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We study the loss of quantumness caused by time dilation [I. Pikovski, M. Zych, F. Costa, and Č. Brukner, Nat.
Phys. 11, 668 (2015)] for a Schrödinger cat state. We give a holistic view of the quantum to classical transition
by comparing the dynamics of several nonclassicality indicators, such as the Wigner function interference fringe,
the negativity of the Wigner function, the nonclassical depth, the Vogel criterion, and the Klyshko criterion. Our
results show that only two of these indicators depend critically on the size of the cat, namely, on how macroscopic
the superposition is. Finally we compare the gravitation-induced decoherence times to the typical decoherence
times due to classical noise originating from the unavoidable statistical fluctuations in the characteristic parameters
of the system [J. Trapani, M. Bina, S. Maniscalco, and M. G. A. Paris, Phys. Rev. A 91, 022113 (2015)]. We
show that the experimental observation of decoherence due to time dilation imposes severe limitations on the
allowed levels of classical noise in the experiments.
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I. INTRODUCTION

In the presence of massive objects, the geometry of space-
time is warped. This warping, commonly called the curvature
of space-time, causes clocks situated at different locations to
tick at different rates. This is known as gravitational time
dilation and has been an experimentally proven phenomenon
for about half of a century [1]. Even the relatively weak
gravitational field of the Earth has an effect on certain
technological applications such as the Global Positioning
System and must be accounted for.

Modern experiments [2] have been able to detect time
dilation near the Earth’s surface due to a height difference of
1 m. Furthermore, time dilation was theoretically predicted
to cause phase shift as well as loss of visibility measurable as
a change in the interference pattern in appropriately designed
interferometers [3–5], potentially increasing the measurement
precision.

Recently, Pikovski et al. have considered the effect of
gravitational time dilation on the coherence of a composite
quantum system using the tools of open quantum systems
theory. A recent review on the subject can be found in Ref. [6].
The quantum system is prepared in a quantum superposition of
two locations corresponding to different distances from Earth
[7]. For this system, e.g., a molecule, time dilation induces
a universal coupling between the internal degrees of freedom
and the c.m. This leads to decoherence in the c.m. position of
the particle characterized by a time scale τdec. From an open
quantum systems perspective, the internal degrees of freedom
of the molecule play the role of the environment while the
centre of mass (c.m.) degree of freedom represents an open
system. Note that the total gravitational c.m. weight consists of
the total mass and the internal energy as both act as sources of
the gravity in general relativity; this is incorporated in Ref. [7]
as well as in the present paper.

For the sake of concreteness, let us consider the case
in which the internal degrees of freedom are bosonic. A
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standard example is a molecule for which the vibrations of
its constituent atoms are described in terms of N normal
modes represented mathematically as uncoupled quantum
harmonic oscillators with frequencies ωi , i ∈ {0,1, . . . ,N}.
The coupling between system and environment arises because
the vibrational frequencies become position dependent due
to time dilation, namely, ωi → ωi(x). This in turn induces
nondissipative decoherence, as shown in Refs. [7–9].

The gravitation-induced decoherence model considered
by Pikovski et al. relies on a number of quite restrictive
approximations and should therefore be considered as a toy
model useful to grasp the main features of a new decoherence
mechanism [3]. More specifically, the spherically symmetric
metric is considered in the Newtonian limit, valid only for
slowly moving particles in weak gravitational fields, therefore
general relativistic effects are not taken into account. Second,
a superposition of position eigenstates is considered as initial
state, rather than a more physically significant superposition
of macroscopically distinguishable classical-like states. Third,
the observed system is assumed to be in the same relativistic
frame as the observer. These assumptions may severely limit
the generality of the conclusions made in Ref. [7], and it is
therefore crucial to extend the proposed model towards more
realistic physical scenarios.

In this paper we generalize the study of gravitationally
induced decoherence in several directions. First we focus on
the case in which the molecule is confined in a harmonic
trap and initially prepared in a superposition of two macro-
scopically distinguishable coherent states of the c.m. motion,
centered at two different heights. This allows us to describe
gravitation-induced decoherence when the model open system
is a quantum harmonic oscillator. This is particularly useful
in describing the quantum to classical transition and, in fact,
experiments revealing the decoherence of these so-called cat
states in this framework have been performed in different
experimental platforms [10,11].

Importantly, the nonclassicality of this Schrödinger cat state
can be described by means of various, physically meaningful
nonclassicality indicators, i.e., the peak of the interference
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fringe of the Wigner function [12], the nonclassical depth
[13,14], the negativity of the Wigner function [15], the Vogel
criterion [16], and the Klyshko [17] criterion. Such quantities
measure different, nonequivalent ways in which our system
can be nonclassical. Therefore, a much more complete picture
of the quantum to classical transition can be given by looking
at the dynamics of all such indicators, since in general their
characteristic decoherence time scales will be different. This
is one of the main goals of this paper.

Finally, we take into account realistic sources of noise
arising in the experiments. We compare the characteristic
time scales of time dilation induced decoherence to the time
scale of decoherence due to classical fluctuation in crucial
experimental parameters. This allows us to assess whether time
dilation induced decoherence is an observable phenomenon or,
alternatively, to define the necessary measurement precision
for the detection of such an intriguing fundamental effect.

The paper is structured as follows. In Sec. II we present the
master equation and its exact solution in terms of the quantum
characteristic function. In Sec. III, we study the dynamics
of an initial superposition of coherent states and describe
decoherence in terms of the time evolution of the interference
fringe of the Wigner function. In Sec. IV, we calculate,
estimate, and compare the values of the aforementioned
nonclassicality indicators for our system. Finally, in Sec. V, we
consider the effect of classical noise and estimate the levels
of precision and noise control required to observe the time
dilation induced decoherence phenomenon.

II. THE MASTER EQUATION AND ITS SOLUTION

Following Ref. [7] we consider a composite system de-
scribed by the following Hamiltonian:

H = Hcm + H0 + Hint, (1)

where

H0 =
N∑

i=1

h̄ωini, (2)

Hint = h̄
gx

c2

(
N∑

i=1

ωini

)
, (3)

with H0 the Hamiltonian of the internal degrees of freedom de-
scribed by N quantum harmonic oscillators of frequencies ωi .
For weak gravitational fields and slow-moving particles [18],
the time dilation induced coupling between the internal degrees
of freedom and the c.m. to the lowest order in c−2 is described
by Hint. In Eq. (3), g is the local gravitational acceleration and
x is the c.m. position operator. Using standard open quantum
systems approaches [19] one derives the master equation for
the c.m. dynamics under the following assumptions: (i) a
weak-coupling limit, (ii) no initial correlations between the
state of the c.m. and the state of internal degrees of freedom,
(iii) an initially thermalized state of the internal degrees
of freedom, and (iv) negligible changes in the off-diagonal
elements due to the c.m. Hamiltonian on the decoherence time

scale [7]:

ρ̇cm(t) = − i

h̄

[
H̃cm +

(
m + Ē0

c2

)
gx,ρcm(t)

]

−
(

�E0g

h̄c2

)2

t[x,[x,ρcm(t)]]. (4)

In Eq. (4), m is the total mass of the system while Ē0

and �E2
0 = 〈H 2

0 〉 − 〈H0〉2 are the expectation value and the
variance of H0, respectively. The term H̃cm represents the c.m.
Hamiltonian in a convenient picture, as defined in Ref. [7].

We now consider the case where the c.m. motion is a
quantum harmonic oscillator Hcm = h̄ω0

2 a†a, with a† and a

creation and annihilation operators, respectively, and ω0 the
oscillator frequency. Assuming that the dominant term in the
unitary dynamics is the c.m. Hamiltonian, Eq. (4) becomes

ρ̇cm(t) = − i

h̄
[Hcm,ρcm(t)] − �(t)[X,[X,ρcm(t)]], (5)

where we have used the dimensionless position operator X =
1√
2
(a† + a), related to x through the formula x = √

h̄
mω0

X ≡
�x0X, with �x0 the width of the ground-state wave function
of the quantum harmonic oscillator. With this notation the
time-dependent coefficient �(t), which is linear in time and
positive, takes the form

�(t) =
(

h̄

mω0

)(
�E0g

h̄c2

)2

t ≡ κt. (6)

Note that the master equation (5) is of the Lindblad form,
hence the dynamics is always divisible (Markovian) [20].
Moreover, the master equation here considered is a special case
of the well-known quantum Brownian motion master equation
which, in the interaction picture, reads as follows [19]:

dρ(t)

dt
= −�(t)[X,[X,ρ(t)]]

+�(t)[X,[P,ρ(t)]] + i

2
r(t)[X2,ρ(t)]

− iγ (t)[X,{P,ρ(t)}]. (7)

Indeed, the master equation above reduces to Eq. (5) for
�(t),r(t),γ (t) = 0. Using the general solution of the quantum
Brownian motion model (see, e.g., Refs. [21–24]) we obtain
the following simple solution for ρcm(t), in terms of the
symmetrically ordered quantum characteristic function χt (ξ ):

χt (ξ ) = χ0(ξ )e−N(t)|ξ |2 , (8)

with ξ ∈ C and

N (t) = 1

2
κt2 = 1

2

(
�E0g

h̄c2

)2(
h̄

mω0

)
t2. (9)

We introduce here for convenience the family of s-ordered
characteristic functions defined as

χ (ξ,s) = Tr[ρD(ξ )]e
1
2 s|ξ |2 , (10)

where D(ξ ) = eξâ†−ξ∗â is the displacement operator and
s = 1,0,−1 correspond to the normally, symmetrically, and
antinormally ordered characteristic functions, respectively.
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The quasiprobability distributions W (α,s), defined as the
Fourier transform of the quantum characteristic functions,

W (α,s) = 1

π2

∫
d2ξeαξ∗−α∗ξχ (ξ,s), (11)

are the well-known Wigner (s = 0), Glauber or P (s = 1),
and Husimi or Q (s = −1) functions, respectively, extensively
used in quantum optics. In the following we use, for simplicity,
the following notation: χt (ξ,0) ≡ χt (ξ ) and W (α,0) ≡ W (α).

The description in terms of characteristic function is
completely equivalent to the density operator formalism as
one sees from the equation

ρ(t) = 1

2π

∫
dξdξ ∗χt (ξ )D(ξ ). (12)

The solution of the master equation (4) is therefore given by
Eq. (12) with Eqs. (8) and (9).

III. DECOHERENCE DYNAMICS

Let us assume that the system is initially prepared in a
Schrödinger cat state of the form

ρcm(0) = |〉〈|, (13)

where |〉 = 1√
N (|α〉 + | − α〉), with |α〉 a coherent state.

Here, N−1 = 2(1 + e−2|α|2 ) is the normalization factor. More
specifically we consider the so-called even coherent state
obtained for α ∈ R. The “size” of the cat is given by �x =
2α�x0, where 2α is the distance between the peaks of the two
Gaussian functions describing the coherent-state components
of the superposition in phase space.

We study the time evolution of the state in terms of its
Wigner function defined in Eq. (11) with s = 0. Inserting
Eqs. (8) and (9) into Eq. (11) one can write the Wigner function
for the initial state here considered as follows [23]:

W (β,t) = W+α(β,t) + W−α(β,t) + WI (β,t), (14)

where

W±α(β,t) = N
π (N (t) + 1/4)1/2

exp

(
− Im(β)2

2N (t) + 1/2

)

× exp

(
− (Reβ ∓ α)2

1/2

)
, (15)

and

WI (β,t) = 2N
π (N (t) + 1/4)1/2

cos

(
2

2N (t) + 1/2
αImβ

)

× exp

[
−2α2

(
1 − 1

4N (t) + 1

)]

× exp

(
− Im(β)2

2N (t) + 1/2
− Re(β)2

1/2

)
(16)

with N (t) = ∫ t

0 dt ′�(t ′) given by Eq. (9).
The expression above is particularly suited to describe

environment-induced decoherence and its effect on the cat state
since it singles out the interference term WI (β,t) which char-
acterizes the quantumness of the initial state. As decoherence
takes place such term decays with a characteristic time known
as decoherence time. Following the standard description of

environment-induced decoherence, we introduce the fringe
visibility function [25]

F (α,t) = 1

2

WI (β,t)|peak

[W+α(β,t)|peakW−α(β,t)|peak]1/2
, (17)

where

WI (β,t)|peak = WI (β = (0,0),t),
(18)

W±α(β,t)|peak = W±α(β = (±α,0),t).

In our case, this function takes the form [21–24]

F (α,t) = exp

[
−2α2

(
1 − 1

1 + 4N (t)

)]
. (19)

Inserting Eq. (9) into Eq. (19), and in the limit κt2 � 1, we
obtain the following simple expression for the fringe visibility
function:

F (α,t) ≈ e−2α2κt2 ≡ e−(t/τdec)2
, (20)

where the decoherence time is given by

τ 2
dec = 1

4α2κ
. (21)

The condition κt2 � 1 can be written as t � τdec�x/�x0,
showing that Eq. (20) only describes the initial decoherence
behavior since generally �x/�x0 > 1.

To conclude this section we compare the decoherence time
derived with our formalism with the one defined in Ref. [7],
where the initial state of the c.m. is a superposition of different
position eigenstates separated by a height difference �x and
decoherence is measured using the notion of interferometric
visibility given by [7]

V (t) ≈
[

1 +
(

kBT g�x
t

h̄c2

)2
]−N/2

, (22)

with N the number of internal degrees of freedom. For times
t2 � Nτ̄ 2

dec, with the decoherence time defined as

τ̄dec =
√

2

N

h̄c2

kBT g�x
, (23)

the interferometric visibility is approximated by

V (t) ≈ e−(t/τ̄dec)2
, (24)

which has the same temporal behavior as the Wigner function
fringe visibility that we have derived in Eq. (20). Recalling
from Eq. (9) the expression of κ appearing in Eq. (21),
and remembering that �E2

0 = Nk2
BT 2 when the state of

the internal degrees of freedom is thermal, one concludes
straightforwardly that τ̄dec = τdec.

Note that in general both the system and the observer are
at finite distances from the source of gravity, say rsys and robs.
In most experimental settings one can assume that these two
distances practically coincide, since the observer performing
the measurement is in the laboratory where the system is.
However, one can imagine, e.g., a setting for which the
laboratory is on a satellite and the data are sent to a measuring
observer on Earth. This implies that the standard relative
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dilation factor relates the coherence times of the corresponding
rest frames,

−
(

1 − rs

rsys

)−1

dt2
sys = −

(
1 − rs

robs

)−1

dt2
obs, (25)

with rs the Schwarzschild radius. Thus the decoherence time
measured in an observer’s rest frame is

τ obs
dec ≡ aobs

asys
τ

sys
dec (26)

where τ
sys
dec is the decoherence time in the rest frame of

the system and asys,obs = √
1− rs

rsys,obs
. This carries the lowest-

order gravitational effects to the complete quantum system-
observer pair. For Earth mass and radius the correction
(τ obs

dec − τ
sys
dec)/τ obs

dec is at most only of the order of 10−13 at
the surface level system. Therefore we drop the superscript
obs systematically from the decoherence time. However, this
relativistic effect is more significant in proximity to a heavy
stellar object or near a horizon.

IV. DYNAMICS OF NONCLASSICALITY INDICATORS

The definition of nonclassicality for the states of the
quantum harmonic oscillator has been extensively debated in
the past. There exist indeed different quantities measuring or
highlighting different ways in which this paradigmatic system
departs from classical behavior. Therefore, in order to provide
a holistic view of the quantum to classical transition stemming
from gravitational decoherence, in this section we explore how
the most widespread nonclassicality indicators witness the loss
of quantumness.

We will describe the dynamics of the following quantities:
the nonclassical depth, measuring the minimum number
of thermal photons required to destroy any nonclassical
characteristics of the system [13]; the negativity of the
Wigner function quantifying the separation between the
Wigner distribution and a classical probability distribution
[15]; the Vogel criterion defined in terms of properties of the
characteristic functions of the quadrature distributions having
no classical counterpart [16]; and the Klyshko criterion detect-
ing differences between classical photon number probability
distributions and the quantum ones [17].

Let us begin by writing the quasiprobability distributions
defined in Eq. (11) for s = −1,0,1 as the following convolu-
tion:

W (α,s) = W (α,s ′) � G(s ′ − s,α)

=
∫

d2βW (β,s ′)G(s ′ − s,α − β), (27)

where

G(s ′ − s,α) = 2

π (s ′ − s)
e−2 |α|2

s′−s . (28)

We now generalize to the case in which s is a continuous
parameter taking values in the interval s ∈ [−1,1].

The nonclassical depth is defined as [13]

η = 1
2 (1 − s̄),

s̄ = sup{s ∈ [−1,1]|W (α,s) � 0}. (29)

By following the steps of Ref. [22] we notice that setting
s ′ = 1 in Eq. (27) we can express W (α,s) as a convolution of
the P functon:

W (α,s) = P (α) � G(1 − s,α). (30)

Using Eqs. (8) and (9) we obtain the following expression for
the time evolution of the P function:

Pt (α) = 1

π

∫
dξ 2χ0(ξ )e−N(t)|ξ |2+αξ∗−α∗ξ

= P0(α) � G(1 − st ,α) = W (α,st ), (31)

where we have used the fact that the Fourier transform of a
product of two functions is equal to the convolution of the two
corresponding Fourier transforms, and where st = 1 − 2N (t).
The equation above shows that our dynamics transform the
initial P function into the other characteristic functions. Since
the nonclassical depth of the initial state is η = 1, one can prove
that the time τp at which W (α,s) becomes positive corresponds
to the time at which the initial P is transformed into the Q

function (which is always positive) [26], that is,

sτp
≡ 1 − 2N (τp) = −1. (32)

Solving for τp one obtains straightforwardly

τ 2
p = 2/κ. (33)

Note that τp = 2ατdec, where τdec is the decoherence time
associated to the decay of the Wigner function fringe visibility,
given by Eq. (21). Hence, τp does not depend on the size of
the cat, contrarily to τdec. Moreover, for truly macroscopic
superpositions such that |α| >> 1, the loss of interference
in the Wigner function is much faster than the loss of
quantumness measured by the nonclassical depth.

We now turn our attention to the second nonclassicality
indicator, namely, the negativity of the Wigner function. More
precisely, we are interested in identifying the time τW at which
the Wigner function of the initial cat state, which is negative in
several zones of the phase space, becomes positive everywhere.
This time can be calculated analytically once again using
Eq. (31) and corresponds to the time at which the initial P

function is turned into the Wigner function

sτW
= 1 − 2κτ 2

W = 0, (34)

yielding

τ 2
W = 1/κ = τ 2

p/2. (35)

Decoherence induced by time dilation therefore causes the
negativity of the Wigner function to disappear faster than
the nonclassicality as measured by the nonclassical depth.
Moreover, as the latter one, it does not depend on the size
of the initial superposition.

The two criteria considered so far are based on properties
of the quasiprobability distribution functions and, as such, are
experimentally demanding since they require full tomography
of the state while it evolves due to the interaction with the
environment. The next criterion examined is on the contrary
experimentally easier to implement since it is defined in terms
of the symmetrically ordered characteristic function which can
be directly measured through balanced homodyne detection.
The Vogel nonclassicality criterion is indeed simply defined as
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FIG. 1. Behavior of different nonclassicality indicators plotted as
a function of (dimensionless) α in units of τW (s). τdec represents the
peak of the interference fringe.

follows [16]: a state is nonclassical at time t iff for its normally
ordered characteristic function

∃u,v ∈ R s.t. |χt (ξ,1)| > 1, with ξ = u + iv. (36)

Using our solution given by Eq. (8) one promptly obtains

χt (ξ,1) = χ0(ξ,1)e−N(t)|ξ |2 . (37)

Recalling the expression of χ0(ξ,1) for our initial Schrödinger
cat state we can write the Vogel criterion as follows:

χt (u,v,1) > 1, where

χt (u,v,1) = 2

N e−N(t)(u2+v2)[cos(2αv)

+ e−2α cosh(2αu)] � χt (u,0,1). (38)

The Vogel criterion is inherently state dependent and, in
particular, in our case it depends on α. One defines the
Vogel nonclassicality transition time τV from the equation
χτV

(u,0,1) = 1. In Fig. 1 we plot the behavior of τV , in units
of τW , as α increases. As one can see from the figure, the
decoherence time τV tends to saturate as the superposition
becomes more and more macroscopic. In the limit α → ∞ one
easily obtains analytically that the condition χτV

(u,0,1) = 1
amounts to requiring that

2N (τV ) � 1 ⇒ τ 2
V = 1/κ = τ 2

W . (39)

This is an upper bound for the onset of classicality and, for
our system, it turns out to be equivalent to the disappearance
of the negativity of the Wigner function.

The last criterion explored in our paper is the Klyshko
criterion [17]. Similarly to the Vogel criterion, also this one is
experimentally friendly since it only requires the measurement
of phonon number distributions p(n) = 〈n|ρ|n〉. The criterion
states that a sufficient condition for a state to be nonclassical, or
more precisely to have nonclassical phonon counting statistics,
is that there exist at least one integer n such that [17,22,27]

B(n) ≡ (n + 2)p(n)p(n + 2) − (n + 1)[p(n + 1)]2 < 0.

(40)

The phonon number probabilities can be written in terms of
the normally ordered characteristic functions χt (u,v,1) and the

antinormally ordered characteristic function for the number
states χn(u,v, − 1) = e−u2−v2

Ln(u2 + v2), where Ln(x) are
the Laguerre polynomials:

p(n,t) = 1

π

∫
dudvχt (u,v,1)e−u2−v2

Ln(u2 + v2). (41)

Finding times where B(1) = 0 is valid yields the plot
in Fig. 1. The plot shows that the Klyshko nonclassicality
decoherence time τK (in the figure in units of τW ) depends
on the size of the cat and, in particular, quickly decreases for
increasing values of α, i.e., with the size of the cat state.

We also see that, in general, τK < τV < τW < τp so, as in
the case of τdec, this type of nonclassicality quickly disappears
and it is more difficult to be hidden by other sources of noise.

In order to evaluate the ability to detect time dilation
induced decoherence we need to compare its characteristic
time scales with those of the most significant noise sources
that may affect the dynamics. The fact that gravitational
decoherence might be very hard to detect experimentally
was already recognized in Ref. [7], where the effect of
decoherence due to emission of radiation was considered for
comparison. A more thorough analysis was performed Ref. [9],
where the effects of both collisional and thermal decoherence
were analyzed. In the following section we will perform a
comparison with what is perhaps the most common source of
decoherence in the experiments, namely, classical noise on the
experimental parameters.

V. COMPARISON BETWEEN TIME DILATION INDUCED
DECOHERENCE AND CLASSICAL NOISE

One of the most ubiquitous sources of decoherence in
interferometric experiments is classical noise affecting the
relevant experimental parameters. The generality of this noise
source makes the investigation of its effects on the type of
decoherence described in this paper a crucial step. Moreover,
contrarily to the environmental effects considered before in
Refs. [7,9], in the case of classical stochastic noise it is
possible to perform a numerically exact analysis without
invoking the Born-Markov approximations commonly done
for quantum environments. In this way we can extend the
analysis of the observability of gravitational decoherence due
to time dilation to situations where memory effects play
a crucial role. This is particularly relevant since reservoir
engineering techniques nowadays allow one to manipulate
the properties of the environment in order to increase the
coherence times, e.g., by means of backflow of information and
recoherence characterizing non-Markovian dynamics [28].
This in turn would make it possible to prolong the coherence
time associated to classical noise long enough to render time
dilation induced decoherence practically observable in the
experiments.

Our analysis follows the results of Ref. [26], where a quan-
tum harmonic oscillator is subjected to a classical stochastic
field as described by the following coupling Hamiltonian:

HSC =h̄[aB̄(t)eiωt + a†B(t)e−iωt ], (42)
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where B(t) = Bx(t) + iBy(t) describes a Gaussian stochastic
process with the following properties:

〈Bx(t)〉B = 〈By(t)〉B = 0,

〈Bx(t1)Bx(t2)〉B = 〈By(t1)By(t2)〉B = K(t1,t2),

〈Bx(t1)By(t2)〉B = 〈By(t1)Bx(t2)〉B = 0.

(43)

Here B̄ is the complex conjugate of B(t), the 〈..〉B notation
represents the average over all stochastic realizations, and
K(t1,t2) is the kernel autocorrelation function. For the sake
of concreteness we consider an Ornstein-Uhlenbeck process
with [29]

K(t1,t2) = 1
2λγ e−γ |t1−t2|. (44)

The parameter λ is the system-noise coupling constant
while γ quantifies the temporal correlations of the environ-
ment, its inverse therefore measuring the so-called memory
time of the environment. For a Gaussian stationary process,
the evolved state can be written in terms of the s-ordered
characteristic functions as follows:

χ (ξ,s) = χ0(ξ,s)e
1
2 |ξ |2[s−2σ (t)] (45)

with

σ (t) =
∫ t

0

∫ t

0
ds1ds2 cos [δ(s1 − s2)]K(s1,s2). (46)

For resonant interaction and for the Ornstein-Uhlenbeck
process here considered, σ (t) has a simple analytical expres-
sion [26]:

σ (t) = λt + λ

γ
(e−γ t − 1). (47)

Comparing Eq. (45) with Eq. (8) one sees immediately
that the quantum characteristic function describing the time
evolution in the presence of classical stochastic noise has
precisely the same form as the one describing time dilation
induced decoherence, with σ (t) now playing the role of N (t).

We recall here the expressions of the nonclassicality indi-
cators calculated in [26]. The decoherence time τW , associated
to the negativity of the Wigner function, is given by

tW (γ,λ) = ω0

[
γ + 2λ

2γ λ
+ 1

γ
Plog

(
−e1− γ

2λ

)]
, (48)

where Plog is the product logarithm. As for the nonclassical
depth it is sufficient to recall that, also in this case, τ 2

p = 2τ 2
W .

The Vogel and Klyshko criteria are studied according to the
same lines of Sec. V. We note that, following Ref. [26],
all energy-related quantities are rescaled in units of h̄ω0.
To compare the effects of classical noise and time dilation
induced decoherence on the quantum to classical transition
we consider the ratio of the respective decoherence times as a
function of γ and λ. Similarly to Ref. [7] we consider a system
with a superposition size of �x ≈ 10−6 m and a temperature
T ≈ 300K setting the particle number N to ≈105. Regions in
which the classical noise dominates are shown in Fig. 2 and
correspond to the ratio being < 1. We notice that the behavior
of all different indicators with respect to the constants γ and λ

is very similar and the constants’ values must be on the order
of 10−6 for the gravitational effect to be visible. This means
that, independently of either the strength of the coupling or

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

10− 6

10−6

Klyshko

Vogel

Nonclassical depth

Wigne r
negativity

FIG. 2. Ratio between the decoherence times for different non-
classicality indicators due to classical noise and those due to time
dilation induced decoherence, as a function of γ and λ for α = √

2.
The shaded areas represent the region of parameters in which
decoherence due to classical noise dominates over time dilation
induced decoherence. γ and λ are given in units of ω0 (Hz).

the memory time, and hence non-Markovian character of the
dynamics, classical noise destroys all types of quantumness
much faster than time dilation induced decoherence, making
this phenomenon very difficult to observe in the experiments.

Generally, estimates for the values of γ and λ are strongly
dependent on the specific physical model and on the ex-
perimental implementation. Since no experiments have been
performed with the physical system here considered, it is very
difficult to predict the values of these two parameters. The
most accurate experiment creating a Schrödinger cat state of
motion of a material particle confined in a quantum harmonic
trap was performed in the context of trapped ions [11]. In that
experiment the typical decoherence time, due to fluctuations
of the trap potential, is of 10 μs. This corresponds to a value
of γ (in units of the trap frequency ω0/2π ≈ 107 Hz) of the
order of 10−3, which is three orders of magnitude bigger than
the bound we obtain.

VI. CONCLUSIONS

One of the goals of this paper was to investigate the potential
ways to expand on the results of Ref. [7] concerning the deco-
herence of an open quantum system in a spatial superposition at
different heights above a source of gravitational field. This was
approached from several directions. Variable positions of sys-
tem and observer manifest themselves in simple coefficients to
the total decoherence time allowing for necessary corrections.
We proved that the corrections are negligible close to Earth’s
surface but may become significant close to heavy stellar
objects. We then considered the dynamics of a Schrödinger
cat state and found the decoherence time measured in terms of
the decay of the Wigner fringe visibility function.

In addition, we explored several other measures of de-
coherence, called nonclassicality indicators, and presented
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their dependence on the parameters of the system as well
as their relative magnitudes. As some of the indicators are
more appropriate for certain experimental implementations,
the additional measures may prove useful for detection of
the phenomenon. Finally, continuing with the theme of
experimental detection, we examined the scale of precision
or noise control required to detect the effect of time dilation
in the presence of classical noise. Our analysis shows that the
phenomenon of gravitational induced decoherence imposes

very high demands on the acceptable level of classical noise
in order to be observed experimentally.
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2, 505 (2011).
[4] S. Sinha and J. Samuel, Class. Quantum Grav. 28, 145018

(2011).
[5] H. Müller, A. Peters, and S. Chu, Nature (London) 463, 926

(2010).
[6] I. Pikovski, M. Zych, F. Costa, and Č. Brukner, New J. Phys. 19,
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