing a two-level
two-qutrit reflection. However, this is inefficient when we only
need to process binary data.

Proposition 4. The following classical circuit is an exact
emulation of the binary CNOT gate on the binary data:

SUM2’1(T‘1M2> [‘E‘]),‘z))TSWAP C](INC)z’l
x C{(NCT)1 2 ()0 ® T|1>,|2>)SUM;1- (20)

Proof. By direct computation.]

The two non-Clifford gates in this circuit are the C;(INC)
and C;(INC). [To avoid confusion, note that the gate as per
Eq. (20) is no longer an axial reflection on ternary data.]

The C;(INC) is Clifford equivalent to the Ci(Z)=
diag(1,1,1,1,w3,03,1,1,1) gate (w3 = €>"/3), and the latter
gate is represented exactly by the network shown in Fig. 6 (up
to a couple of local 7|g)1) gates and a local Q gate).

012306-10

FACTORING WITH QUTRITS: SHOR’s ALGORITHM ON ...

! - Y Y Y
O N R

FIG. 6. Exact representation of C,(Z) in terms of Py gates.

Plugging in corresponding representations of C;(INC) and
C,(INCT) into the circuit (20), we obtain an exact emulation of
CNOT that uses six instances of the P;*' gate.

Remark 5. By using an available clean ancilla, we can
exactly represent the C;(Z) in Py depth 1. The corresponding
circuit is equivalent to one shown in Fig. 7. Thus, the CNOT
gate can be emulated on binary data using a clean ancilla in
Py depth 2.

Thus, when depth is the optimization goal, a clean ancilla
can be traded for triple compression in non-Clifford depth of
ternary emulation of the CNOT. (This rewrite is similar in nature
to the one employed in [42] for the binary Margolus-Toffoli
gate.)

Proposition 6. A three-qubit Toffoli gate can be emulated,
ancilla free, by the following three-qutrit circuit:

(suM' ® NI ® Tp0).121))(SUM ® I). (1)

This circuit requires 15 Py gates to implement.

Proof. The purpose of the emulation is perform the |110) <
[111) reflection in the binary data subspace. Having applied
the rightmost SUM ® I we find that (SUM ® I)|110) = [120),
(SuM® I)|111) = |121), and we note that the latter two are
the only two transformed binary basis states to have the second
trit equal to 2. Therefore, the I &)20y, 121) operator affects only
these two transformed states. By uncomputing the SUM ® 1,
we conclude the emulation.]

Importantly and typically we can reduce the emulation
cost by using a clean ancilla. To this end, we first prove the
following.

Lemma 7. Let U be n-qubit unitary and let the binary-
controlled (n 4 1)-qubit unitary C(U) be emulated in the
binary subspace of an m-qutrit register m > n. Then, one level
of binary control can be added to emulate C[C(U)] in an
(m + 2)-qutrit register using six additional Py gates; one of
the new qutrits is a clean ancilla in state |0) and the other new
qutrit emulates the binary control. With one more ancilla, the
additional Py gates can be stacked to Py of depth 2.

Proof. We prove the lemma by explicitly extending the
emulation circuit. Let ¢; be a label of the qutrit emulating the
control wire of C(U). Let ¢, be a label of the new qutrit to
emulate the new control wire. Let a be the label of the new
clean ancilla. Apply the sequence of gates C2(INC)c2,,SUMc1 2
(right to left) then use the ancilla a as the control in the known
emulation of C(U), then unentangle: SUMIchCz(INC)Jr

c2,a*

7] T
>
[7 p |

5

JiE

FIG. 7. Exact representation of Cy(Z) in Py depth 1.

PHYSICAL REVIEW A 96, 012306 (2017)

The circuit applies correct emulation to the binary subspace
of the (m + 2)-qutrit register. The correctness is straightfor-
ward: within the binary subspace SUM.; ., generates |2) on
the ¢, wire. The C2(INC).2 , promotes the ancilla to |1) if and
only if |cy,c3) = |11). Therefore, U is triggered only by the
latter basis element, which is the definition of the dual binary
control.

The cost estimate follows from the fact that C,(INC). , and
its inverse take 3 Py gates each. |

Corollary 8. Three-qubit Toffoli gate can be emulated in
four qutrits (allowing one clean ancilla) with 12 Py gates at Py
depth of 4.

Indeed, Toffoli = CC(NOT) and C(NOT) takes 6 Py gates
with no ancillas to emulate as per Proposition 4.

Corollary 9. Four-qubit binary-controlled Toffoli gate
CCC(NOT) can be emulated: (1) in six qutrits (allowing two
clean ancillas) with 18 Py gates at Py depth of 6; (2) in five
qutrits (allowing one clean ancilla) with 21 Py gates.

Proof. For (1), we emulate using Lemma 7 and Corollary 8.
For (2), we emulate using Lemma 7 and Proposition 6. |

We will further use the three-qutrit “Horner” gate A(SUM):

A(SUM)|i,j.k) = |i,j.k+ij mod3),i,j.ke{0,1.2}

as a tool for adding levels of control to emulated binary and
true ternary gates. Recall from [22] (Fig. 18 and discussion)
that the best-known non-Clifford cost of A(SUM) is 4 Py gates
at Py depth 2.

We now proceed to implement the completely ternary four-
qutrit gate A A(SUM) using the same construction as above:

Proposition 10. Label primary qutrits with 1,2,3,4 and
label a clean ancillary qutrit in state |0) with 5. Then, the
following circuit implements the A A(SUM) gate on the primary
qutrits:

A(SUM)] , sA(SUM)3 5 4 A(SUM), 2 5. (22)

This circuit requires 12 Py gates to implement.

However, as follows from discussion in Secs. IIIC and
IIT A, controlled ternary modular exponentiation also relies on
another form of the doubly controlled SUM gate: the strictly
controlled Horner gate C¢[A(SUM)], f € {0,1,2}, where the
Horner gate A(SUM) is activated only by the basis state |) of
the top qutrit. A certain implementation of the C;(SUM) has
been developed in [22] costing 15 Py gates.

The following proposition explains how to insert another
level of ternary control using a cascade of Horner gates again:

Proposition 11. Label primary qutrits with 1,2,3,4 and
label a clean ancillary qutrit in state |0) with 5. Then, the
following circuit implements the C([A(SUM)] gate on the
primary qutrits:

A(SUM); 3,5Cf (SUM); 54A(SUM)2 3 5. (23)

This circuit takes 23 Py gates to implement. With one addi-
tional ancilla, the circuit can be restacked to have Py depth
of 9.

012306-11

ALEX BOCHAROV, MARTIN ROETTELER, AND KRYSTA M. SVORE

Let us give a direct proof for transparency.

Proof. By definition, given a four-qutrit state |j,k,{,m),
we must have C([ASUM)]|j,k,£,m) = |j,k,t,m +6; kL)
After applying the rightmost Horner gate to the clean ancilla,
we have the ancilla in the |k ¢) state. The correctness of
(23) now follows from the definition of C(SUM); 5 4. The
best known circuitry for the components yields the cost of
15 + 2x4 = 23 Py gates.]

B. Implementing classical reflections in metaplectic
Clifford + R/ basis

It has been shown in [26] that, given a small enough
8 > 0, any n-qutrit two-level Householder reflection can be
approximated effectively and efficiently to precision § by
a Clifford + Rypy circuit containing at most 8 log;(1/8) +
Of{log[log(1/8)1} + O[(2 + +/5)"] instances of the Ry gate.
In particular, when n = 1 the asymptotic term O[(2 4+ v/5)"]
resolves to exactly 1 and when n = 2 it resolves to exactly
4. In both cases, it is safe to merge this term with the
O{log[log(1/6)]} term.

The single-qutrit Py gate is the composition of the ternary
Clifford gate 19,12, and the Householder reflection wg |0) (2| +
(1) (1] + a);l |2)(0]. The two-qutrit gate CNOT = tj10),j11) 1S
by 1'tself a two—lgvel Householder reflection R(\10>7\11)) et
Similarly, Toffoli = 7j110),j111) = R(\110>7\111>)/ﬁ~ Therefore,
our results apply and we have efficient strict emulations of Py,
cNoT, and Toffoli gates at depths that are logarithmic in 1/§
and in practice are roughly 8 log;(1/§) in depth. We note that
the direct metaplectic approximation of classical reflections
is significantly more efficient than the circuits expressed in
C r(INC) gates (as each of the latter have to be approximated).

Let us briefly review such direct approximation in the
context of ternary arithmetic in ternary encoding. As per
[22], the generalized carry gate of the ternary ripple-carry
additive shift contains two classical non-Clifford reflections
([22], Fig. 5) that can be represented at fidelity 1 — § by a
metaplectic circuit of R count at most 16 log;(1/6).

The same source implies that the carry status merge widget
M which s key in the carry lookahead additive shift is Clifford
equivalent to a C;(SUM) which is easily decomposed in four
classical two-level reflections and thus can be represented at
fidelity 1 — & by a metaplectic circuit of R count at most
32 logs(1/6).

A sufficient per-gate precision § may be found in
O{1/[d log(n)]} where d is the depth of the modular exponen-
tiation circuit expressed in non-Clifford reflections. Therefore,
injecting metaplectic circuits in place of reflections creates
an overhead factor in ®f{log(d)log[log(n)]}. While being
asymptotically moderate, such overhead could be a deterrent
when factoring very large numbers. This motivates us to
explore constant-depth approximations of classical reflections
as in the next section.

C. Constant-depth implementation of CNOT and C ;(INC)
on ternary quantum computers

We demonstrate that integer arithmetic on a ternary quan-
tum computer can be efficient both asymptotically and in
practice. We build on Sec. IV A that describes exact emulation

PHYSICAL REVIEW A 96, 012306 (2017)

of CNOT with six instances of the Py gate. A core result in
[20] implies that the Py gate can be executed exactly by
a deterministic state injection circuit using one ancilla, one
measurement, and classical feedback, provided availability of
the “magic” ancillary state

p=awy'|0) + 1)+ wy]2).

The state injection circuit is given in Fig. 1.

Assuming, hypothetically, that the magic state u can be pre-
pared in a separate ancillary component of the computer (then
teleported), we get a separation of the quantum complexity into
“online” and “offline” components, similar to one employed
in the binary Clifford + T network. We call these components
the execution and preparation components. We use the term
execution depth somewhat synonymously to “logical circuit
depth.” The execution part of the Py state injection, hence
CNOT, Toffoli emulations as well as implementation of C s (INC)
are constant depth. The magic preparation can run separately
in parallel when the preparation code is granted enough width.

In the context of the binary Clifford 4+ 7" network, assuming
the required fidelity of the 7' gate is 1 — §, § > 0, there is a
choice of magic state distillation solutions. For comparison,
we have selected a particular one protocol described in [27].
At the top level, it can be described as a quantum code
of depth in Oflog[log(1/6)]} and width of approximately
O[log°®9(1/8)]. The newer protocol in [43] achieves
asymptotically smaller width in 0[logy(k)(1 /8)] where k is
an error correction hyperparameter, and y (k) — log,(3) when
k — oo. However, [43] is a tradeoff rather than a win-win over
[27] in terms of practical width value.

In comparison, the magic state distillation for a generic
ternary quantum computer, described in [20], maps onto
quantum processor of depth in O{log[log(1/8)]} and width
of O[log’(1/8)]. Therefore, the preparation of a magic state
by distillation requires asymptotically larger width than the
one for Clifford 4 T basis.

We observe that the preparation width is asymptotically
better at O[log(1/§)] and significantly better in practice when
the target ternary computer is MTQC. Since the MTQC
implements the universal Clifford + Ry basis that does not
require magic state distillation, the instances of the magic state
w can be prepared on a much smaller scale.

Observation 12. (See [37], Sec. 4). An instance of magic
state u can be prepared at fidelity 1 — & by a Clifford +
Ry circuit of non-Clifford depth in r(8) = 6 log;(1/8) +
O{log[log(1/8)1}.

To synchronize with the Py gates in the logical circuit, we
need to pipeline r(§) instances of the magic state preparation
circuit, so we always have a magic state at fidelity 1 — § ready
to be injected into the Py protocol. One important consequence
of the synchronization requirement is that higher paralleliza-
tion of non-Clifford operations reflects proportionally in an
increase in width of the preparation coprocessor.

In particular, when we employ low-width circuits for Shor’s
period finding, such as based on ripple-carry additive shifts,
then it suffices to produce a constant number of clean magic
states per time step. For example, if the ternary C((INC) is
taken as the base classical gate and its realization shown in
Fig. 7, then we need three clean magic states per a time step.

012306-12

FACTORING WITH QUTRITS: SHOR’s ALGORITHM ON ...

PHYSICAL REVIEW A 96, 012306 (2017)

TABLE IV. Size comparison for low-width modular exponentiation circuits. 7 is the bit size, m = [log;(2) n], w(...) is the number of 1’s

in corresponding ternary or binary expansion.

Platforms Circuit width Circuit depth (Py/R5/T) Preparation width
Emulated binary, metaplectic, via Py n+4 48n3 54 x logs(n)
Section III A, emulated binary, via Py n+4 48n® 3[3 log,(n)]?
Ternary, metaplectic, via Py 2m — wi(m) ~76.35n> 54 x log;(n)
Section III A, ternary, via Py 2m — wy(m) ~76.35n° 3[3 log,(n)]?
Emulated binary, MTQC inline n+4 432n* log,(n) 3

Ternary, MTQC inline 2m — wi(m) ~506.3n° log;(n) 3

Haener et al. [45], Takahashi [7] 2n + 6 (qubits) 160n3 ~n x [6log,(n)]"*

*Here, log,(3) < y < log;(15) depending on practically applicable distillation protocol. n x reflects the worst case bound on the logical width

of the circuit.

Suppose now we employ an n-bit quantum carry lookahead
adder in the same context. In order to preserve the logarithmic
time cost advantage, we should be able to perform up to
n base reflection gates (such as Toffolis) in parallel or at
least O[n/log(n)] such gates in parallel on average. Thus,
the preparation component must deliver at least O[n/log(n)]
clean magic states per time step and widens the preparation
component by that factor.

V. PLATFORM SPECIFIC RESOURCE COUNTS

In a more conventional circuit layout for Shor’s period
finding, the &~ N modular exponentiations |[a* mod N), k €
[1...N?], are done in superposition over k and the width of
such superposition trivially depends on the integer represen-
tation radix. Thus, the purely ternary encoding has the width
advantage with a factor of log;(2).

However, on a small quantum computer platform, a more
practical approach is to use a single control (cf. [44] or
[2], Sec. 2.4), which allows to iterate through the modular
exponentiations using only one additional qubit (resp. qutrit).
With this method in mind, our principal focus is on the overall
cost of modular exponentiation.

We assume that for bit size n, the ¢ = 1/log(n) is a
sufficient end-to-end precision of the period-finding circuit.
Then, the atomic precision § per individual gate, or rather per
individual clean magic state within the circuit, depends on cir-
cuit size. The circuits under comparison differ asymptotically
in depth but not in size, which is in o(n?) {disregarding the
slower O[log(n)] terms} . We observe that log(1/8) is roughly
3 log(n) for the required 6. It follows that the distillation
width for one clean magic state scales like [3 log,(n)]® in the
ternary context. In the case on magic state preparation in the
metaplectic basis one needs at most 6 x3 log;(n) = 18 log;(n)
R gate per aclean Py magic state. There have been a wide array
of magic state distillation protocols for the Clifford + T bench-
mark. For practical reasons and for simplicity we have selected
the Bravyi-Kitaev protocol [27] where the raw magic state con-
sumption scales like O[log(1/precision)°%:U9]; log,(15) ~
2.465. This scaling is shown in the ‘preparation width” cells in
the resource tables below. An attractive alternative would be
the Bravyi-Haah protocol [43]. The protocol is defined by the
hyperparameter k of the underlying [n,k,d] error correction
code and requires preparation width in O{[log,(n)]”®} where
y (k) ~ log,[(3 k + 8)/k]. In particular for k = 8 the protocol

distills 8 magic states simultaneously and y (k) =~ 2. Unfortu-
nately, this protocol is more sensitive to the fidelity of the raw
magic states and this is one of the reasons we decided not to
cost it out at this time. One needs to be mindful that the scaling
exponent y (k) can in principle be made smaller than 2 under
certain circumstances.

Tables IV and V contain comparative resource estimates
for the modular exponentiation circuits based, respectively, on
the ripple-carry additive shift and the carry lookahead additive
shift. For simplicity, only asymptotically dominating terms are
represented. An actual resource bound may differ by terms of
lower order w.r.t. log(n).

In addition to resource counts for ternary processing,
we have provided the same for Clifford + 7' solutions as a
backdrop. In the Clifford 4 T basis, the resource estimate in
Table IV for low-width modular exponentiation on a binary
quantum computer is based on [45] in which an implemen-
tation was given that uses 2n + 2 logical qubits. The Toffoli
depth of the circuit in [45] can be analyzed to be bounded
by 160n3. Note that the Toffoli depth is equal to T depth,
provided that four additional ancillas are available, leading to
an overall circuit width of 2n + 6. The two resource estimates
in Table V for reduced-depth modular exponentiation are based
on [33,46]: in [46] an implementation for an arbitrary coupling
architecture was given that uses 3n + 6log,(n) + O(1) qubits
and has a total depth of 12n% + 60n logg(n) + O[nlog(n)].
This implementation is based on a gate set that has arbitrary
rotations. To break this further into Clifford + T operations,
we require an increase in terms of depth of 4log,(1/¢) =
12log,(n) as each rotation has to be approximated with accu-
racy ¢ ~ 1/n3. Up to leading order, this leads to the estimate
of the circuit depth of 144n% log,(n) given in the table. In [33],
a Toffoli-based circuit to implement an adder in depth 4 log, n
was given that needs 4n — w;(n) qubits, where w; denotes the
Hamming weight of the integer n. As there are O(n) Toffoli
in parallel in this circuit, we use the implementation of a
Toffoli gate in 7' depth 3 from [39] to implement a single
addition in 7 depth 121og,(n). The modular addition can be
implemented then using three integer additions. To implement
Shor’s algorithm, we need 2n% modular additions, leading to
an overall T-depth estimate of 72n2 log, (n).

The rightmost column of either table lists counts propor-
tional to either the number of raw magic states or, in the case
of MTQC, to the number of metaplectic magic states required
per a time step of the circuit.

012306-13

ALEX BOCHAROV, MARTIN ROETTELER, AND KRYSTA M. SVORE

PHYSICAL REVIEW A 96, 012306 (2017)

TABLE V. Sizes for reduced-depth modular exponentiation circuits. n is the bit size, m = [log;(2)n], w;(...) is the number of 1’s in

corresponding ternary or binary expansion.

Circuit depth (Py/R)5) /T) p width

Circuits Circuit width
Emulated binary, metaplectic, via Py dn — w(n)
Section III C, emulated binary, via Py 4n — w(n)

dm — wi;(m)
4m — w(m)
3n — wi(n)
3m — w(m)
4n — w;(n) (qubits)

Ternary, metaplectic, via Py
Section III C, ternary, via Py
Emulated binary, MTQC inline
Ternary, MTQC inline

Binary, via Clifford + 7 [33]
Binary, via Clifford + T [46]

3n 4 6 log,(n) (qubits)

120n? log,(n)
120n7 log, (n)

54 x n log;(n)

121 [3 log,(n)]?
~127.4n% logy(n) 54 x m log;(m)
~127.4n% log,(n) 121 [3 log,(n)]?

384n? log,(2)[log,(n)]? 3n

~1630.5n> log3(2)[10g2(n)]2 3m
72n? log,(n) 3n [6log,(n)]"?
144n° log,(n) 3n [61log,(n)]”

“Here, log,(3) < y < log;(15) depending on practically applicable distillation protocol.

The logarithmic execution depth for integer addition is
achieved by using carry lookahead additive shift circuit.
However, this comes at significant width cost, as the circuit
performs in parallel up to n (in the worst case) or roughly
n/log,(n) (on average) reflection gates. This requires a
corresponding number of magic states or metaplectic registers
simultaneously, and therefore the preparation width numbers
in the last column of Table V are multiplied by the corre-
sponding bit size, or, respectively, trit size. This represents the
critical path bound on the magic state preparation width of the
solution.

In both tables, the preparation width bound for ternary
processing is dominated by the width of the C;(INC). The
tables do not exhaust the vast array of possible depth or width
tradeoffs. We have chosen to represent C;(INC) with non-
Clifford depth one as shown in Fig. 7. This circuit has the Py
width of 3 and requires a clean ancillary qutrit. For the ripple-
carry solution, the ancillary qutrit is reused and has minimal
impact. For the carry lookahead solution up to n {respectively,
up to m = [log;(2)n]} ancillas must be available in parallel
which inflates the online width by more than 30% .

The fifth and sixth rows show tradeoff based on direct
approximation of Toffoli gates and (controlled) C ;(INC) gates,
respectively, by topological metaplectic circuits to precision
@(1/n%). The topological metaplectic Ry gates are executed
sequentially for each individual arithmetic gate. This nearly
eliminates the need for the magic state preparation, as only
three topological ancillas are needed at a time in the injection
circuit for the Ry (Fig. 2). This tradeoff introduces the online
depth of a subcircuit for a Toffoli gate of roughly 24 log;(n). A
corresponding subcircuit for a C¢(INC) then has online depth
of 48 log;(m) (two two-level reflections). For C ;[AA(INC)],
it is 192 log;(m) (eight two-level reflections).

We estimate the number of required controlled integer
additive shifts in a modular exponentiation circuit as 6n2 (2n>
controlled modular additions) when binary emulation is used
and as 16m? (4m? controlled modular additions) when ternary
encoding is used. These bounds define the execution depth
columns in both tables.

The most significant distinction in Tables IV and V is the
asymptotical advantage in the magic state preparation width
with the MTQC. There is also a tradeoff between emulated
binary encoding and true ternary encoding on a ternary
quantum processor. It is seen from Table IV that with ripple-
carry adders (e.g., when targeting a small quantum computer)

we get a moderate practical advantage in non-Clifford circuit
depth when emulating binary encoding and a small advantage
in width compared to the use of true ternary encoding. This is
true even accounting for the fact that the trit size m is smaller
than the bit size n by the factor of log;(2).

On the other hand, when carry lookahead adders are used,
the difference in the overall non-Clifford circuit depth between
the two encoding scenarios is insignificant, unless inline
metaplectic circuits with MTQC are compiled. But, the use
of true ternary encoding yields the width advantage by a factor
of roughly log;(2). In the fifth and sixth lines of Table V,
the use of emulated binary encoding is practically better than
the use of ternary encoding. Intuitively, this is because the
metaplectic circuits are reflection oriented and best suited for
direct approximation of the (controlled) Toffoli gates that are
two-level reflections, whereas ternary arithmetic gates such as
C(INC) or Horner have to be first decomposed into several
two-level reflections.

The resource bounds shown in the tables provide a great
deal of flexibility in selecting a resource balance appropriate
for a specific ternary quantum computer. On a generic
ternary quantum computer where universality is achieved by
distillation of magic states for the Py gate, the choice of
encoding and arithmetic circuits is likely to be dictated by
the size of the actual computer. When native metaplectic
topological resources are available, magic states for the Py gate
are prepared asymptotically more efficiently. Metaplectic also
offers the third choice: that of bypassing the Py gate altogether
and using inline metaplectic circuits instead at the cost of
a factor in O[log(bit size)] in circuit depth expansion. In this
scenario, using emulated binary encoding of integers is always
more efficient in practice than the use of true ternary encoding.

VI. CONCLUSION

We have investigated implementations of Shor’s period-
finding function [1] in quantum ternary logic. We performed
comparative resource cost analysis targeting two prospective
quantum ternary platforms. The “generic” platform uses magic
state distillation as described in [20] for universality. The
other one, referred to as MTQC (metaplectic topological
quantum computer), is a non-Abelian anyonic platform, where
universality is achieved by a relatively inexpensive protocol
based on anyonic braiding and interferomic measurement
[17,25].

012306-14

FACTORING WITH QUTRITS: SHOR’s ALGORITHM ON ...

On each of these platforms we considered two different
logical solutions for the modular exponential circuit of Shor’s
period-finding function: one where the integers are encoded
using the binary subspace of the ternary state space and
ternary optimizations of known binary arithmetic circuits
are employed; the other ternary encoding of integers and
arithmetic circuits stemming from [22] are used.

On the MTQC platform we additionally consider semiclas-
sical metaplectic expansions of arithmetic circuits; the non-
Clifford depth of such a circuit is larger than the non-Clifford
depth of the corresponding classical arithmetic circuit by a
factor of O[log(bit size)]. Notably, circuits of this type bypass
the need for magic states and the Py gate entirely.

We have derived both asymptotic and practical bounds on
the quantum resources consumed by the Shor’s period-finding
function for practically interesting combinations of platform,
integer encoding, and modular exponentiation. For evaluation
purposes, we have derived such bounds for widths and non-
Clifford depths of the logical circuits as well as for sizes of
the state preparation resources that either distill or prepare
necessary magic states with the required fidelity.

We find significant asymptotic and practical advantages of
the MTQC platform compared to other platforms. In particular,
this platform allows factorization of an n-bit number using the
smallest possible number of n + 7 logical qutrits at the cost
of inflating the depth of the logical circuit by a logarithmic
factor. In scenarios where increasing the depth is undesirable,
the MTQC platform still exhibits significant advantage in the
size of the magic state preparation component that is linear in
the bit size of the target fidelity (compared to cubic or near
cubic for a generic magic state distillation).

An interesting feature of our ternary arithmetic circuits is
the fact that the denser and more compact ternary encoding of
integers does not necessarily lead to more resource-efficient
period-finding solutions compared to binary encoding. As
a rule of a thumb: If low-width circuits are desired, then
binary encoding of integers combined with ternary arithmetic
gates appears more efficient both in terms of width and
depth than a pure ternary solution. However, even a moderate
ancilla-assisted depth compression, such as provided by carry
lookahead additive shifts, tips the balance in favor of ternary
encoding and ternary arithmetic gates.

In summary, having a variety of encoding and logic options
provides flexibility when choosing period-finding solutions for
ternary quantum computers of varying sizes.

ACKNOWLEDGMENTS

The authors are grateful to J. Haah for useful references. We
would also like to thank T. Draper and S. Kutin for providing
(gl pic) [47] which we used for typesetting most of the figures
in this paper. We are thankful to an anonymous reviewer for
insightful comments that inspired us to rewrite the paper into
its current, more comprehensive format.

APPENDIX A: EXACT EMULATION OF THE R);, GATE
IN THE Clifford + Py BASIS

At this time, we lack a good effective classical compilation
procedure for approximating nonclassical unitaries by efficient
ancilla-free circuits in the Clifford + Py basis.

PHYSICAL REVIEW A 96, 012306 (2017)

We show here, however, that the magic state |y) of (9)
that produces the R)y gate by state injection can be prepared
by certain probabilistic measurement-assisted circuits over
the Clifford + Py basis. Therefore, the compilation into the
Clifford 4+ Py basis can be reduced to a compilation into the
Clifford + Ry basis, while incurring a certain state prepara-
tion cost. This solution, however inelegant, is sufficient, for
example, in the context of Shor’s integer factorization.

We have seen in Sec. IV A that the classical C;(INC) and,
hence, the classical C>(INC) gates can be represented exactly
and ancilla free using three Py gates. We use the availability
of these gates to prove the key lemma below.

Recall that w3 = ¢ /3 is a Clifford phase.

Lemma 13. Each of the ternary resource states

(10) + w3[1))/v/2 and (10) + &311)) /+/2

can be represented exactly by a repeat-until-success (RUS)
circuit over Clifford 4 Py with one ancillary qutrit and
expected average number of trials equal to 3/2.

Proof. Let us give a proof for the second resource state.
(The proof is symmetrical for the first one.) We initialize a
two-qutrit register in the state |20) and compute

C>(INC)(H ® 1)[20) = (]00) + w3|10) + w321)) //3.

If we measure O on the second qutrit, then the first qutrit is in
the desired state. Overwise, we discard the register and start
over. Since the probability of measuring 0 is 2/3, the Lemma
follows. |
Corollary 14. A copy of the two-qutrit resource state

1) = (10) + w3]1) @ (10) + w3[1)) /2

can be represented exactly by a repeat-until-success circuit
over Clifford + Py with two ancillary qutrits and expected
average number of trials equal to 9/4.

To effectively build a circuit for the Corollary, we stack
together the two RUS circuits described in Lemma 13.

Lemma 15. There exists a measurement-assisted circuit
that, given a copy of resource state |n) as in (A1), produces a
copy of the resource state

l¥) = (10) — [1) + [2))/+/3

with probability 1.

Proof. Measure the first qutrit in the state (H' ® I)SuM|n).
Here is the list of reduced second qutrit states given the
measurement outcome m:

m =0 (0) — [1) + [2))/v/3,
m=1r (10) —ws|l) + @32)) /V/3,
m =2 (10) — 1) + w3]2))/+/3.

While the first state on this list is the desired |¢), each of the
other two states can be turned into |{) by classically controlled
Clifford correction.]

Asshownin [17], Lemma 5, the resource state |) asin (A2)
can be injected into a coherent repeat-until-success circuit of
expected average depth 3 to execute the Ry gate on a coherent
state. See our Fig. 2 in Sec. IID.

Recall that the C>(INC) gate appearing in the Lemma 13
construction has the non-Clifford cost of three Py gates. Thus,

(AL)

(A2)

012306-15

ALEX BOCHAROV, MARTIN ROETTELER, AND KRYSTA M. SVORE

to summarize the procedure, we can effectively and exactly
prepare the magic state |y) using four-qutrit register at the
expected average Py count of 27 /4.

To have a good synchronization of the magic state prepa-
ration with the Rp, gate injection would suffice to have a
magic state preparation coprocessor of width greater than
27 (to compensate for the variances in repeat-until-success
circuits).

APPENDIX B: CIRCUIT FIDELITY REQUIREMENTS
FOR SHOR’S PERIOD-FINDING FUNCTION

To recap the discussion in Sec. IIE, the quantum period-
finding function consists of preparing a unitary state |u)
proportional to the superposition

NZ
> " lk)la* mod N) (B1)

k=0

followed by quantum Fourier transform, followed by mea-
surement, followed by classical postprocessing. As we know,
the measurement result j can be useful for recovering a
period r or it can be useless. It has been shown in [1] that
the probability pysry of getting a useful measurement is in
Q(1/{log[log(N)]))

Speaking in more general terms, let H be the Hilbert space
where the 7%|u) is to be found after the quantum Fourier
transform step, let G C H be the subspace spanned by all
possible state reductions after all possible useful measure-
ments and let G be its orthogonal complement in H. Let
T) = |uy) + |uz),|ur) € G,|luy) € G be the orthogonal
decomposition of 7 |u). Then, puserur = ||ut1)|%. Let now |v)
be an imperfect unitary copy of 7 |u) at Hilbert distance ¢.
What is the probability of obtaining some useful measurement
on measuring |v)? By definition, it is the probability of |v)
being projected to G upon measurement.

Proposition 16. In the above context, the probability of |v)
being projected to G upon measurement is greater than

Puseful — 2 A/ Duseful €.

PHYSICAL REVIEW A 96, 012306 (2017)

Proof. Let |v) = |v1) + [v2).]v1) € G.|v2) € G be the
orthogonal decomposition of the state |v). Clearly ||u;) —

|v1)| < € and, by triangle inequality, ||vi)| = ||u1)]| — ||u1) —
[vi)| > [lu1)] — e. Hence, [[vi)* > (|lu1)] — &)* > [|u)|* —
2|lu1) & = Puseful — 2 o/Pusetul € as claimed. n

Corollary 17. Inthe above context,if & < ¥ \/Puseful Where
0 < y < 1/2, then the probability of obtaining some useful
measurement on measuring |v) is greater than (1 — 2 y) puseful-

In particular, if & < /Pusefur/4, we are at least half as likely
to obtain a useful measurement from the proxy state |v) as
from the ideal state 7 % |u).

In summary, there is a useful precision threshold ¢
in O(1/{/log[log(N)]}) that allows to use an imprecisely
prepared state at precision ¢ in place of the ideal state in
the measurement and classical postprocessing part of Shor’s
period-finding function. This translates into per-gate tolerance
in the preparation circuit in a usual way. If d is the unitary depth
of the state preparation circuit, then it suffices to represent
each of the consecutive unitary gates to fidelity 1 — ¢/d or
better. For completeness, we make this argument explicit in
the following proposition. Let ||U || denote the spectral norm
of a unitary operator U.

Proposition 18. Assume that an ideal quantum computa-
tionU =]_[Z:] Uy is specified using d perfect unitary gates Uy
and we actually implement it using d imperfect unitary gates
Vi where for all k =1, ...,d it holds that ||U;, — V|| < 6.
Then, for the actually implemented unitary transformation
V =T1¢_, Vi itholds that ||U — V|| < d 6.

Proof. (See also [48,49].) We perform induction on
d. When d =1 there is nothing to prove. Assume
the inequality has been proven for a product of length
d—1. We have ||U— V|| =TI, U — (12! Uo) Va +
(T U Va =TTz Vel < T2 Uk — (T2 U Vall +
T2 U Va = iy Vell = T2t Uell 11Ua = Vall +
TS U = TSy Vil [1Vall < 8+ (d = 1)8 = d 8, where
in the second step we used the triangle inequality, in the third

step the multiplicativity of the norm, i.e., ||U V|| = [|U|| || V||
for all unitaries U, V, and that ||U|| = 1 for all unitary U. In
the last step, we used the inductive hypothesis.]

[1] P. W. Shor, Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer, SIAM J.
Comput. 26, 1484 (1997).

[2] S. Beauregard, Circuit for Shor’s algorithm using 2n+3 qubits,
Quantum Inf. Comput. 3, 175 (2003).

[3] D. Beckman, A. N. Chari, S. Devabhaktuni, and J. Preskill,
Efficient networks for quantum factoring, Phys. Rev. A 54, 1034
(1996).

[4] C. Jones, Multilevel distillation of magic states for quantum
computing, Phys. Rev. A 87, 042305 (2013).

[51 1. L. Markov and M. Saeedi, Constant-optimized quan-
tum circuits for modular multiplication and exponentiation,
Quantum Inf. Comput. 12, 0361 (2012).

[6] I. L. Markov and M. Saeedi, Faster quantum number factoring
via circuit synthesis, Phys. Rev. A 87, 012310 (2013).

[7] Y. Takahashi and N. Kunihiro, A quantum circuit for Shor’s
factoring algorithm using 2n+2 qubits, Quantum Inf. Comput.
6, 184 (2000).

[8] R. Van Meter and K. M. Itoh, Fast quantum modular exponen-
tiation, Phys. Rev. A 71, 052320 (2005).

[9] V. Vedral, A. Barenco, and A. Ekert, Quantum networks
for elementary arithmetic operations, Phys. Rev. A 54, 147
(1995).

[10] C. Zalka, Fast versions of Shor’s quantum factoring algorithm,
arXiv:quant-ph/9806084.

[11] D. E. Knuth, The Art of Computer Programming, Volume 2:
Seminumerical Algorithms (Addison-Wesley, Boston, 1969).

[12] M. Morisue, K. Oochi, and M. Nishizawa, A novel ternary logic
circuit using Josephson junction, IEEE Trans. Magn. 25, 845
(1989).

012306-16

https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1103/PhysRevA.54.1034
https://doi.org/10.1103/PhysRevA.54.1034
https://doi.org/10.1103/PhysRevA.54.1034
https://doi.org/10.1103/PhysRevA.54.1034
https://doi.org/10.1103/PhysRevA.87.042305
https://doi.org/10.1103/PhysRevA.87.042305
https://doi.org/10.1103/PhysRevA.87.042305
https://doi.org/10.1103/PhysRevA.87.042305
https://doi.org/10.1103/PhysRevA.87.012310
https://doi.org/10.1103/PhysRevA.87.012310
https://doi.org/10.1103/PhysRevA.87.012310
https://doi.org/10.1103/PhysRevA.87.012310
https://doi.org/10.1103/PhysRevA.71.052320
https://doi.org/10.1103/PhysRevA.71.052320
https://doi.org/10.1103/PhysRevA.71.052320
https://doi.org/10.1103/PhysRevA.71.052320
https://doi.org/10.1103/PhysRevA.54.147
https://doi.org/10.1103/PhysRevA.54.147
https://doi.org/10.1103/PhysRevA.54.147
https://doi.org/10.1103/PhysRevA.54.147
http://arxiv.org/abs/arXiv:quant-ph/9806084
https://doi.org/10.1109/20.92418
https://doi.org/10.1109/20.92418
https://doi.org/10.1109/20.92418
https://doi.org/10.1109/20.92418

FACTORING WITH QUTRITS: SHOR’s ALGORITHM ON ...

[13] M. Morisue, J. Endo, T. Morooka, and N. Shimzu, A Josephson
ternary memory circuit, multiple-valued logic, in Proceedings
of the 28th IEEE International Symposium (IEEE, Piscataway,
NJ, 1998).

[14] A. Muthukrishnan and C. Stroud Jr., Multivalued logic gates for
quantum computation, Phys. Rev. A 62, 052309 (2000).

[15] A. Smith, B. E. Anderson, H. Sosa-Martinez, I. H. Deutsch,
C. A. Riofrio, and P. S. Jessen, Quantum Control in the Cs 65
Ground Manifold Using Radio-Frequency and Microwave
Magnetic Fields, Phys. Rev. Lett. 111, 170502 (2013).

[16] M. Malik, M. Erhard, M. Huber, H. Sosa-Martinez, M. Krenn,
R. Fickler, and A. Zeilinger, Multi-photon entanglement in high
dimensions, Nat. Photon. 10, 248 (2016).

[17] S. X. Cui and Z. Wang, Universal quantum computation with
metaplectic anyons, J. Math. Phys. 56, 032202 (2015).

[18] C. Nayak, S. H. Simon, M. Freedman, and S. D. Sarma,
Non-Abelian anyons and topological quantum computation,
Rev. Mod. Phys. 80, 1083 (2008).

[19] A. D. Greentree, S. G. Schirmer, F. Green, L. C. L. Hollenberg,
A. R. Hamilton, and R. G. Clark, Maximizing the Hilbert
Space for a Finite Number of Distinguishable Quantum States,
Phys. Rev. Lett. 92, 097901 (2004).

[20] E. T. Campbell, H. Anwar, and D. E. Browne, Magic-State
Distillation in All Prime Dimensions Using Quantum Reed-
Muller Codes, Phys. Rev. X 2, 041021 (2012).

[21] M. Howard and J. Vala, Qudit versions of the qubit /8 gate,
Phys. Rev. A 86, 022316 (2012).

[22] A. Bocharov, S. X. Cui, M. Roetteler, and K. M. Svore, Im-
proved quantum ternary arithmetics, Quantum Inf. Comput. 16
(2016).

[23] M. Baraban, N. E. Bonesteel, and S. H. Simon, Resources
required for topological quantum factoring, Phys. Rev. A 81,
062317 (2010).

[24] P. Pham and K. M. Svore, A 2D nearest-neighbor quan-
tum architecture for factoring in polylogarithmic depth,
Quantum Inf. Comput. 13, 937 (2013).

[25] S. X. Cui, S. M. Hong, and Z. Wang, Universal quantum
computation with weakly integral anyons, Quantum Inf. Proc.
14, 2687 (2015).

[26] A. Bocharov, S. X. Cui, V. Kliuchnikov, and Z. Wang, Efficient
topological compilation for a weakly integral anyonic model,
Phys. Rev. A 93, 012313 (2016).

[27] S. Bravyi and A. Kitaev, Universal quantum computation with
ideal Clifford gates and noisy ancillas, Phys. Rev. A 71, 022316
(2005).

[28] C. Zalka, Shor’s algorithm with fewer (pure) qubits,
arXiv:quant-ph/0601097.

[29] M. H. A. Khan and M. A. Perkowski, Quantum ternary
parallel adder/subtractor with partially-look-ahead carry, J. Syst.
Architect. 53, 453 (2007).

[30] M. D. Miller, G. W. Dueck, and D. Maslov, A synthesis method
for MVL reversible logic, in Proceedings of the 34th IEEE

PHYSICAL REVIEW A 96, 012306 (2017)

International Symposium on Multiple-Valued Logic (ISMVL)
(IEEE, Piscataway, NJ, 2004), pp. 74-80.

[31] T. Satoh, S. Nagayama, and R. Van Meter, A reversible
ternary adder for quantum computation, in Proceedings of
the Asian Conference on Quantum Information Science, 2007
(unpublished).

[32] S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton,
A new quantum ripple-carry addition circuit, arXiv:quant-
ph/0410184.

[33] T. G. Draper, S. A. Kutin, E. M. Rains, and K. M.
Svore, A logarithmic-depth quantum carry-lookahead adder,
Quantum Inf. Comput. 6, 4 (2006).

[34] S. Hallgren and L. Hales, An Improved Quantum Fourier
Transform Algorithm and Applications, in Proceedings of the
IEEE 54th Annual Symposium on Foundations of Computer
Science (IEEE, Piscataway, NJ, 2000).

[35] M. A. Nielsen and 1. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, Cambridge,
UK, 2000).

[36] J. Welch, A. Bocharov, and K. M. Svore, Efficient ap-
proximation of diagonal unitaries over the Clifford+T basis,
Quantum Inf. Comput. 16, 87 (2016).

[37] A. Bocharov, A note on optimality of quantum circuits over
metaplectic basis, arXiv:1606.02315.

[38] J. Bourgain and A. Gamburd, Spectral gaps in SU(d),
Compt. Rend. Math. 348, 609 (2010).

[39] M. Amy, D. Maslov, M. Mosca, and M. Roetteler, A meet-in-the-
middle algorithm for fast synthesis of depth-optimal quantum
circuits, IEEE Trans. Computer-Aided Design Integrat. Circ.
Syst. 32, 818 (2013).

[40] D. Gosset, V. Kliuchnikov, M. Mosca, and V. Russo, An
algorithm for the T-count, Quantum Inf. Comput. 14, 1261
(2014).

[41] G. K. Brennen, S. S. Bullock, and D. P. O’Leary, Effi-
cient circuits for exact-universal computation with qudits,
Quantum Inf. Comput. 6, 436 (2006).

[42] C. Jones, Novel constructions for the fault-tolerant Toffoli gate,
Phys. Rev. A 87, 022328 (2013).

[43] S.BravyiandJ. Haah, Magic state distillation with low overhead,
Phys. Rev. A 86, 052329 (2012).

[44] S. Parker and M. B. Plenio, Efficient Factorization with a Single
Pure Qubit and log N Mixed Qubits, Phys. Rev. Lett. 85, 3049
(2000).

[45] Th. Haener, M. Roetteler, and K. M. Svore (unpublished).

[46] S. A. Kutin, Shor’s algorithm on nearest-neighbor machine,
arXiv:quant-ph/0609001.

[47] A. Draper and S. Kutin, {(g|pic): Creating quantum circuit
diagrams in TikZ, available from https://github.com/qpic/qpic

[48] E. Bernstein and U. V. Vazirani, Quantum complexity theory,
SIAM J. Comput. 26, 1411 (1997).

[49] U. V. Vazirani, On the power of quantum computation,
Philos. Trans. R. Soc. London A 356, 1759 (1998).

012306-17

https://doi.org/10.1103/PhysRevA.62.052309
https://doi.org/10.1103/PhysRevA.62.052309
https://doi.org/10.1103/PhysRevA.62.052309
https://doi.org/10.1103/PhysRevA.62.052309
https://doi.org/10.1103/PhysRevLett.111.170502
https://doi.org/10.1103/PhysRevLett.111.170502
https://doi.org/10.1103/PhysRevLett.111.170502
https://doi.org/10.1103/PhysRevLett.111.170502
https://doi.org/10.1038/nphoton.2016.12
https://doi.org/10.1038/nphoton.2016.12
https://doi.org/10.1038/nphoton.2016.12
https://doi.org/10.1038/nphoton.2016.12
https://doi.org/10.1063/1.4914941
https://doi.org/10.1063/1.4914941
https://doi.org/10.1063/1.4914941
https://doi.org/10.1063/1.4914941
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/PhysRevLett.92.097901
https://doi.org/10.1103/PhysRevLett.92.097901
https://doi.org/10.1103/PhysRevLett.92.097901
https://doi.org/10.1103/PhysRevLett.92.097901
https://doi.org/10.1103/PhysRevX.2.041021
https://doi.org/10.1103/PhysRevX.2.041021
https://doi.org/10.1103/PhysRevX.2.041021
https://doi.org/10.1103/PhysRevX.2.041021
https://doi.org/10.1103/PhysRevA.86.022316
https://doi.org/10.1103/PhysRevA.86.022316
https://doi.org/10.1103/PhysRevA.86.022316
https://doi.org/10.1103/PhysRevA.86.022316
https://doi.org/10.1103/PhysRevA.81.062317
https://doi.org/10.1103/PhysRevA.81.062317
https://doi.org/10.1103/PhysRevA.81.062317
https://doi.org/10.1103/PhysRevA.81.062317
https://doi.org/10.1007/s11128-015-1016-y
https://doi.org/10.1007/s11128-015-1016-y
https://doi.org/10.1007/s11128-015-1016-y
https://doi.org/10.1007/s11128-015-1016-y
https://doi.org/10.1103/PhysRevA.93.012313
https://doi.org/10.1103/PhysRevA.93.012313
https://doi.org/10.1103/PhysRevA.93.012313
https://doi.org/10.1103/PhysRevA.93.012313
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.71.022316
http://arxiv.org/abs/arXiv:quant-ph/0601097
https://doi.org/10.1016/j.sysarc.2007.01.007
https://doi.org/10.1016/j.sysarc.2007.01.007
https://doi.org/10.1016/j.sysarc.2007.01.007
https://doi.org/10.1016/j.sysarc.2007.01.007
http://arxiv.org/abs/arXiv:quant-ph/0410184
http://arxiv.org/abs/arXiv:1606.02315
https://doi.org/10.1016/j.crma.2010.04.024
https://doi.org/10.1016/j.crma.2010.04.024
https://doi.org/10.1016/j.crma.2010.04.024
https://doi.org/10.1016/j.crma.2010.04.024
https://doi.org/10.1109/TCAD.2013.2244643
https://doi.org/10.1109/TCAD.2013.2244643
https://doi.org/10.1109/TCAD.2013.2244643
https://doi.org/10.1109/TCAD.2013.2244643
https://doi.org/10.1103/PhysRevA.87.022328
https://doi.org/10.1103/PhysRevA.87.022328
https://doi.org/10.1103/PhysRevA.87.022328
https://doi.org/10.1103/PhysRevA.87.022328
https://doi.org/10.1103/PhysRevA.86.052329
https://doi.org/10.1103/PhysRevA.86.052329
https://doi.org/10.1103/PhysRevA.86.052329
https://doi.org/10.1103/PhysRevA.86.052329
https://doi.org/10.1103/PhysRevLett.85.3049
https://doi.org/10.1103/PhysRevLett.85.3049
https://doi.org/10.1103/PhysRevLett.85.3049
https://doi.org/10.1103/PhysRevLett.85.3049
http://arxiv.org/abs/arXiv:quant-ph/0609001
https://github.com/qpic/qpic
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1098/rsta.1998.0247
https://doi.org/10.1098/rsta.1998.0247
https://doi.org/10.1098/rsta.1998.0247
https://doi.org/10.1098/rsta.1998.0247

