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We analyze the connection between Bell inequality violations and symmetric extendibility of quantum states.
We prove that 2-qubit reduced states of multiqubit symmetric pure states do not violate the Bell Clauser-
Horne-Shimony-Holt (CHSH) inequality. We then prove the more general converse that any 2-qubit state that
violates the CHSH inequality cannot have a symmetric extension. We extend our analysis to qudits and provide
a test for symmetric extendibility of 2-qudit states. We show that if a 2-qudit Bell inequality is monogamous,
then any 2-qudit state that violates this inequality does not have a symmetric extension. For the specific case of
2-qutrit states, we use numerical evidence to conjecture that the Collins-Gisin-Linden-Massar-Popescu (CGLMP)
inequality is monogamous. Hence, the violation of the CGLMP inequality by any 2-qutrit state could be a sufficient
condition for the nonexistence of its symmetric extension.
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I. INTRODUCTION

Any 2-qudit quantum state ρAB is said to have a symmetric
extension if there exists a 3-qudit state ρABB ′ such that tracing
over the qudit B or B′ yields the same quantum state, that
is, ρAB = ρAB ′ [1]. Symmetric extendibility of quantum states
has been used in various areas of quantum information and
quantum communication, such as detection of entanglement,
determining entanglement distillability, and characterizing
antidegradable channels, to name a few [2–5]. It is therefore
crucial to determine which states have a symmetric extension
and which do not. Although semidefinite programming (SDP)
[6,7] can do this numerically, it is a computationally expensive
task. Thus it is desirable to have analytical necessary and/or
sufficient conditions to determine the symmetric extendibility
of quantum states. While necessary and sufficient condi-
tions for the existence of symmetric extensions have been
obtained for 2-qubit states [1], finding the corresponding
conditions for 2-qudit states remains an open question (though
a specific class of qudit states has been studied to this
end [8–10]).

In this paper, we provide a sufficient condition for the
nonexistence of symmetric extension for 2-qudit states based
on 2-qudit Bell inequalities. Specifically, we establish the
connection between Bell inequality violations and symmetric
extendibility for qudit states by exploiting the monogamy of
Bell inequalities [11]. We first focus on 2-qubit states and prove
that 2-qubit reduced density matrices derived from multiqubit
symmetric pure states can never violate the Bell Clauser-
Horne-Shimony-Holt (CHSH) inequality (we will henceforth
refer to this as the CHSH inequality). Next we prove the more
general converse, namely, that any 2-qubit state violating the
CHSH inequality cannot have a symmetric extension. The
result follows from the monogamy of the CHSH inequality
[12,13]. We generalize our proof to 2-qudit states to show that
if a Bell inequality for 2-qudit states is monogamous, then its
violation by a 2-qudit state implies that there cannot exist a
3-qudit symmetric extension of the state. This is a sufficient
condition for the nonexistence of symmetric extension of a
2-qudit quantum state.

Our results highlight the importance of monogamy in Bell
inequalities. We thus explore the monogamous nature of the
Collins-Gisin-Linden-Massar-Popescu (CGLMP) inequality,
which is a Bell inequality for qudit states [14]. We provide nu-
merical evidence for the monogamy of the CGLMP inequality
for 2-qutrit states. We conjecture that it is monogamous and
thus conclude that the violation of the CGLMP inequality by
a 2-qutrit state would imply that it does not have a 3-qutrit
symmetric extension.

The paper is organized as follows. In Sec. II, we briefly
discuss the CHSH and CGLMP Bell inequalities for qubits
and qudits, respectively, as well as symmetric extensions of
quantum states. In Sec. III, we prove that 2-qubit reduced
density matrices derived from multiqubit symmetric pure
states can never violate the CHSH inequality. In Sec. IV,
we prove that any 2-qubit state that violates the CHSH
inequality cannot have a symmetric extension. We then show
that this proof can be simply extended to derive a sufficient
condition for the symmetric nonextendibility of 2-qudit states.
In Sec. V, we explore the CGLMP inequality and provide
numerical evidence for the monogamous nature of the CGLMP
inequality for qutrits. From this, we conjecture that the
CGLMP inequality is monogamous and thus can be used to
test the symmetric extendibility of 2-qutrit states.

II. BACKGROUND

A. Bell inequalities

Here, we introduce Bell inequalities for different quantum
states. The CHSH and CGLMP inequalities are 2-qubit and
2-qudit Bell inequalities, respectively.

2-qubit states: The CHSH correlation functionB(ρ) for any
2-qubit state ρ is

B(ρ) = max
A,B,A′,B ′

〈AB + AB ′ + A′B − A′B ′〉, (1)

where A and A′ are operators acting on the first qubit, and
B and B ′ are operators acting on the second qubit. All four
operators are such that their eigenvalues are ±1.
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Given any ρ, calculating B(ρ) is clearly an optimization
problem. In [15], an analytical formula for the CHSH corre-
lation function has been derived which does not involve any
optimization. Consider a matrix T whose elements are

Tij = tr(ρσi ⊗ σj ). (2)

Let U = T T T . Then,

B(ρ) = 2
√

u + v, (3)

where u and v are the largest and second largest eigenvalues
of U. If B(ρ) > 2, i.e., u + v > 1, then the state ρ is said to
have nonlocal correlations.

2-qudit states: The CGLMP inequality [14] is the general-
ization of the Bell inequality for higher dimensional systems.
We present this inequality for qutrits, for which the relevant
operators each have three outcomes, denoted 0, 1, and 2. Let
A1 and A2 be the operators acting on the first qutrit and B1

and B2 operators acting on the second qutrit. The CGLMP
correlation function I3(ρ) for a 2-qutrit state ρ is

I3(ρ) = P (A1 = B1) + P (B1 = A2 + 1) + P (A2 = B2)

+P (B2 = A1) − P (A1 = B1 − 1) − P (B1 = A2)

−P (A2 = B2 − 1) − P (B2 = A1 − 1). (4)

A convenient choice for the A1, A2, B1, and B2 operators is
as follows [14,16]. Let φk(j ),ϕl(j ), j ∈ {0,1,2}, k,l ∈ {1,2}
be 12 angles. Let U ( �φk) and U ( �ϕl) be 3 × 3 unitary operators
whose diagonal elements are exp [−iφk(j )] and exp [−iϕl(j )],
and off-diagonal elements are zero. Let UFT and U ∗

FT be
the respective 3-dimensional discrete Fourier transform and
inverse. The operators Ak and Bl , with k,l ∈ {1,2}, are defined
as

Ak = UFT( �φk)U ( �φk), k ∈ {1,2},
Bl = U ∗

FT( �ϕl)U ( �ϕl), l ∈ {1,2}, (5)

and their application is followed by a measurement in the
{|0〉,|1〉,|2〉} basis. Thus,

P (Am = j,Bn = k) = tr(�j ⊗ �kAm ⊗ BnρA†
m ⊗ B†

n)

⇒ P (Am = Bn) =
2∑

j=0

P (Am = j,Bn = j ), (6)

where ρ is the 2-qutrit state. Using these probabilities in
Eq. (4), we get the value of I3 as illustrated in the Appendix.
The only variables here are the 12 angles, �φ1, �φ2, �ϕ1, and �ϕ2.
Maximizing I3 over these angles yields the CGLMP inequality

I3 � max
�φk, �ϕl

(I3) ≡ BCGLMP(ρ). (7)

For any local hidden variable (LHV) model, I3(ρ) � 2.
In contrast, for |�〉 = 1√

2+γ 2
(|00〉 + γ |11〉 + |22〉) the value

of BCGLMP(|�〉) is (1 + √
11/3) ≈ 2.9149 where γ = 0.7923

[16]. This is the maximal value of I3.

B. Symmetric extension of quantum states

The condition

tr
(
ρ2

B

)
� tr

(
ρ2

AB

) − 4
√

det(ρAB) (8)

is necessary and sufficient for a 2-qubit state ρAB to possess
a symmetric extension, where trA(ρAB) = ρB [1]. We are
interested here in exploring the analogous situation for a
2-qudit state ρAB , which is said to have symmetric extension
if there exists a 3-qudit state ρABB ′ such that

trBρABB ′ = trB ′ρABB ′ = ρAB. (9)

III. NONLOCALITY OF 2-QUBIT REDUCED STATES
OF MULTIQUBIT SYMMETRIC PURE STATES

Consider a state

|ψ〉 =
j∑

m=−j

cm|j,m〉, (10)

where |j,m〉 are the eigenstates of the angular momentum
operators J 2 and Jz and j,m are the angular momentum
quantum numbers. The state |ψ〉 lies in a 2j + 1 dimensional
Hilbert space. This state belongs to the symmetric subspace
of 2j -qubit states (i.e., a symmetric combination of N = 2j

spin-1/2 qubits). Multiqubit symmetric states are of special
importance in quantum information; examples include the W
state and the GHZ state. We consider here j � 3/2, that is,
N � 3 multiqubit symmetric states.

We denote by ρAA an arbitrary 2-qubit state that is
symmetric under pair exchange. We denote by 
AA the
2-qubit symmetric state (under pair exchange) derived from
the multiqubit symmetric pure state in Eq. (10). We obtain

AA by tracing out any (N − 2) qubits from that multiqubit
symmetric pure state. Furthermore, |ψ〉 can be seen as a
symmetric purification of 
AA.

We can obtain the 3-qubit symmetric extension of 
AA by
tracing out (N − 3) qubits from |ψ〉. It will therefore satisfy
the symmetric extendibility criterion

tr
(

2

A

)
� tr

(

2

AA

) − 4
√

det(
AA), (11)

and since rank(
AA) � 3 we have

det(
AA) = 0.

Consequently Eq. (11) becomes

tr
(

2

A

)
� tr

(

2

AA

)
. (12)

It is crucial to note here that all ρ ′
AAs are not guaranteed to

possess such a symmetric extension.
We briefly recapitulate the properties of 
AA [17]. Any ρAA

takes the following form

ρAA =
⎡
⎢⎣

v+ x∗
+ x∗

+ u∗
x+ w y∗ x∗

−
x+ y w x∗

−
u x− x− v−

⎤
⎥⎦ (13)

in the basis {|00〉,|01〉,|10〉,|11〉}. Now if ρAA = 
AA derived
from |ψ〉 in Eq. (10), then the matrix components are written
as

v± = N2 − 2N + 4
〈
J 2

z

〉 ± 〈Jz〉(N − 1)

4N (N − 1)
,

x± = (N − 1)〈J+〉 ± 〈[J+,Jz]+〉
2N (N − 1)

,
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w = N2 − 4
〈
J 2

z

〉
4N (N − 1)

,

y = 2
〈
J 2

x + J 2
y

〉 − N

2N (N − 1)
= N2 − 4

〈
J 2

z

〉
4N (N − 1)

= w,

u =
〈
J 2

+
〉

N (N − 1)
. (14)

We now demonstrate that 
AA does not violate the CHSH
inequality.

Theorem 1: B(
AA) � 2, where matrix elements of 
AA are
defined in Eqs. (13) and (14), for j � 3/2.

Proof: For the 2-qubit state in Eq. (13), the T matrix defined
in Eq. (2) is

T =

⎡
⎢⎣

2[w + Re(u)] 2Im(u) 2Re(x+ − x−)

2Im(u) 2[w − Re(u)] 2Im(x+ − x−)

2Re(x+ − x−) 2Im(x+ − x−) 1 − 4w

⎤
⎥⎦.

(15)

It is clear that T is a symmetric matrix, and it is straightforward
to show that its eigenvalues λ1, λ2, and λ3 are real. Sorting them
in order such that

λ2
1 � λ2

2 � λ2
3, (16)

we find that

B(
AA) = 2
√

λ2
2 + λ2

3. (17)

Furthermore T in Eq. (15) has unit trace and so

λ1 + λ2 + λ3 = 1. (18)

Squaring both sides of this equation yields, after some
simplification,

λ2
1 + λ2

2 + λ2
3 = 1 − 2(λ1λ2 + λ2λ3 + λ1λ3). (19)

From the properties of 3 × 3 matrices,

λ1λ2 + λ2λ3 + λ1λ3

= sum of all 2 × 2 principal minors

=
∣∣∣∣T11 T12

T21 T22

∣∣∣∣ +
∣∣∣∣T22 T23

T32 T33

∣∣∣∣ +
∣∣∣∣T11 T13

T31 T33

∣∣∣∣. (20)

Since T is a symmetric matrix for 
AA, Eq. (20) becomes

λ1λ2 + λ2λ3 + λ1λ3 = T11T22 + T22T33 + T11T33

−T 2
12 − T 2

23 − T 2
13. (21)

Substituting matrix elements of T from Eq. (15) in Eq. (21),
we get

λ1λ2 + λ2λ3 + λ1λ3 = 4(w − 3w2 − |u|2 − |x+ − x−|2).

(22)

Using Eq. (12), we have

tr
(

2

A

) − tr
(

2

AA

)
� 0. (23)

Now

tr(
AA) = 1 = v+ + v− + 2w,


A =
[

v+ + w x∗
+ + x∗

−
x+ + x− v− + w

]
,

tr(
2
AA) = v2

+ + v2
− + 2|u|2 + 4(|x+|2 + |x−|2 + w2),

tr(
2
A) = (v+ + w)2 + (v− + w)2 + 2|x+ + x−|2. (24)

Using Eq. (24) in Eq. (23), we get

w(v+ + v−) − |x+ − x−|2 − w2 − |u|2 � 0. (25)

Equation (25) implies

− w2 − |u|2 − |x+ − x−|2 � −w(v+ + v−)

⇒ w − 3w2 − |u|2 − |x+ − x−|2 � w − 2w2

−w(v+ + v−)

= w(1 − v+ − v−) − 2w2

= w × 2w − 2w2 = 0

[using tr(
AA) = 1]

⇒ w − 3w2 − |u|2 − |x+ − x−|2 � 0. (26)

Using Eq. (26) in Eq. (22), we get

λ1λ2 + λ2λ3 + λ1λ3 � 0. (27)

Using Eq. (27) in Eq. (19), we get

λ2
1 + λ2

2 + λ2
3 = 1 − 2(λ1λ2 + λ2λ3 + λ1λ3) � 1. (28)

Using Eq. (28) in Eq. (17) proves the result, namely,
B(
AA) � 2. �

A recent paper showed that the violation of certain
multipartite Bell-type inequalities (having terms containing
only one- and two-body correlators) was indicative of multi-
partite entanglement [18]. A particular class of permutation
symmetric states was shown to exhibit maximum violation
of these inequalities. All two-body reduced states of these
symmetric states were local in the considered scenario, and so
the proposed generalized Bell inequalities are also not violated
by 2-qubit reduced states of multiqubit permutation symmetric
states, consistent with our claim for the CHSH inequality.

IV. NO SYMMETRIC EXTENSION
OF 2-QUDIT NONLOCAL STATES

We build on the result of the previous section to explore
the nonlocality of arbitrary 2-qubit states. We shall prove a
more general result which holds for any 2-qubit state. Recall
that CHSH correlation functions have been proven to be
monogamous [12,13]. Specifically, if ρABC is any 3-qubit state
such that ρAB , ρBC , and ρAC are its three 2-qubit reduced
density matrices, then at most only one of these can violate the
CHSH inequality. For example,

B(ρAB) > 2 ⇒ B(ρBC) � 2 and B(ρAC) � 2. (29)

Using this monogamy relation we prove the following theo-
rem.

Theorem 2: Any 2-qubit state that violates the CHSH
inequality cannot possess a symmetric extension.

Proof: We will prove the theorem by contradiction. Let ρAB

be any two-qubit state for which B(ρAB) > 2.
Suppose there exists a symmetric extension of ρAB , which

is ρABC . Then either of the following holds true:

ρBC ≡ trA(ρABC) = ρAB or ρAC ≡ trB(ρABC) = ρAB, (30)
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and so if ρAB violates the CHSH inequality, either ρBC or ρAC

will also violate it, in contradiction to the monogamy relation
of Eq. (29). �

We specifically discuss the symmetric extendibility of pure
states here because entangled pure states such as maximally
entangled Bell states are the most useful resource in quantum
computation. All entangled 2-qubit pure states are also
nonlocal, which, using theorem 2, implies that they cannot
be symmetrically extended. We also see this using the criteria
in Eq. (8). tr(ρ2

AB) = 1 for pure states and detρAB = 0 (since
pure states have rank 1). Furthermore, the 1-qubit reduced
density matrix (RDM) of any entangled 2-qubit density matrix
must be mixed, and so tr(ρ2

A) < 1. Hence

tr
(
ρ2

A

) − tr
(
ρ2

AB

) + 4
√

detρAB = tr
(
ρ2

A

) − 1 < 0, (31)

in contradiction with Eq. (8). Consequently no two-qubit
entangled states satisfy the symmetric extendibility criterion.

Theorem 2 can be generalized to establish a sufficient
condition for nonextendibility of 2-qudit states. We prove the
following theorem.

Theorem 3: If a 2-qudit Bell inequality is monogamous,
then any 2-qudit state that violates this inequality cannot have
a symmetric extension.

Proof: We prove Theorem 3 by the method of contradiction
along the lines of Theorem 2. Consider a 2-qudit Bell
inequality B(ρ) � N . The upper bound N will depend on
the dimension of the qudits. Suppose that this 2-qudit Bell
inequality is monogamous. This means that if ρABC is any
3-qudit state such that ρAB , ρBC , and ρAC are its three 2-qudit
reduced density matrices, then at most only one of these can
violate the 2-qudit Bell inequality. For example,

B(ρAB) > N ⇒ B(ρBC) � N and B(ρAC) � N. (32)

Now suppose there exists a symmetric extension of the 2-qudit
state ρAB , which is ρABC . Then either of the following holds
true:

ρBC ≡ trA(ρABC) = ρAB or ρAC ≡ trB(ρABC) = ρAB, (33)

and so if ρAB violates the 2-qudit Bell inequality then either
ρBC or ρAC will also violate it, in contradiction to the
monogamy relation of Eq. (32). �

Thus, we have proved a sufficient condition for the
nonexistence of symmetric extension of 2-qudit states.

V. SYMMETRIC EXTENSION OF QUTRIT STATES

We now apply the criterion provided in Theorem 3 to the
case of 2-qutrit states. According to Theorem 3, we must first
identify a monogamous 2-qutrit Bell inequality in order to test
for 2-qutrit symmetric extendibility. To this end, we perform
numerical studies of the monogamous nature of the CGLMP
inequality (4) for qutrit states (introduced in Sec. II A). Based
on our studies, we conjecture that the CGLMP inequality is
monogamous. Given this conjecture, Theorem 3 implies that
a violation of the CGLMP inequality by any 2-qutrit state
is a sufficient condition for the nonexistence of its 3-qutrit
symmetric extension.

We performed a numerical search for the monogamy
relation of the CGLMP inequality, analogous to Eq. (32), over
3-qutrit random pure states, |ψABC〉. We used the method in

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

BCGLM P (ρAB)

B
C

G
L

M
P
 (
ρ

B
C
)

FIG. 1. Maximum value of the CGLMP correlation function for
2-qutrit RDMs ρAB and ρBC of 50 000 random 3-qutrit pure states.
States with BCGLMP(ρAC) > 2 are shown in black and states with
BCGLMP(ρAC) � 2 in grey.

[19] to uniformly sample 3-qutrit random pure states. Figure 1
shows the CGLMP correlation function value for the three
2-qutrit reduced density matrices of 50 000 random 3-qutrit
pure states, |ψABC〉. The X and Y axes are the values of
BCGLMP(ρAB) and BCGLMP(ρBC) respectively. Any 2-qutrit
state ρ is nonlocal if it violates the CGLMP inequality
BCGLMP(ρ) � 2. The 3-qutrit states withBCGLMP(ρAC) > 2 are
represented by black dots and those for which BCGLMP(ρAC) �
2 with grey dots. As shown in the plot, there are no 3-qutrit
states for which more than one 2-qutrit RDM violates the
CGLMP inequality.

In order to test the conjecture further, we specifically
construct 3-qutrit quantum states whose 2-qutrit RDMs show
violation of the CGLMP inequality. We find that at most, one
2-qutrit RDM violates the inequality for any 3-qutrit quantum
state, thus respecting the monogamy relation given in Eq. (32).
Here, we present the calculations for two such 3-qutrit states
parametrized by γ :

|ψ1〉 = 1√
8 + 6γ 2

(|000〉 + |001〉 + |002〉 + |110〉 + |111〉

+|112〉 + |221〉 + |222〉 + γ (|010〉 + |020〉 + |112〉
+|101〉 + |121〉 + |212〉)), (34a)

|ψ2〉 = 1√
3 + c2

1 + c2
2 + c2

3

(|000〉 + |111〉 + |222〉+ c1(|001〉

+|002〉 + |110〉 + |112〉 + |220〉 + |221〉)
+c2(|100〉 + |200〉 + |011〉 + |211〉
+|022〉 + |122〉) + c3(|010〉 + |020〉 + |101〉
+|121〉 + |202〉 + |212〉)), (34b)

where c1 = (10γ + 0.01)−1, c2 = −3γ (γ − 1.4)e−γ , c3 =
γ (γ − 1), and ρABC = |ψ〉〈ψ |. In Figs. 2 and 3, we plot
BCGLMP for each of the three 2-qutrit RDMs of the states
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FIG. 2. Maximum value of the CGLMP correlation function for
the 2-qutrit RDMs of the 3-qutrit state in Eq. (34a) as a function of γ .

in Eqs. (34a) and (34b), respectively, ρAB, ρBC , and ρAC as a
function of the parameter γ . We see from Figs. 2 and 3 that
only one of the three 2-qutrit RDMs has BCGLMP(ρ) > 2 for
any value of γ .

Based on our numerical studies, we make the following
conjecture. The CGLMP inequality for 2-qutrit states is
monogamous; that is, if ρABC is any 3-qutrit state such that
ρAB , ρBC , and ρAC are its three 2-qutrit RDMs, at most one of
these violates the CGLMP inequality. For example,

BCGLMP(ρAB) > 2

⇒ BCGLMP(ρBC) � 2 and BCGLMP(ρAC) � 2, (35)

with the same result holding for any permutation of (A,B,C).
The above conjecture implies that any 2-qutrit state, ρAB , that
violates the CGLMP inequality does not possess a 3-qutrit
symmetric extension. This follows from a simple application
of Theorem 3.

0 0.5 1 1.5 2 2.5
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0.5

1

1.5

2

2.5
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B
C

G
L

M
P
 (
ρ
)

 

 

AB

BC

AC

FIG. 3. Maximum value of the CGLMP correlation function for
the 2-qutrit RDMs of the 3-qutrit state in Eq. (34b) as a function of γ .

VI. DISCUSSION

Theorem 2 shows that violation of the CHSH inequality
is a sufficient condition for the nonexistence of a symmetric
extension of any 2-qubit state. This is a simple and practical
method to test for the symmetric nonextendibility of 2-qubit
states. A necessary and sufficient condition for the existence
of symmetric extension of 2-qubit states has been previously
given [1], with this being specific only to 2-qubit states;
counterexamples demonstrate this does not hold for higher
dimensional states [4].

The analogous situation for qudit states has remained an
open question. Here we have provided a test for determining
when a 2-qudit state will not have a symmetric extension.
Our criterion highlights the importance of monogamy of
nonlocality. We have found numerical evidence that the
2-qutrit CGLMP inequality is monogamous; in turn this
provides an explicit method to test for the nonexistence of
symmetric extension of 2-qutrit states. Extensions to qudit
states of higher dimensions could be obtained if higher
dimensional monogamous Bell inequalities can be identified.
Our work shows that nonlocality and symmetric extendibility
are intrinsically linked and provides motivation for future
studies of monogamy of nonlocality.
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APPENDIX

The CGLMP correlation function I3(ρ) for a 2-qutrit state
is given in Eq. (4). Using Eqs. (5) and (6), I3(ρ) can be written
in the expanded form as (where addition in the index j is
modulo 2 addition)

I3(ρ) =
2∑

j=0

tr(�j ⊗ �jA1 ⊗ B1ρA
†
1 ⊗ B

†
1)

+
2∑

j=0

tr(�j ⊗ �j+1A2 ⊗ B1ρA
†
2 ⊗ B

†
1)

+
2∑

j=0

tr(�j ⊗ �jA2 ⊗ B2ρA
†
2 ⊗ B

†
2)

+
2∑

j=0

tr(�j ⊗ �jA1 ⊗ B2ρA
†
1 ⊗ B

†
2)

−
2∑

j=0

tr(�j ⊗ �j+1A1 ⊗ B1ρA
†
1 ⊗ B

†
1)

−
2∑

j=0

tr(�j ⊗ �jA2 ⊗ B1ρA
†
2 ⊗ B

†
1)

−
2∑

j=0

tr(�j ⊗ �j+1A2 ⊗ B2ρA
†
2 ⊗ B

†
2)

−
2∑

j=0

tr(�j+1 ⊗ �jA1 ⊗ B2ρA
†
1 ⊗ B

†
2). (A1)
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