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Symmetry-protected topological phases with uniform computational power in one dimension
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We investigate the usefulness of ground states of quantum spin chains with symmetry-protected topological
order (SPTO) for measurement-based quantum computation. We show that, in spatial dimension 1, if an SPTO
phase protects the identity gate, then, subject to an additional symmetry condition that is satisfied in all cases so
far investigated, it can also be used for quantum computation.

DOI: 10.1103/PhysRevA.96.012302

I. INTRODUCTION

The computational power of measurement-based quan-
tum computation (MBQC) [1] critically depends on the
resource state used. Families of resource states enabling
universal quantum computation exist—cluster states [2] and
Affleck-Kennedy-Lieb-Tasaki (AKLT) states [3] (see [4,5])
are examples—but they are very rare in Hilbert space [6,7].

The latter changes in the presence of symmetry. Here,
we are concerned with the scenario of symmetry-protected
topological order (SPTO) [8–10], in spatial dimension 1. In
this setting, Hamiltonians are constrained to be invariant under
a group G of symmetry transformations, and we consider
the ground states of such Hamiltonians as resource states
for MBQC. These ground states form physical phases, across
which their properties vary smoothly.

It has been conjectured [11,12] that in the scenario
of symmetry-protected topologic order, physical phases are
identical with “computational phases,” namely,

Conjecture 1. The computational power of ground states
for measurement-based quantum computation is uniform
across each symmetry-protected topologically ordered phase.

The evidence for this conjecture is the following. In spatial
dimension 1, for any symmetry-protected phase character-
ized by a finite Abelian symmetry group and a maximally
noncommutative cohomology class, all matrix-product states
in the phase support quantum wire [12]. That is, quantum
information can be shuttled from one end of the spin
chain to the other by local measurements, and this process
is robust against symmetry-respecting perturbations of the
ground state. With regard to quantum computation, it has been
shown that for one specific symmetry group, S4, there exists
a computationally universal symmetry-protected topological
(SPT) ordered phase [13]. Also, there is an extended universal
region for a particular A4 invariant model [14] (for a phase
diagram of SPT-ordered phases in one dimension under the
symmetry group A4, see [15]).

There is also support for Conjecture 1 in spatial dimension
D = 2. It is known that the two-dimensional AKLT state [3] is
a universal resource for MBQC on various lattices [4,5,16,17].
Now, the AKLT state can be deformed into a one-parameter
family of quantum states such that for a sufficiently strong
deformation in one direction, the state transitions from the
valence-bond phase into the Néel-ordered phase [18]. It has
been numerically demonstrated that along this line of deformed

states, the transition of computational power coincides with the
physical phase transition [19,20].

These findings have led to the notion of “computational
phases of quantum matter,” which represents an intriguing
connection between condensed matter physics and quantum
computation.

Here, we further corroborate the above conjecture through
the following result. In spatial dimension 1, if an SPTO
phase supports quantum wire, then, subject to an additional
symmetry condition which is satisfied in all cases so far
investigated, it can also be used for quantum computation.
This result, given as Theorem 2 in Sec. II, is a strengthening
of both [12] and [13]. Namely, it promotes the result [12]
from quantum wire to quantum computation. Further, it
shows that computational universality in one-dimensional
symmetry-protected topologically ordered systems does not
only occur for one particular symmetry group [13] but rather
is an ubiquitous phenomenon.

The main technical contribution of this paper is a method for
carrying out MBQCs suited to resource states in SPT ordered
phases, namely, the incoherent addition of computational
paths. It leads to a number of computational primitives, the
first of which is the “oblivious wire” described in Sec. III C.
Oblivious wire is the basis for performing unitary gates
(Sec. IV) and projective measurements (Sec. V) on the
virtual space of the matrix-product state (MPS) description.
It is a counterpart of “buffering” described in [13]. Its main
advantage is that it can be applied in every SPTO phase that
has a basis for quantum wire.

It should be noted at this point that an MBQC resource
state laid out in spatial dimension D leads to the simulation
of a quantum circuit in spatial dimension D − 1, and hence
in D = 1 only a single logical qudit is evolved. The cases of
dimension D � 2 are therefore of greater practical interest.
However, numerous technical aspects are easier to handle in
dimension 1, and this case can therefore serve as a testing
ground for novel computational techniques.

Besides corroborating the notion of “computational phases
of matter,” there is a second motivation for the present work.
It is the prospect of classifying MBQC schemes by symmetry.

If Conjecture 1 is true, not only are universal resource states
easy to come by in the symmetry-protected case, but also,
computational power becomes a property of a whole quantum
phase as opposed to individual quantum states. Moreover,
quantum phases have a succinct mathematical characterization

2469-9926/2017/96(1)/012302(14) 012302-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.96.012302


RAUSSENDORF, WANG, PRAKASH, WEI, AND STEPHEN PHYSICAL REVIEW A 96, 012302 (2017)

in SPTO, namely, in D = 1, every such phase is uniquely
specified by the symmetry group G and an element in the
second cohomology group H 2(G,U (1)) of G. If Conjecture 1
holds, the computational power of the corresponding MBQC
scheme is characterized by the same mathematical objects,
giving rise to a classification of MBQC schemes by symmetry.

II. STATEMENT OF THE PROBLEM AND THE RESULT

A. Starting point and problem

We consider symmetry-protected topological phases with
a unique ground state, in one spatial dimension. Let |�〉 be a
ground state in such a phase, given in matrix-product form,

|�〉 = κ(n)
∑

i1, .. ,in

〈R|A[in] · .. · A[i1]|L〉 |i1,..,in〉, (1)

where κ(n) is a normalization constant, and the A[i], i =
1, .. ,d are Db × Db matrices. Therein, d is the Hilbert space
dimension of the local physical system, and Db is the bond
dimension, i.e., the dimension of the virtual system.

Uniqueness of the ground state requires that the corre-
sponding MPS tensors A[i] satisfy the injectivity condition
[21]. That is, possibly after blocking K consecutive sites, the
MPS tensors A[i] := ∏K

k=1 A[ik] span the space of Db × Db

matrices.
Measurement-based quantum computation may be run on

the states Eq. (1) as usual, i.e., the simulated gates are chosen
by the local measurement bases, taking into account previous
measurement outcomes.

Among all the local bases in which the physical degrees of
freedom can be measured, there is, for suitable SPTO phases,
a special one, namely, the so-called wire basis.

Definition 1. A wire basis is an orthonormal basis (ONB)
B = {|0〉, .. ,|d − 1〉} of the physical system such that the
matrices A[i] factorize into a logical part Ci and a junk part
Bi ,

A[i] = Ci ⊗ Bi, (2)

where the Ci are all unitary and constant across the phase.
The significance of the wire basis is that it leads to

wire protected by the symmetry throughout the SPTO phase.
Specifically, the following result has been established:

Theorem 1. [12]. Consider a symmetry-protected phase
characterized by a finite Abelian group and a maximally
noncommutative cohomology class [ω]. Then, for every MPS
in this phase there exists a wire basis with respect to which
the MPS tensor A has the decomposition Eq. (2). The unitary
by-product operators Ci therein are elements of a finite group.

Measurement of the physical degrees of freedom in the wire
basis thus implements wire on the logical part of the virtual
system. By virtue of Eq. (2), the tensors A[i] never entangle
the logical subsystem with the uncontrolled junk subsystem,
and thus preserve the logical information.

Now we turn to the problem: Since the by-product operators
Ci generate a finite group, the above construction does
not achieve universal quantum computation on the logical
subsystem. There is no immediate fix for this. For example,
if the wire basis is perturbed to implement a continuous
set of operations, with respect to the new bases {|i ′〉} the

tensors A no longer satisfy the factorization property Eq. (2),
A[i ′] �= Ci ′ ⊗ Bi ′ . In result, the logical subsystem becomes
entangled with the junk subsystem under measurement in such
bases, and quantum information is lost. Thus, the following
question arises: “Can quantum wire [12] for the logical
subsystem be promoted to universal quantum computation?”

The present paper gives an affirmative answer to this
question. We point out that the desired extension from wire to
computation is already known for one specific SPTO phase of
one symmetry group, S4 [13]. The present solution is widely
applicable. It assumes the existence of only a wire basis in
the considered SPTO phase and a symmetry condition to be
explained below.

B. Result

To state our result, we need to make two more definitions.
We first capture the notion of “uniformity of computational
power” of a physical phase.

Definition 2. A given physical phase has uniform compu-
tational power X with respect to MBQC if all states in this
phase, with the possible exception of a set of measure zero,
have computational power X.

The finite set of logical by-product operators Ci appearing
in the decomposition Eq. (2) will be used to realize a
continuous set of quantum gates in MBQC, acting on the
logical part of the virtual space.

Definition 3. O is the set of Hermitian operators

C−1
i Cj + C−1

j Ci

2
,
C−1

i Cj − C−1
j Ci

2i
, (3)

for all 0 � i < j � d − 1. A(O) the algebra generated by
the operators in O under [·,·]/i and linear combination with
real coefficients, and L(O) = exp[iA(O)] is the Lie group
generated by A(O).

Returning to the symmetric MPS state |�〉 described in
Eq. (1), if injectivity holds then the tensor A has the symmetry

V (g)†A[|ψ〉]V (g) = A[u(g)|ψ〉], ∀g ∈ G, (4)

where V (g) is some projective representation of the symmetry
group G acting on the virtual system and u(g) is a unitary
representation of G acting on the physical degrees of freedom
[22].

With these definitions and observations, we can now state
our main result.

Theorem 2. Consider a symmetry-protected phase of a
group G with the properties (i) the ground state is unique,
(ii) there is a wire basis, and (iii) for all i = 0,..,d − 1
exists a g ∈ G such that Ci ⊗ I = V (g). Then, this SPTO
phase has the uniform computational power to execute MBQC
simulations of the unitary gates L(O) and the projective
measurements of all observables in O, with arbitrary accuracy.

Remark. The symmetry condition, Ci ⊗ I ∈ V (G), for all
i = 0,..,d − 1, ensures that the randomness of measurement
can be accounted for in MBQC in the standard fashion
[1]. However, there exist other ways of accounting for this
randomness in MBQC [23,24], and the symmetry condition in
Theorem 2 may therefore be unnecessarily stringent. On the
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other hand, it is satisfied in all SPTO phases with a wire basis
so far encountered.

In a companion paper [25], we describe how the MBQC-
simulable Lie group L(O) of unitary gates is determined by
the characteristics of the SPTO phase in which the resource
state lives.

III. STRATEGY FOR TURNING WIRE
INTO COMPUTATION

A. Computational primitives

The extension from quantum wire to logical gates proceeds
in several steps. The key technical ingredient is the “incoherent
addition of computational paths.” A computational path is
simply the measurement record s obtained in an individual
run of the given MBQC. “Addition of paths” means that,
after correcting and accounting for the outcome-dependent
by-product operator (which always arises in MBQC), the
measurement record is discarded, and multiple computational
paths are combined. For interpretation of this procedure, see
Sec. III D.

The first application of adding computational paths is
the “oblivious wire” described in Sec. III C. It provides
the capacity to drive any state of the virtual system into a
tensor product state σ ⊗ ρfix between the logical and the junk
subsystem. In particular, the junk system ends up in the same
fixed point state ρfix every time the oblivious wire is applied.
The oblivious wire thus provides a means of conditioning
the junk subsystem, which turns out to be of importance
for implementing quantum gates. In the present construction,
oblivious wire is the counterpart to the buffering technique
employed in [13]. In contrast to buffering, oblivious wire
requires no trial-until-success.

The oblivious wire leads to three computational primitives,
namely, (i) the preparation of the virtual system in a tensor
product state between the logical and the junk subsystem, (ii)
unitary gates on the logical subsystem, and (iii) measurement
of the logical subsystem. The latter can also be used for initial-
ization. These three computational primitives are described in
Secs. III C, IV, and V, respectively.

B. Boundary conditions

The oblivious wire, the computational primitives, and the
composition of these primitives are intertwined matters. In
order to discuss them one after the other rather than everything
all at once, we apply a technical trick. Namely, we temporarily
change the matrix-product representation of the resource state
at the right boundary; see Fig. 1. Specifically, we add a physical
degree of freedom at the right boundary, whose dimension

A nA 1 A 2L R... A nA 1 A 2L ...

Φ Φ~

FIG. 1. Boundary conditions of the resource states |�〉 and |�̃〉.
|�̃〉 has an additional degree of freedom on its right boundary whose
number of states is equal to the bond dimension Db.

equals the dimension of the virtual system. The resulting state
|�̃〉 has the following matrix-product representation:

|�̃〉 = κ(n)
∑

i1,..,in

A[in] · .. · A[i1]|L〉 ⊗ |i1,..,in〉. (5)

Physically, this means that MBQC on |�̃〉 can be run as
a state preparator, in which the output state is mapped
from the virtual system to the physical system at the right
boundary. From a practical perspective, the need for a physical
system of potentially high dimension on the right boundary
is unappealing, since it places additional and unnecessary
requirements on the experimental setup.

However, we emphasize that the change of boundary
conditions from Eq. (1) to Eq. (5) is employed here only as a
tool for reasoning, and it is temporary. We revert to the original
boundary conditions of the resource state |�〉 of Eq. (1) in the
very last step of the argument; see Sec. VI. Our main result,
Theorem 2, applies to the standard boundary conditions of
Eq. (1).

C. Oblivious wire

The first computational tool to be established is the
“oblivious wire,” which prepares the virtual system in a tensor
product state between logical and junk subsystem, and drives
the junk system towards a fixed point state. Below, we discuss
three procedures of implementing wire, which are minor
modifications of one another. The first is the MBQC wire
proper, and the third is the “oblivious wire,” the procedure of
our interest.

Procedure I. All measurement outcomes are fully re-
membered. All spins are measured in the wire basis, with
outcomes s1, .. ,sn. The only unmeasured system then is the
right boundary, and it is in the state

|R〉 = �(s) ⊗
(

n∏
k=1

Bsk

)
|L〉.

Therein, the first tensor factor is for the logical and the second
tensor factor for the junk subsystem. �(s) is the cumulative
by-product operator on the logical system, depending on the
set s of measurement outcomes,

�(s) =
n∏

k=1

Csk
. (6)

So, the action on the logical system is that of the identity
modulo a by-product operator, all across the given physical
phase.

Procedure II. The spins 1 to n are measured as before. But
then, in addition, the outcome-dependent by-product operator
�(s) is reversed on the right boundary system by applying its
inverse. That is, the total action on the state |�̃〉 is |s〉〈s| ⊗
�(s)−1, where |s〉 := ⊗

i |si〉. This evolution puts the right
boundary system in the state

|R〉 = I ⊗
(

n∏
k=1

Bsk

)
|L〉,

for all sets s of measurement outcomes. This is now an exact
wire on the logical system.
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Procedure III. Procedure II is run, and then outcomes s are
subsequently discarded.

What is being implemented on the state |�̃〉 in Procedure
III is the quantum channel with Kraus operators

Ps = |s〉〈s| ⊗ �(s)−1. (7)

Here, the first tensor factor is for all the physical spins in
the chain, and the second tensor factor is for the additional
physical degree of freedom located on the right boundary. It
is easily verified that

∑
s P

†
s Ps = I , as required for a positive-

operator valued measure. The resulting quantum state of the
right boundary system is

τR = Tr1, .. ,n

∑
s

(|s〉〈s| ⊗ �(s)−1)|�̃〉〈�̃|(|s〉〈s| ⊗ �(s))

=
∑

s

�(s)−1〈s|�̃〉〈�̃|s〉�(s). (8)

With Eq. (5) we thus have

τR = |κ(n)|2
∑

s

I ⊗
(

n∏
k=1

Bsk

)
|L〉〈L| I ⊗

(
1∏

l=n

B†
sl

)
. (9)

We may rewrite this in a simpler form,

τR = |κ(n)|2I ⊗ Ln(|L〉〈L|), (10)

where Ln denotes the n-fold iteration of L, Ln =
L ◦ L ◦ .. ◦ L︸ ︷︷ ︸

n times

, and the channel L is

L(ρ) =
d−1∑
i=0

BiρB
†
i . (11)

By our assumption of uniqueness of the SPTO ground state,
the tensors {A[i]} satisfy the injectivity condition (see [8,10]).
Then, the matrices {Bi} also satisfy injectivity, and the fixed
point of the channel L of Eq. (11) is therefore unique [21].

By adjusting the factor κ(n) in Eqs. (1) and (5), the
normalization for the channel L may always be chosen such
that the largest eigenvalue λ0 of L is

λ0 = 1. (12)

We adopt this convention in the following. The correlation
length ξ of the states |�〉, |�̃〉 is then given by λ1, the
second-largest eigenvalue of L, ξ := −1/ ln λ1. The unique
fixed point of L is closely approximated after n-fold iteration
of the channel L if n/ξ 
 1,

Ln(ρ) ≈ νρ ρfix, (13)

with νρ ∈ R+, for all states ρ of the junk system. Therefore, if
the virtual system is in a tensor product state σ ⊗ ρ between the
logical and the junk subsystem prior to the action of a channel
I ⊗ Ln, then the state afterwards is ∼σ ⊗ ρfix. Thus, the tensor
product structure of the state of the virtual system is preserved,
and the junk part is driven towards a unique Hermitian fixed
point state ρfix. This is an important computational ingredient
which will be employed in the implementation of unitary gates
and measurement.

In addition, even if the joint state between junk and
the logical subsystems does not factorize initially, after the
application of the oblivious wire it does.

Lemma 1. Consider a channel L of Eq. (11), derived from
an injective resource state |�〉 of Eq. (1), with left boundary
state |L〉. For any such state it holds that

lim
n→∞ I ⊗ Ln(|L〉〈L|) = σ ⊗ ρfix, (14)

for some Hermitian operator σ depending on |L〉. Further,
σ ⊗ ρfix is positive semidefinite.

Proof of Lemma 1. The channel L has the following two
properties: First, it is a linear map,

L(c A + d B) = cL(A) + d L(B), ∀c,d ∈ C. (15)

Second, under the condition of injectivity it holds that

lim
n→∞Ln(X) = νX ρfix, (16)

with νX ∈ C, for all operators X [21] (also see Ref. [26], Sec.
8.2).

We may now write the state |L〉 of the left boundary
in its Schmidt decomposition between the logical and the
junk system, |L〉 = ∑

j

√
λj |φj 〉 ⊗ |ψj 〉, where {φj }, {ψj } are

ONBs of the logical and the junk system, respectively, and {λj }
are the nonzero eigenvalues of the reduced density matrix. Cor-

respondingly, |L〉〈L| = ∑
i,j

√
λiλ

∗
j |φi〉〈φj | ⊗ |ψi〉〈ψj |. We

thus have

lim
n→∞ I ⊗ Ln(|L〉〈L|)

=
∑
ij

√
λiλ

∗
j |φi〉〈φj | lim

n→∞ ⊗Ln(|ψi〉〈ψj |)

=
⎡
⎣∑

ij

√
λiλ

∗
j ν(n)|ψi 〉〈ψj ||φi〉〈φj |

⎤
⎦ ⊗ ρfix

= σ ⊗ ρfix.

Therein, we used linearity Eq. (15) in the first line, and Eq. (16)
in the second line.

Further, with Eq. (11), L(X†) = [L(X)]†, ∀X, and thus
with Eq. (16) it follows that νX† = ν∗

X. Hence σ is Hermitian.
Finally, since L is completely positive and |L〉〈L| is positive
semidefinite, so is σ ⊗ ρfix. �

Thus, we obtain the following:
Computational primitive 1. The virtual system can be pre-

pared in a tensor product state τ = σ ⊗ ρfix, where the junk
system is in a defined fixed point state ρfix.

D. Interpretation of “adding computational paths”

In the oblivious wire construction—Procedure III in
Sec. III C—we have added computational paths corresponding
to different measurement records s by “forgetting” those
measurement records (after correction for the by-product
operators �(s)). The purpose of this section is to clarify
that “forgetting” of this classical information is a meaningful
operation.

The simplest way to justify the notion of “forgetting infor-
mation” is to consider a distributed scenario for computation,
involving two parties. In this scenario, the primary party, Alice,
does not need to forget classical information but never learns
it in the first place.
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Suppose the above Procedure III is outsourced by Alice,
the computing party, to some subcontractor Bob. The protocol
between Alice and Bob is as follows: (i) Alice sends Bob
the state |�̃〉, (ii) Bob implements Procedure II, (iii) Bob
sends back the right boundary system (which is a physical
particle, since |�̃〉 has been used instead of |�〉). Bob does not
say which measurement outcomes he obtained, and discards
the measured spins (they are being traced over, from Alice’s
perspective).

How is Alice supposed to represent the quantum state of
the right boundary system that she receives from Bob?—Since
Alice has no information about the measurement outcomes
obtained by Bob, from her perspective, the operation imple-
mented by Bob is the channel with Kraus operators Eq. (7),
leading to the state τ of the right boundary system given in
Eq. (10).

However, in the intended computational scenario there
is no second party. Rather, a single party is executing the
computation in her laboratory. An interpretation for adding
computational paths applicable to the one-party setting is given
in Appendix A.

IV. UNITARY GATES

Next we show how to implement a single unitary about an
infinitesimal rotation angle dα by measurement of the leftmost
qudit in the chain, assuming the junk system is already in its
fixed point state ρfix. For this purpose, we change slightly the
computational setting from the previous section. The resource
state is now mixed, and its mixedness comes from a mixed
state in the left boundary condition. Namely, we consider the
resource state of n + 1 spins plus the right boundary system,

�̃fix(σ ) = |κ(n)|2
∑

i,j

[A[i](σ ⊗ ρfix)A[j]†] ⊗ |i〉〈j|, (17)

where A[i] := A[in+1] · .. · A[i1].

A. Rotations about small angles

To perform a rotation about an infinitesimal angle, we
measure the first spin in a basis which slightly deviates
from the basis that implements the wire, namely, B(dα) =
{|0′〉,|1′〉,|2〉,..,|m − 1〉}, where

|0′〉 = |0〉 + dα |1〉,
|1′〉 = |1〉 − dα |0〉, (18)

where dα ∈ R. The remaining n spins are measured in the wire
basis, and the measurement outcomes are forgotten as soon as
the accumulated by-product operators �(s) are reversed on the
right boundary, including the by-product operator caused by
the measurement of the first particle in the basis Eq. (18).

In complete analogy with Eq. (9), the effect of the measure-
ments and by-product operator reversion can be described on
the level of the virtual system,

σ ⊗ ρfix −→ Ts1 (σ ⊗ ρfix), (19)

where Ts1 is the channel on the virtual system induced by the
measurement of the first spin, with outcome s1, followed by
an oblivious wire Ln. We now investigate the channels Ts1 .

First, assume the outcome of the measurement is 0′. The
corresponding matrix A[0′] acting on the correlation space
is A[0′] = A[0] + dα A[1] = C0(I ⊗ B0 + dα C−1

0 C1 ⊗ B1).
Henceforth, we denote

C−1
0 C1 =: C.

Given a left boundary state that is factorized between the
logical system and a junk system, σ ⊗ ρfix, with the junk
system in its fixed point state, the effect of the measurement of
the first spin on the correlation system is, up to leading order
in dα,

σ ⊗ ρfix −→ σ ⊗ B0ρfixB
†
0

+dα(Cσ ⊗ B1ρfixB
†
0 + σC† ⊗ B0ρfixB

†
1).

We now follow up with an oblivious channel Ln, such that
the junk system is back to its fixed point state. To describe the
resulting state of the virtual system, it us useful to define the
parameters νij ∈ C via

lim
n→∞Ln(BiρfixB

†
j ) = νij ρfix, (20)

for all i,j = 0,..,d − 1. Since ρfix is Hermitian and [L(X)]† =
L(X†) for all X, we have

ν∗
ij = νji, ∀i,j. (21)

Furthermore, with Eq. (12) it follows that

d−1∑
i=0

νii = 1. (22)

Now, the combined action of the measurement with outcome
0′ and a subsequent oblivious channel is σ ⊗ ρfix −→ T0(σ ⊗
ρfix), with

T0(σ ⊗ ρfix) = ν00 σ ⊗ ρfix + dα(ν10 Cσ + ν01 σC†) ⊗ ρfix.

Thus, we are back to a disentangled logical subsystem, which
was the goal.

Let us now examine which transformation was enacted on
the logical system. For this purpose, we may split the term ∼dα

in the above expression for the channel T0 into a commutator
and an anticommutator part:

T0(σ ⊗ ρfix) = ν00 σ ⊗ ρfix + dα

2
[ν10 C − ν∗

10 C†,σ ] ⊗ ρfix

+ dα

2
{ν10 C + ν∗

10 C†,σ } ⊗ ρfix.

The commutator term generates unitary evolution and is thus
desirable, while the anticommutator term generates nonunitary
stretching which is undesirable. In general, both parts are
present.

We now repeat the above calculation for the outcome 1′.
After reversal of all by-product operators on the right boundary
system, the action on the left boundary condition now
is |L〉 −→ (I ⊗ B1 − dα C† ⊗ B0)|L〉. This holds because
C−1

1 C0 = C−1 = C†, which is a consequence of the fact that
all by-product operators in the wire basis are unitary, by
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assumption. We find that σ ⊗ ρfix −→ T1(σ ⊗ ρfix), with

T1(σ ⊗ ρfix) = ν11 σ ⊗ ρfix + dα

2
[ν10 C − ν∗

10 C†,σ ] ⊗ ρfix

− dα

2
{ν10 C + ν∗

10 C†,σ } ⊗ ρfix.

Comparing the expressions for the action of the channels T0

and T1, we find that they have the same commutator part,
with the same sign, and the same anticommutator part, with
opposite sign. Thus, upon adding the two channels T0 and
T1, the anticommutator part vanishes, and the evolution of the
logical subsystem becomes purely unitary up to linear order in
dα:

T0 + T1 : σ ⊗ ρfix −→ (ν00 + ν11) σ ⊗ ρfix

+ dα[ν10C − ν∗
10C

†,σ ] ⊗ ρfix. (23)

Up to the norm factor ν00 + ν11, this is now a unitary gate
U (dα) with rotation angle ∼dα,

U (dα) = exp

(
i dα

ν10C − ν∗
10C

†

i(ν00 + ν11)

)
, (24)

conditioned upon the measurement outcome 0 or 1 being
obtained.

As discussed in Sec. III D, the “adding together” of the two
channels T0 and T1 means that if the measurement outcome
s1 was either 0 or 1, after the correction of the by-product
operator, the outcome is discarded, i.e., no longer available for
any further processing. It is only remembered that one of 0 or
1 occurred.

The reason for conditioning the junk system is now clearly
visible. We have a reliable procedure for driving the junk
system into a fixed point state ρfix. The state ρfix, and even
the dimension of the Hilbert space it lives in, are a priori
unknown. But that does not matter. All that needs to be known
about ρfix are the d(d − 1)/2 parameters νij , j � i. Those
parameters can be measured.

The gate of Eq. (23) is probabilistic but heralded. It
simplifies our discussion to convert it into a deterministic gate,
at the cost of reducing the rotation angle. This proceeds by
adding in the channels T , i = 2, .. ,d − 1. Individually, any
such Ti acts as Ti : σ −→ νiiσ . And thus the net effect is
that in Eq. (23) ν00 + ν11 in the rotation angle is replaced by∑d−1

i=0 νii = 1, i.e., the rotation angle is reduced.
It may seem counterintuitive that a probabilistic mixture

of two unitaries should be a unitary. Yet, clearly there is
no problem with this statement if the two unitaries are the
same. Here, one of the two unitaries is the identity, and one is
very close to the identity, deviating to linear order in dα. The
probabilistic mixture of the two is indeed not exactly unitary,
but the difference shows up only to quadratic order in dα,
which we can discard in the present discussion.

We now redo the above calculation for a continuous set of
measurement bases B̃(dα,β), with

|0(β)〉 = |0〉 + dα eiβ |1〉,
|1(β)〉 = |1〉 − dα e−iβ |0〉, (25)

and dα,β ∈ R. We find that we can now realize the operations

U (dα,β) = exp

(
i dα|ν10| (e−i(β+δ)C − ei(β+δ)C†)

i

)
, (26)

where ν10 = |ν10|e−iδ .

B. Composition

We have so far shown how to implement a single unitary
gate with small rotation angle. To accumulate finite rotation
angles, MBQC-gate simulations need to be composable; i.e.,
we require that if the gates T and T ′ can individually be
executed by the MBQC, then so can their compositions T T ′
and T ′T .

The key, as usual in MBQC, is that the randomness of
measurement resulting in the by-product operators can be
counteracted by the adjustment of measurement bases. If
all by-product operators Ci ⊗ I are elements of a projective
representation V (G) of the symmetry group G, acting on
the logical part of the virtual system only, then by-product
operators can be propagated through the chain by virtue of the
symmetry relation

=

u

A AC    Ii

i

 C    Ii
(27)

Therein, ui is in a unitary representation U (G) of G, acting
on the physical degrees of freedom. This situation [Ci ∈
V (G),∀i] applies, for example, to maximally noncommuting
factor systems of Abelian groups [12].

Denote by A(s,β) the MPS tensor representing the action on
the virtual space caused by the measurement of a physical de-
gree of freedom in the basis B̃(dα,β) of Eq. (25), with outcome
s. Further, denote by A(s,s,β) := (C(s) ⊗ I )A(s,β)(C(s)† ⊗
I ) the MPS tensor obtained from A(s,β) by conjugating under
a by-product operator C(s) ⊗ I . With Eq. (27), for all s and all
measurement angles β, there is a measurement basis B(β ′(s))
such that

A(s,s,β) = A(s,β ′(s)). (28)

Hence, A(s,s,β) can be implemented.
Now recall that

∑
s[A(s,β)] followed by oblivious wire Ln

implements a channel T (β) on states σL ⊗ ρfix.
∑

s[A(s,s,β)]
followed by oblivious wire Ln thus implements a channel

T (β ′(s)) = C(s)T (β)C(s)† (29)

on this set of states.
Lemma 2. Consider an injective MPS state |�̃〉 of Eq. (5)

whose MPS tensors factorize with respect to a wire basis,
A[i] = Bi ⊗ Ci , and for all i = 0,..,d − 1 exists a g ∈ G such
that Ci ⊗ I = V (g). If two transformations T (α), T ′(β) can
be implemented on |�̃〉 and then so can their composition
T ′(β)T (α).

The proof of Lemma 2 is given in Appendix B.
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C. Rotations about finite angles

With Lemma 2, we have so far established that we can
execute all unitary gates of form Eq. (26), but with finite
rotation angles α replacing the infinitesimal angles dα.

Of course, there is nothing special in the choice of the basis
elements 0 and 1 in the definition of C := C−1

0 C1 leading
to Eq. (26). We may replace the labels 0 and 1 by i and j ,
0 � i,j �= i � d − 1, giving rise to different operators C =
C−1

i Cj . This observation motivates Definition 3 in Sec. II.
We have the following result.
Lemma 3. Consider a symmetry-protected phase of a group

G with the properties (i) the ground state is unique, (ii) there
is a wire basis, and (iii) the by-product operators Ci are in
a projective representation of G, Ci ⊗ I ∈ V (G). Then, for
all resource states |�̃〉 of Eq. (5) derived from MPS ground
states Eq. (1) in that phase, except for a possible subset of
measure zero, the unitary gates in L(O) can be arbitrarily
closely approximated.

Proof of Lemma 3. Whenever νij �= 0, ∀i,j = 0,..,d − 1,
all infinitesimal unitary gates in L(O) can be executed.
Then, since the ground state is unique all across the SPTO
phase, MPS ground states are injective [8,10] and Lemma 2
applies. Thus, with exp(i dα A) exp(i dβ B) ≈ exp(i dα A +
i dβ B), for all A,B ∈ O, all rotations generated by linear
combinations of observables in O can be realized. Further-
more, exp(i dα A) exp(i dα B) exp(−i dα A) exp(−i dα B) ≈
exp((dα)2[A,B]); thus rotations generated by any element in
A(O) can be realized, and hence all rotations in L(O).

A value of νij = 0, for some i �= j , requires fine-tuning in
the phase and thus occurs only for a set of states of measure
zero. �

Thus, whenever wire is protected by symmetry, a large
group of gates can also be carried out all across the SPTO
phase. These gates are not protected in the same way as wire
is, and they have to be executed in a fashion reminiscent of the
Zeno effect. Namely, the measurement bases implementing
unitary gates on the virtual system must always remain close
to the wire basis, and finite rotation angles are accumulated
over a large number of measurements.

We restate Lemma 3, without the conditions and qualifica-
tions, as the second computational primitive.

Computational primitive 2. The logical part of the virtual
system can be acted on by all unitary gates in L(O).

D. Operational cost of unitary evolution

In the above treatment of the unitary transformations, we
have discarded terms of order dα2, and indeed, to quadratic
order in dα deviations from unitarity arise. When finally
composing gates, a rotation about a finite angle α is realized
as a sequence of N rotations about an angle dα = α/N .
The error for each such rotation is thus of order 1/N2, and
hence the error of the combined procedure is of order 1/N .
Thus, the error of the approximation can be improved by
increasing the number N of steps. An error εgate requires order
1/εgate steps.

Now consider a computation that consists of n unitary gates
and allows for a total error ε in them. The allowed error per
gate then is εgate = ε/n, and hence the number of steps per

gate is ∼n/ε. Hence, the total number of steps is ∼n2/ε. This
is a quadratic overhead compared to the sequence of n ideal
gates, which is still efficient.

V. MEASUREMENT AND INITIALIZATION

We have so far employed measurement only of the right
boundary system in the support of |�̃〉. This is unsatisfactory,
since the presence of the right boundary system is only a
transitional feature. It is removed in the final construction,
which employs the original resource state |�〉 of Eq. (1). Here,
we describe a procedure of measurement of the virtual system.
It is independent of the choice of the right boundary condition.

A. Procedure for measurement

For measurement of the virtual system, computational paths
are no longer added, except in the oblivious wire. Furthermore,
we choose the measurement bases a finite angle α away from
the wire basis, B(α) = {|0′〉,|1′〉,|m′〉 = |k〉, k � 2}, with

|0′〉 = cos α|0〉 + sin α|1〉,
|1′〉 = − sin α|0〉 + cos α|1〉. (30)

If the measurement outcome is 0′, the corresponding action on
the virtual system is thus A′[0] = cos α A[0] + sin α A[1] =
C0(cos α I ⊗ B0 + sin α C ⊗ B1). Thus, an initial state τ =
σ ⊗ ρfix transforms into

τ −→ cos2 α C0σC
†
0 ⊗ B0ρfixB

†
0

+ sin2 α C1σC
†
1 ⊗ B1ρfixB

†
1

+ sin α cos α C0σC†C†
0 ⊗ B0ρfixB1

+ sin α cos α C0CσC
†
0 ⊗ B1ρfixB

†
0.

We now follow up the first measurement in the basis B(α)
with an oblivious wire and undoing of the by-product operator
on the right boundary system. The action of this chain of
operations on the virtual system is T0(σ ⊗ ρfix) = T0(σ ) ⊗
ρfix, with

T0(σ ) = cos2 α ν00 σ + sin α cos α (ν10Cσ + ν∗
10σC†)

+ sin2 α ν11 CσC†. (31)

First, for an eigenstate |φi〉 of C, with C|φi〉 = eiφi |φi〉, we
find

T0(|φi〉〈φi |) = [cos2 α ν00 + sin2 α ν11

+ |ν10| sin 2α cos(δ + φi)]|φi〉〈φi |, (32)

where we have set ν10 = eiδ|ν10|.
We now consider the state σ of the logical part of the

virtual system in the eigenbasis BC of C, BC = {|φi〉| C|φi〉 =
eiφi |φi〉}:

σ :=
∑
i,j

σij |φi〉〈φj |.

By the same argument as in Eq. (31), we find that, conditioned
upon obtaining the outcome k in the measurement basis B(α)
of Eq. (30), the expansion coefficients σij of σ are updated as

σij −→ σ ′
ij = fk(φi,φj )σi,j . (33)
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a
b c

FIG. 2. Accumulated filter functions f
N0

0 f
N1

1 (normalized): (a)
N0 = N1 = 1, (b) N0 = N1 = 5, and (c) N0 = N1 = 50. The param-
eters for this plot are ν00 = ν11 = 1, ν10 = 0.8, α = π/4.

We call the multipliers fk(φi,φj ) filter functions, since they
amplify or diminish some eigenstates over others. It suffices to
consider the filter functions fk(φi,φi) multiplying the diagonal
elements of σ . Those filter functions are

f0(φi,φi) = ν00 cos2 α + ν11 sin2 α

+ |ν10| sin(2α) cos(δ + φi),

f1(φi,φi) = ν00 sin2 α + ν11 cos2 α

− |ν10| sin(2α) cos(δ + φi),

fk(φi,φi) = νkk, k � 2. (34)

Each measurement of a physical spin in the basis B(α) thus
amounts to a weak measurement of the logical part of the
virtual system in which some of the eigenstates of C are
relatively boosted while others are diminished. In general, no
state is completely extinguished in a single measurement. As
the filter functions accumulate, they dim out all values of cos φ,
except in an increasingly narrow band. In the limit of a large
number of repetitions, a projective measurement is achieved.
See Fig. 2 for illustration.

If in a sequence of measurements the outcome 0′ is obtained
N0 times and the outcome 1′ is obtained N1 times, the
accumulated filter function FN0,N1 (φ) = f0(φ,φ)N0f1(φ,φ)N1

as a function of φ reaches its maximum at an angle φmax given
by

f0(φmax,φmax)

f1(φmax,φmax)
= N0

N1
. (35)

In the limit of large N0, N1, the eigenvalue eiφ of C with φ

closest to φmax is the outcome of the measurement.

With Eq. (34), we obtain an estimate for φ from the outcome
frequencies N0, N1:

cos(δ + φ) = sin2 α

sin 2α

(N0ν00 − N1ν11)

(N0 + N1)|ν10|

+ cos2 α

sin 2α

(N0ν11 − N1ν00)

(N0 + N1)|ν10| . (36)

The outcomes k � 2 of measurement in the basis B(α) have
no effect on the measurement of the virtual system.

Unitary evolution and measurement of the logical part of
the virtual system are illustrated in Fig. 3. In panel (a), the
changeover between unitary evolution and measurement is
shown. To implement a unitary gate with rotation angle O(1)
on the logical part of the virtual system, a large number of
spins in the chain are measured slightly away from the wire
basis, and the angle α specifying the measurement basis B(α)
is chosen ∼1/(N0 + N1). Unitarity on the virtual system is
beginning to be violated at around α = 1/

√
N0 + N1. The

measurement is optimal for α = π/4. Panel (b) shows the onset
of the large-N limit in measurement. Each dot in the plot
is the estimate of cos φk , where eiφk are the eigenvalues of
the measured observables C. (In this example, φk = πk/4,
k ∈ Z8.) The measurement procedure consists of NM weak
measurements in a row, each at an angle α = 0.5 away from the
wire basis. For small NM there are fewer points, because most
estimates are outside the meaningful region of | cos φ| � 1.

The above weak measurement, estimating cos(φ + δ), has
a degeneracy, since it cannot distinguish between the angles
φ and φ′ = −φ − 2δ. This degeneracy can be removed by
performing a second sequence of measurements in the basis
B∗(α) = {|0′〉,|1′〉,|2〉,...}, with

|0′〉 = cos α|0〉 + i sin α|1〉,
|1′〉 = i sin α|0〉 + cos α|1〉. (37)

In this way, sin(δ + φ) is measured on the virtual system, and
in combination with the above one obtains ei(φ+δ), and hence
φ. We thus arrive at the following lemma:

Lemma 4. Consider a symmetry-protected phase of a group
G with the properties (i) the ground state is unique, (ii) there
is a wire basis, and (iii) the by-product operators Ci are in a
projective representation of G, Ci ⊗ I ∈ V (G). Then, for all
resource states |�̃〉 of Eq. (5) derived from MPS ground states
Eq. (1) in that phase, except for a possible subset of measure
zero, projective measurement of the observables in the set O
can be arbitrarily closely approximated.

We restate this result, without the conditions and qualifica-
tions, as our third computational primitive.

Computational primitive 3. All observables A ∈ O can be
measured on the logical part of the virtual system.

For matters of efficiency of the measurement procedure, it is
noted that in addition to measurement in the base Eqs. (30) and
(37) for the physical spins, leading to an estimate of cos(φ + δ)
and sin(φ + δ), respectively, one may as well measure in the
basis B(α,β) defined by

|0′〉 = cos α|0〉 + eiβ sin α|1〉,
|1′〉 = sin α|0〉 − eiβ cos α|1〉. (38)
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FIG. 3. Measurement of the logical subsystem of the virtual sys-
tem. (top) Changeover between unitary evolution and measurement.
For unitary evolution of the logical subsystem, the angle α in B(α)
is chosen, ∼1/NM , where NM := N0 + N1. Unitary evolution turns
into measurement at α ≈ 1/

√
NM . The measurement is optimal for

α = π/4. In this plot, NM = 1600. (bottom) Onset of the large-N
limit in measurement. Each dot in the plot is the estimate of cos φk ,
where eiφk are the eigenvalues of the measured observables C.
Each such estimate is based on a sequence of NM individual weak
measurements. In this example, φk = πk/4, k ∈ Z8. The parameters
for both plots are ν00 = ν11 = 1, ν10 = 0.9, and the state of the logical
subsystem before measurement is completely mixed.

Thereby, an estimate of cos(φ + δ + β) is obtained with
the same efficiency. One may vary the angle β to perform

state tomography, or adjust β to optimize the resolution
of the measurement for estimating φ [choose β such that
cos(φ + δ + β) ≈ 0].

B. Born rule for the logical subsystem

In the above, we have demonstrated that for a measurement
of the logical subsystem of the virtual system, the postmea-
surement state is related to the measurement record in the
way described by quantum mechanics, i.e., it is an eigenstate
of the measured observable. To complete our discussion of
measurement of the logical subsystem, we need to relate the
measurement record to the state before measurement.

Lemma 5. In the measurement of an observable C on the
state σ of the logical subsystem of the virtual system, the
probability pC(i) of obtaining the postmeasurement state |φi〉
is given by the Born rule:

pC(i) = 〈φi |σ |φi〉. (39)

Proof of Lemma 5. We consider the channel resulting from
combining all computational paths of an individual weak
measurement, as described in Eq. (33). With Eqs. (22), (34)
we find that

σii −→
d−1∑
k=0

fk(φi,φi) = σii, ∀i = 1,..,D.

Hence, all diagonal elements of σ in the eigenbasis of C are
the same before and after the channel. This also holds for any
number of iterations of the channel,

σii,≺ = σii,�. (40)

Now consider a sequence of measurements, with record k =
(k1,..,km), that is sufficiently long to project the logical state.
Denote by k → i that the measurement record k is interpreted
as outcome i, and by pC(k) the probability for the outcome k.
The matrix element σii(k) of the logical state conditioned on
the outcome k is

σii(k) =
{

1, if k → i,

0, if k �→ i.

Then, for the matrix element σii(�) after measurement it holds
that

σii,� =
∑

k

σii(k)pC(k)

=
∑

k|k→i

pC(k)

= pC(i).

For the matrix element σii,≺ before measurement it holds
by definition that σii,≺ = 〈φi |σ |φi〉. Hence, with Eq. (40),
〈φi |σ |φi〉 = pC(i). �

C. Operational cost of measurement

Measurement is most effective for the choice α = π/4 in
the measurement basis Eq. (30). Then, Eq. (36) for the estimate
of cos(φ + δ) simplifies to

cos(φ + δ) = N0 − N1

N0 + N1

ν00 + ν11

2|ν01| .
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We first discuss the case where, after a couple of measurement
rounds, it is found that cos(φ + δ) ≈ 0. In this region, the
conversion of cos(φ + δ) into φ is the most reliable. Assuming
that the uncertainty in the constants ν00,ν11,|ν01| and δ is
negligible, the experimental uncertainty �φ of φ is �φ =
(1/

√
(N0 + N1))((ν00 + ν11)/4|ν11|).

Denote by � the smallest distance between two consecutive
eigenvalues of the measured observable C−1

0 C1 on the unit cir-
cle. To reach an accuracy �φ = ε�, with ε a small parameter,
the number N of measurement steps used for the measurement
of the logical subsystem is (N0 + N1)/(ν00 + ν11), and thus

N = 1

(4ε�)2

(ν00 + ν11)

|ν01|2 . (41)

In the remaining case, cos(φ + δ) �≈ 0, the procedure is as
follows. First, φ + δ is measured with low accuracy, in only a
few rounds of measurement. Then, the further measurements
proceed in a basis B(π/4,β) of Eq. (38), where β is chosen
such that cos(φ + δ + β) ≈ 0. This results in a precision
measurement of cos(φ + δ − β), with the same operational
overhead as in Eq. (41).

D. Initialization

Measurement can also be used for initialization of the
logical system. To initialize in a fixed reference state, one may
measure a suitable by-product operator C and subsequently
apply a conditional unitary.

VI. REVERTING TO THE BOUNDARY
CONDITIONS OF EQ. (1)

In this section we convert to the resource state with
the original boundary conditions and thereby complete the
construction. We show that the state |�̃〉 of Eq. (5) with the
modified boundary condition can be replaced by the original
resource state |�〉 of Eq. (1). The basic reason for why this
works is that the computation is completed with a measurement
somewhere in the bulk of the chain, sufficiently far from the
boundary. Then, because the correlation length is typically
finite, the choice of boundary condition does not matter. Below
we formalize this intuition.

Lemma 6. If an MBQC can be performed with a quantum
state |�̃〉 of Eq. (5) then it can also be performed by the
quantum state |�〉 of Eq. (1), which differs from |�̃〉 in the
choice of the boundary condition at the right end of the chain.

Proof of Lemma 6. The proof splits into two parts. First
we show that standard open boundary conditions are fine if
the state associated with the right boundary is I/D ⊗ ρfix,
where ρfix is the fixed point of the channel L := ∑

s[B
†
s ]

with the largest eigenvalue ν, and D is the dimension of the
logical system. Second, we show how to prepare that state on
the right boundary, starting from any boundary state |R〉.

(i) The main point is that if the logical state of the
right boundary system is σ ≈ I , then the forward-propagated
by-product operator �(s) annihilates on the right boundary,
�(s) I �(s)† = I . This is the counterpart to the active correc-
tion of the by-product operator �(s) in case of the boundary
conditions Eq. (5). In case of the boundary conditions Eq. (1),
no active intervention is necessary.

For notational simplicity, we consider a sequence T ′
C,s ◦ T

of only two operations, where T is a unitary and T ′
C,s is a

measurement of the observable C with outcome s. Without
loss of generality we assume that the input state of the virtual
system prior to these gates is σ ⊗ ρfix. Any such input state can
be prepared, as we have previously shown. We now consider
the probabilities p(s) and p′(s) for obtaining the outcome
s if the computation is run on an input state |�̃〉 and |�〉,
respectively. The probabilities are

p(s) = Tr[T ′
C,s ◦ T (σ )] Tr(ρfix) × c,

p′(s) = Tr[T ′
C,s ◦ T (σ )] Tr(ρfixρfix) × c′/D,

where c,c′ are normalization constants independent of s, and
thus p(s) ≈ p′(s). Since

∑
s p(s) = ∑

s p′(s) = 1,

p(s) = p′(s), ∀s = 0, .. ,d − 1.

Thus, there is no effect of the right boundary on the measure-
ment statistics, if the right boundary state I/D ⊗ ρfix can be
prepared.

(ii) The right boundary state I/D ⊗ ρfix is prepared by
running “completely oblivious” wire from the right boundary
inwards. Completely oblivious wire is the same as oblivious
wire, except that measurement outcomes are discarded without
performing any correction anywhere. First, the state I/D ⊗
ρfix is indeed a fixed point of the evolution F = ∑

s[A(s)],

d−1∑
s=0

A(s)†
(

I

D
⊗ ρfix

)
A(s) =

d−1∑
s=0

C†
s

I

D
Cs ⊗ B†

s ρfixBs

= I/D ⊗
d−1∑
s=0

B†
s ρfixBs

= ν(I/D ⊗ ρfix).

Second, the state I/D ⊗ ρfix is the eigenstate of F with the
largest eigenvalue. Suppose there was an eigenstate τ ofF with
larger eigenvalue ντ , ντ > ν. Define ρ(τ ) := TrLτ , where TrL
is the trace over the logical subsystem. By assumption we
have ντ τ = F(τ ) = ∑

s C
†
s ⊗ B

†
s τ Cs ⊗ Bs . Now taking TrL

on both sides, and using the cyclicity of trace, we find

ντ ρ(τ ) =
∑

s

B†
s ρ(τ )Bs = L(ρ(τ )).

L has a larger eigenvalue than ν. Contradiction. Thus, the
largest eigenvalue of the channel F is ν, the same as of the
channel L on the junk system alone.

The largest eigenvalue of F is typically nondegenerate,
and I/D ⊗ ρfix is thus the unique stable fixed point. It is
closely approximated for a sufficient number of iterations of
F , starting from any boundary condition |R〉. �

Remark. Completely oblivious wire is equivalent to the
respective spins being traced out. To implement it, all that
needs to be done is to keep a sufficiently long runway of
spins between the last spin used for measurement and the right
boundary of the chain.

Proof of Theorem 2. Lemma 3 provides the unitary gates in
L(O) and Lemma 4 projective measurements of observables
in the set O, given the state |�̃〉 of Eq. (5). With Lemma 6,
the resource state |�̃〉 may be replaced by the resource state
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|�〉 of Eq. (1) with standard open boundary conditions on both
sides. �

VII. EXAMPLES

A. ZD × ZD symmetry

Here we consider symmetry-protected topological order for
the symmetry group G = ZD × ZD and are interested in the
phase corresponding to the maximally noncommuting factor
system. The latter describes a unique projective representation
V (G) acting on the virtual system as V (a × b) = Ṽ (a × b) ⊗
Ijunk, where a × b ∈ ZD × ZD , Ṽ (a × b) = XaZb and X, and
Z are Heisenberg-Weyl operators in dimension D, defined by
X|z〉 = |z + 1 mod D〉, Z|z〉 = e2πi z/D|z〉. With Theorem 1
of [12] and the proof thereof, the MPS tensor A can be written
as

A[i] = Ṽ (gi) ⊗ Bjunk,i ,

where gi ∈ ZD × ZD .
The dimension d of the physical spins may now be chosen

d = D2, which is compatible with a qudit cluster state. Then,
the operators C−1

i Cj , for i,j �= i ∈ 0, .. ,D2 − 1 are, up to
phases, also the Heisenberg-Weyl operators in dimension D

minus the identity. There are thus D2 − 1 linearly independent
such operators. Therefore the set of Eq. (3), for d = D2, also
has D2 − 1 linearly independent elements. Furthermore, all
elements of this set are Hermitian and traceless. Hence they
span the space of traceless Hermitian D × D matrices. With
Lemma 3, the set of gates realizable in this SPTO phase is
thus SU (D). Furthermore, by Lemma 4, all Heisenberg-Weyl
operators can be measured in this phase.

B. (Z2 × Z2)×N symmetry

Consider the symmetry group G = (Z2 × Z2)×N , and the
SPT phase corresponding to the maximally noncommuting
factor system. By theorem 1 of [12], there exists a wire basis
of 22n states |a〉, with a = (aX,aZ) and aX,aZ ∈ ZN

2 , such that

A[a] = Bjunk[a] ⊗ X(aX)Z(aZ).

The by-product operators are N -qubit Pauli operators, and the
logical qudit is thus equivalent to N qubits.

By Theorem 2, the corresponding MBQC scheme can
realize all unitaries in SU (2N ) and measure all N -qubit Pauli
observables. It is thus N -qubit universal.

This example illustrates that MBQCs on two- and higher-
dimensional spin lattices are implicitly included in our analysis
by treating them as quasi-one-dimensional systems. However,
this treatment is not fully satisfactory. First, the symmetry
group G grows with the number of logical qubits processed
(also see [27]), and universal quantum computation on differ-
ent numbers of qubits thus happens in distinct physical phases.

Second, the notion of locality in the present example is not
what one would expect for MBQC. In all MBQC schemes
proposed to date, the size of the support of each individual
measurement is fixed and independent of the number of
logical qubits processed, and it seems reasonable to impose
this property as a necessary requirement. In the present
example, however, the support of each measurement is on
a 22N -dimensional physical system, the equivalent of 2N

qubits. It is thus dependent on the number N of logical qubits
processed.

VIII. THE MATRIX [νi j ]

A. Measurement

Running of MBQC at any given point in the SPTO phase
requires knowledge of the d2 parameters νij characterizing the
fixed point state ρfix of the junk system. These parameters can
be estimated as follows: First, a state σ ⊗ ρfix of the virtual
system is prepared through oblivious wire (see Computational
Primitive 1). This procedure does not require knowledge of the
parameters νij . Then follows a sequence of measurements in
the wire basis alternating with oblivious wire. The frequencies
Nk of obtaining the outcomes k in measurement in the wire
basis are, with Eqs. (35) and (34), related via

νkk

νll

= Nk

Nl

.

In this way, also invoking the normalization condition Eq. (22),
all diagonal elements νkk are measured.

Finally, the off-diagonal elements can be determined by
implementing the rotations Eq. (26) and measuring the rotation
angle, e.g., by change in the population of the various levels
of the logical subsystem.

B. Interpretation

The operator ν := ∑d−1
i,j=0 |i〉νij 〈j | can be given the in-

terpretation of a (mixed) quantum state. With Eq. (21), ν is
Hermitian, and with Eq. (22), Tr ν = 1. Finally, ν is positive
semidefinite.

The latter can be seen as follows. Consider a tensor product
state

∑
ij BiρfixB

†
j ⊗ |i〉〈j | of the junk part of the virtual

system and a physical degree of freedom, where {|i〉} is an
ONB ofCd (the Hilbert space of a physical degree of freedom).
Furthermore, for any state |ψ〉 of the physical system, consider
the expression

νψ (n) := 〈ψ |Trjunk

⎡
⎣I ⊗ Ln

⎛
⎝∑

ij

|i〉〈j | ⊗ BiρfixB
†
j

⎞
⎠

⎤
⎦|ψ〉

= Trjunk[I ⊗ Ln(BψρfixB
†
ψ )],

with Bψ = ∑
i〈ψ |i〉Bi . With Lemma 1, ρfix is either positive

or negative semidefinite, and without loss of generality, may be
chosen positive semidefinite (hence, Tr(ρfix) > 0). Since [Bψ ]
(as a superoperator) is completely positive for all |ψ〉 and L is
completely positive, it holds that

νψ (n) � 0, ∀|ψ〉,∀n.

We may now evaluate νψ (n) in a different way. Using Eq. (20),
in the limit of n → ∞ we have

νψ (∞) = 〈ψ |Trjunk

⎡
⎣

⎛
⎝∑

ij

|i〉νij 〈j |
⎞
⎠ ⊗ ρfix

⎤
⎦|ψ〉

= Tr(ρfix) × 〈ψ |
⎛
⎝∑

ij

|i〉νij 〈j |
⎞
⎠|ψ〉

= Tr(ρfix) × 〈ψ |ν|ψ〉.
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traced over
ν

σ C C

U

FIG. 4. Computation by interaction of the logical system with
the state ν. The state ν represents the “computational essence” of
the fixed point state ρfix of the junk subsystem. U is the unitary that
transforms between the wire basis and the measurement basis for the
physical degree of freedom. The interaction between the two systems
is via the gate Eq. (42).

Comparing the two above expressions for νψ (∞), we find that
the state ν is positive semidefinite, as claimed.

Now that we know that ν can be regarded as a quantum state,
what is its role in the computational scheme? It turns out that
each copy of the state ν implements a single quantum gate on
the logical subsystem by interacting with it and subsequently
being discarded (traced out). See Fig. 4 for an illustration.

This picture arises as follows. First, consider the action
on the virtual state σ ⊗ ρfix of a physical degree of freedom
being measured in the state |ψ0〉 (corresponding to by-product
operator I ) followed by oblivious wireLn for some sufficiently
large n. With Eq. (20),

σ ⊗ ρfix −→ Ln

{[∑
i

〈ψ0|i〉Ci ⊗ Bi

]
(σ ⊗ ρfix)

}

=
∑
ij

〈ψ0|i〉νij 〈j |ψ0〉CiσC
†
j ⊗ ρfix.

Now we consider the following related procedure, which
invokes the incoherent addition of computational paths. The
physical degree of freedom is measurement in the basis BM =
{|ψk〉,k = 0,..,d − 1}, which is related to the wire basisB via a
unitary U , |ψk〉 = U |k〉, for all |k〉 ∈ B. For each measurement
outcome k, the corresponding by-product operator Ck is
reversed; see Sec. IV. After that, the measurement outcome
k is discarded. Combining all computational paths k, this
procedure is represented by

σ −→
∑

k

∑
ij

〈k|U †|i〉νij 〈j |U |k〉C†
kCiσC

†
jCk.

Here, we have dropped the tensor factor ρfix since it remains
unaffected by the procedure. We note that a new tensor factor
comes into play, namely, the physical degree of freedom, with
states {|i〉}. We denote by �(C) the entangling gate,

�(C) =
d−1∑
i=0

|i〉〈i| ⊗ Ci, (42)

with the physical degree of freedom as control and the logical
subsystem as target. With this, the update of the state σ can be
rewritten as

σ −→ TrP�(C)†U�(C)(ν ⊗ σ )�(C)†U †�(C),

where TrP denotes the trace over the physical degree of
freedom. This is the state evolution depicted in Fig. 4. We have
thus shown that MBQCs in SPTO phases simulate quantum
circuits in which each gate be viewed as arising from the
interaction between the logical subsystem with a particle
prepared in the state ν.

IX. CONCLUSION

We have investigated measurement-based quantum compu-
tation on resource states that are ground states in symmetry-
protected topologically ordered phases, in spatial dimension
1. We have shown that if an SPTO phase supports symmetry-
protected quantum wire (and is subject to the technical
condition that the MBQC by-product operators are elements of
a projective representation of the symmetry group), then this
phase also supports quantum computation on one qudit. That
is, any state in the phase is a resource for MBQC in D = 1.
For such SPTO phases, Conjecture 1 thus holds.

It is instructive to compare the present construction to
the symmetry-protected wire of [12], which it extends to the
domain of quantum computation. In [12], symmetry specifies
the computational wire completely, and the details of the
quantum state in the given SPTO phase play no role at all. This
is different in the present scenario for quantum computation.
Some information about the resource quantum state does enter
the computational scheme, namely, a Hermitian d × d matrix
of coefficients [νij ], with d the dimension of the physical
spins in the chain. These parameters are not constrained by
symmetry and need to be measured in a self-test prior to the
computation.

We conclude with two open questions. The immediate
question is whether and how Theorem 2 generalizes to the
higher spatial dimension D � 2.

Even in dimension D = 1, a better understanding of the
algebraic side of the presented constructions is desirable. For
example, can it happen that a by-product operator Ci ⊗ I is
not a symmetry? Furthermore, is the existence of a wire basis
necessary for uniform computational power throughout SPTO
phases? We have found that the MPS tensors are sometimes
very constrained by symmetry, but the constraints are not
quite strong enough or not of the right kind to produce a
tensor product structure between a logical and a junk system.
Can computational schemes that work uniformly across SPTO
phases be built on other structures than tensor products?
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APPENDIX A: ADDING COMPUTATIONAL PATHS—THE
ONE-PARTY SCENARIO

Here we return to the subject of Sec. III D, the interpretation
of adding computational paths. We have already provided an
interpretation for a distributed computational setting involving
two parties. However, in the present situation, the computation
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is performed by a single party. In this setting, we use
“forgetting” of classical information in the following technical
sense: Forgetting of information means the commitment to
never use that information in any decision making after the
point of “forgetting.” It is thus merely a restriction in the
available modes of classical processing, and we do not have
to discuss whether the erasure of information is physically
possible.

A general quantum computation consists of an initializa-
tion, followed by a sequence of unitaries and measurements.
Since we have not established all of those computational
primitives yet, we consider here the simple case where
oblivious wire is implemented on a state |�̃〉 with a left
boundary state |L〉, and subsequently an observable A is
measured on the logical subsystem of the right boundary state.
Furthermore, the left boundary state is of the special tensor
product form |L〉 = |l〉 ⊗ |j 〉, where |l〉 represents the state of
the logical subsystem of the left boundary and |j 〉 the state of
the junk subsystem.

The important quantity in this setting is the probability
distribution pA of measurement outcomes for A given the
state |l〉. The goal is to show that the distribution pA can be
sampled from correctly and efficiently by measurements on
|�̃〉.

We denote by qA(o,s) the joint probability for obtaining the
measurement record s on the spins in the chain and the outcome
o for the observable A, measured on the right boundary system
in the support of |�̃〉. By the same argument as in Eqs. (8) and
(9), but without summation over s, we find that

qA(s,o) = q(s) pA(o|s), (A1)

where q(s) = |κ(n)|2‖∏n
k=1 Bsk

|j 〉‖2 is the probability of
obtaining the outcome s, and

pA(o|s) = 〈l|PA(o)|l〉
is the probability of obtaining the outcome o in the mea-
surement of the right boundary system, given the prior
measurement record s. Therein, PA(o) is the projector onto
the eigenspace of A with eigenvalue o.

We thus find that pA(o|s) is independent of s, and, more
importantly, that it equals the probability of obtaining the
outcome o in the measurement of the observable A on the state
|l〉, pA(o|s) = pA(o) for all s. Thus, with Eq. (A1),

pA(o) =
∑

s

qA(s,o). (A2)

We now turn to the experimental procedure. In each run of the
computation, the computing party obtains one sample (s,o)
from the the probability distribution qA and discards the s part:

(o,s) −→ o.

This is the step of “forgetting” classical information. The
remaining outcomes o are thus sampled from the probability
distribution p′

A, with

p′
A(o) :=

∑
s

qA(s,o).

By comparison with Eq. (A2), p′
A ≡ pA. The procedure

thus samples from the correct probability distribution for the
measurement outcomes o of A on |l〉.

Furthermore, every run of the computation generates a
sample from the distribution pA and the adding of compu-
tational paths is thus efficient. Specifically, it does not cause
any overhead in the computation.

APPENDIX B: PROOF OF LEMMA 2

Proof of Lemma 2. The proof is by explicit construction of
the procedure of implementing T ′(β)T (α). This procedure is
the following: (i) On the first segment of the spin chain, imple-
ment T (α), but retain the measurement outcomes (s1,..,sn) =
s. (ii) On the remaining segment of the spin chain, implement
T ′(β ′(s)). (iii) Sum over all measurement outcomes s on the
first segment and z = (zn+1,..,zn′ ) on the second segment.

We denote by [a] the superoperator corresponding to the
operator a, and C(z,s) is the total accumulated by-product
operator. The output state τout of the combined procedure is
then

τout =
∑

z

[C(z,s)]−1
n′∏

j=n+2

[Czj
⊗ Bzj

][An+1(zn+1,β
′(s))]

∑
s

n∏
i=2

[Csi
⊗ Bsi

][A1(s1,α)](σ ⊗ ρfix)

=
∑

z

[C(z,s)]−1

⎡
⎣C(z) ⊗

n′∏
j=n+2

Bzj

⎤
⎦[An+1(zn+1,β

′(s))]
∑

s

[
C(s) ⊗

n∏
i=2

Bsi

]
[A1(s1,α)](σ ⊗ ρfix)

=
∑
z,s

[C(z,s)]−1

⎡
⎣C(z)C(s) ⊗

n′∏
j=n+2

Bzj

⎤
⎦[An+1(zn+1,β)]

[
I ⊗

n∏
i=2

Bsi

]
[A1(s1,α)](σ ⊗ ρfix)

=
∑
z,s

⎡
⎣ n′∏

j=n+2

I ⊗ Bzj

⎤
⎦[An+1(zn+1,β)]

[
n∏

i=2

I ⊗ Bsi

]
[A1(s1,α)](σ ⊗ ρfix)

=
∑

z

⎡
⎣ n′∏

j=n+2

I ⊗ Bzj

⎤
⎦[An+1(zn+1,β)]

∑
s

[
n∏

i=2

I ⊗ Bsi

]
[A1(s1,α)](σ ⊗ ρfix)
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=
∑

z

⎡
⎣ n′∏

j=n+2

I ⊗ Bzj

⎤
⎦[An+1(zn+1,β)]T (α)(σ ) ⊗ ρfix

= T ′(β)T (α)(σ ) ⊗ ρfix.

Therein, in the third line we have used Eq. (29), and in the fourth line the relation C(s,z) = C(z)C(s). �
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