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Measurement uncertainty from no-signaling and nonlocality
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One of the formulations of Heisenberg uncertainty principle, concerning so-called measurement uncertainty,
states that the measurement of one observable modifies the statistics of the other. Here, we derive such
a measurement uncertainty principle from two comprehensible assumptions: impossibility of instantaneous
messaging at a distance (no-signaling), and violation of Bell inequalities (nonlocality). The uncertainty is
established for a pair of observables of one of two spatially separated systems that exhibit nonlocal correlations.
To this end, we introduce a gentle form of measurement which acquires partial information about one of the
observables. We then bound disturbance of the remaining observables by the amount of information gained from
the gentle measurement, minus a correction depending on the degree of nonlocality. The obtained quantitative
expression resembles the quantum mechanical formulations, yet it is derived without the quantum formalism and
complements the known qualitative effect of disturbance implied by nonlocality and no-signaling.
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I. INTRODUCTION

In recent decades much effort has been put into under-
standing quantum mechanics “from the outside”. Namely, one
considers possible constraints for correlations coming solely
from the no-signaling principle, and compares them with
quantum mechanical constraints. The first observation was
already undertaken in the 1990s by Popescu and Rohrlich [1].
They showed that no-signaling constraints are much weaker,
and allow for extremely strong correlations that violate the
so-called Bell-CHSH inequality [2,3] to the maximal possible
extent, i.e., achieving the maximal algebraic value of the Bell
quantity.

On the other hand, much work has been done in order to
extract features of quantum formalism that are responsible for
various nonclassical effects, such as quantum computational
speedup, reduction of communication complexity, quantum
key distribution, and expansion or amplification of weak
randomness. It turns out that to achieve at least some of those
effects, one does not need to employ the full quantum formal-
ism, but just refer to its two features: the impossibility of faster-
than-light communication (no-signaling) combined with Bell
nonlocality. For example, to obtain secure key distribution, one
just uses the no-signaling principle in conjunction with the fact
that statistics obtained in distant labs violate Bell inequalities,
exhibiting in this way Bell nonlocality [4]. However, such a
fundamental rule as the Heisenberg uncertainty principle [5],
so far treated as a hallmark of quantum mechanics, has not yet
been derived from these simple assumptions.

When considering the Heisenberg uncertainty principle,
one may think of either of its two facets: the preparation
uncertainty principle, stating that one cannot prepare a system
in a state exhibiting peaked statistics for each of two incom-
patible observables [6–9], and the measurement uncertainty
principle, stating that by measuring one observable, one nec-
essarily disturbs the statistics of the other observable [10–13].
Tomamichel and Hänggi [14] obtained the former principle

from nonlocality using quantum formalism. However, the
preparation uncertainty cannot be determined solely from
no-signaling and nonlocality, as it is not exhibited by the
Popescu-Rohrlich box [15]. The measurement uncertainty
principle, on the other hand, does not meet such restrictions.
It has a closely related formulation as an information gain
versus disturbance trade-off [16–21] and has become a basis
for quantum cryptography [22,23]: a potential eavesdropper by
gaining information about the cryptographic key necessarily
disturbs the system, which can be noticed by the parties that are
to establish the key. The subject of measurement uncertainty
principle in the context of nonlocality and no-signaling
was touched upon by Oppenheim and Wehner [15] who
showed (in a nonquantitative manner) that Bell nonlocality
implies that a sharp measurement, i.e., the measurement
with complete knowledge about the outcome, must cause
disturbance.

In this paper, we derive a quantitative measurement
uncertainty relation, in the form of a trade-off implied by
Bell nonlocality and no-signaling. To this end, we introduce a
notion of gentle measurement as well as a quantitative notion
of disturbance, both applicable in the operational scenario,
where the only objects are statistics of measurements. In
particular, we consider a bipartite scenario where Bob, who
exhibits nonlocal correlations with Alice (measured by degree
of violation of a chosen Bell inequality), performs consecutive
measurements of a pair of his observables. As a result,
we find that the very act of his first measurement disturbs
the statistics of the second measurement (this happens even
if the first measurement is gentle, i.e., where he does not
acquire full knowledge about the result). Additionally, it
appears that the magnitude of such disturbance increases not
only with information gain but also with the strength of the
Bell inequality violation. We subsequently compare our result
with its counterpart obtained within the quantum mechanical
framework.
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In our findings we use traditional monogamy relations to
obtain dynamical-type (or better kinematic-type) relations.
The former are static, and state that if two systems are
nonlocally correlated, the possible information present in a
third system must be limited. In contrast, we consider a time
ordered scenario where a party measures observables one by
one, exactly like in the measurement uncertainty principle.

II. INFORMATION GAIN VIA A GENTLE MEASUREMENT

We start with an initial bipartite system, one system
possessed by Alice, the other by Bob. Alice and Bob
can sharply measure their observables Ax, x = 1, . . . ,n and
By, y = 1, . . . ,m, respectively, and obtain corresponding out-
comes a and b. In addition, for Bob we introduce a gentle
measurement responsible for the partial gain of information of
one of his observables. Hereafter, without loss of generality,
we choose the fixed observable B1 to be measured gently.
Bob will perform the gentle measurement before he measures
another observable, by coupling his measuring apparatus to
the system. Equivalently, we can imagine that a third person—
Grace—couples some other system to Bob’s one, performs
some evolution, and takes away her system. This results in an
overall tripartite system: on two of them Alice and Bob can
still measure their sharp observables, while Grace can measure
her single observable that represents gentle measurement of
Bob’s chosen observable B1. In terms of no-signaling boxes,
Grace has just one input, which we call Bg

1 , with corresponding
output b

g

1 .
Formally, let us denote the statistics of the original bipartite

system as p(a,b|Ax,By), and the statistics of the tripartite
system as p̃(a,b,b

g

1 |Ax,By,B
g

1 ), where B
g

1 —the gentle version
of B1—is the only observable available to Grace. The final
bipartite statistics is then given by

p̃
(
a,b

∣∣Ax,By,B
g

1

) =
∑
b

g

1

p̃
(
a,b,b

g

1

∣∣Ax,By,B
g

1

)
. (1)

We shall now require that Grace’s observable is indeed a gentle
version of Bob’s observable, by imposing the following two
conditions (for details, see Appendix A).

(1) The act of Grace’s measurement will not affect the
statistics of the sharp observable B1, conditioned on any input
and output of Alice, i.e.,

p(b1|B1,a,Ax) = p̃
(
b1|B1,B

g

1 ,a,Ax

)
, ∀a,x. (2)

(2) Grace’s output bg

1 will be correlated with Bob’s output of
measurement of B1 (again conditioned on any of Alice’s inputs
and outputs) resulting in the following conditional probability
distribution:

p̃
(
b

g

1 = i
∣∣b1 = j,B1,B

g

1 ,a,Ax

) =
{

1
2 + ε if i = j,
1
2 − ε if i �= j,

(3)

where the parameter ε ∈ [0, 1
2 ] quantifies the information gain.

For ε = 1
2 , complete information about the observable is

acquired, i.e., the sharp measurement gives the same output
as the gentle measurement, whereas, for ε = 0, the outputs
of gentle measurement are completely uncorrelated with the
outputs of sharp measurement, hence the information gain is
zero.

Let us emphasize that we will not restrict in any way what
possible changes may happen to the original bipartite box,
other than by the above assumptions—which are imposed just
by the very definition of gentle measurement. The resulting
change will follow solely from no-signaling and nonlocality.

III. DISTURBANCE

Consider first a (not necessarily quantum mechanical)
state ρ and a given observable. We want to quantify how much
the observable is disturbed by some other action on the state,
which changes it into state ρ̃; in our case the action is the gentle
measurement of observable B1. A natural disturbance measure
is the statistical distance between the probability distribution
p(b|By,a,Ax) obtained by measuring the observable By �= B1

on state ρ (i.e., prior to the gentle measurement) and the
distribution p̃(b|By,B

g

1 ,a,Ax) obtained by measuring this
observable on state ρ̃ (after the gentle measurement is
performed). While deriving the disturbance from nonlocality,
however, we shall not show that the disturbance holds for
some particular state. Rather, we prove that the disturbance
occurs for some of the states produced by Alice. When
Alice chooses an observable Ax and obtains an outcome a,
a state ρa,Ax

is created at Bob’s side. The state changed by
gentle measurement is thus given by ρ̃a,Ax

. Note that since the
gentle measurement is performed on Bob’s system, then due to
no-signaling we have p(a|Ax) = p̃(a|Ax). For a given choice
of Alice’s observable Ax and an outcome a, the disturbance of
the observable By �= B1 is defined as

Da,x(By) =
∑

b

∣∣p(b|By,a,Ax) − p̃
(
b
∣∣By,B

g

1 ,a,Ax

)∣∣. (4)

In this work we consider the average total disturbance, where
we sum over all of Alice’s observables and all of Bob’s
observables apart from B1 itself, and average over Alice’s
outcomes

D =
∑
a,x

p(Ax)p(a|Ax)
∑
y �=1

Da,x(By). (5)

In Appendix B we argue that the change of nonlocality
necessarily causes disturbance, proving that for arbitrary Bell
inequality (with moduli of coefficients bounded by 1, without
loss of generality), the average total disturbance D (5) always
satisfies

nD � |β(p) − β(p̃)|, (6)

where n denotes the number of Alice’s measurement choices,
and β(p),β(p̃) are the values of the Bell quantity eval-
uated on initial statistics p(a,b|Ax,By) and final statistics
p̃(a,b|Ax,By,B

g

1 ) given by Eq. (1), respectively.

IV. RELEVANCE OF BELL INEQUALITIES FOR
OBSERVABLE

It could happen that a chosen Bell inequality does not
cover some of the observables. For example, in Bell-CHSH
inequality for a scenario where Alice and Bob hold n = 2 and
m = 3 observables, respectively, one of Bob’s observables is
not included. Therefore, such observable does not cause any
disturbance and the inequality (6) becomes trivial.
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To quantify the ability of the observable B1 to disturb
the other observable, given a specific Bell inequality, we
introduce a new quantity, namely the notion of relevance
w(B1). For simplicity, and due to our convention that the gentle
measurement is always performed on a fixed observable B1,
in w(B1) we remove the argument B1 and define relevance w

as

w = βmax − βmax
1 , (7)

where βmax denotes the maximal value of Bell quantity for
no-signaling probabilistic theories and βmax

1 the maximal value
of Bell quantity where the observable B1 is deterministic.
Relevance w (7) measures how far the observable is from
being deterministic, i.e., it quantifies its degree of randomness.
Therefore, for the increasing value of relevance w, we observe
stronger disturbance properties of observable B1.

For that reason, the relevance w (7) determines the strength
of a monogamy relation related to the value β of a chosen Bell
inequality

β + w
〈
B

g

1 B1
〉
� βmax, (8)

where 〈Bg

1 B1〉 stands for a correlation function between B
g

1
and B1. In Appendix C we provide a proof for the relation (8),
and show that for the CHSH and chain Bell inequality
w = 2 for any chosen observable, whereas for so-called total
function XOR games (a more general class of correlation Bell
inequalities with binary outputs) w � min(βmax − βmax

cl ,n),
where βmax

cl denotes the maximal classical value of the Bell
quantity.

V. MEASUREMENT UNCERTAINTY PRINCIPLE

We now present our main result, i.e., the trade-off between
information gained in the gentle measurement of observable B1

and the disturbance caused by it on the remaining observables.
Consider arbitrary Bell inequality, and rescale it so that it can
be written as β = ∑

a,b,x,y c(a,b,Ax,By)p(a,b|Ax,By), where
the coefficients are bounded as |c(a,b,Ax,By)| � 1. For such
a defined Bell inequality β, the trade-off is of the following
general form:

nD � wI − L, (9)

where n denotes the number of Alice’s observables, and
relevance w, introduced in Eq. (7), quantifies the indeter-
minacy of gently measured observable B1, hence its ability
to disturb the other observables. The derived formula (9)
combines the three fundamental quantities: disturbance D,
information gain I, and the level of nonlocality L. The
first one, explicitly defined in Eq. (5), describes the average
statistical distance of probability distributions prior and after
the act of a gentle measurement. The information I gained in
such a measurement is parametrized by ε = [0, 1

2 ] introduced
in Eq. (3), and it is given by I = 2ε. The scaling factor 2
is added for technical reasons, but actually 2ε has the
interpretation of a correlation function between B

g

1 and B1,
cf. Appendix D. Finally, the degree of locality L = βmax − β

reports on how the nonlocality of the system deviates from
the maximal possible nonlocality in general no-signaling
theories, and it is quantified by the violation of a chosen
Bell inequality. For different experimental settings, different

0.1 0.2 0.3 0.4 0.5

0.1

0.2
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0.4

0.5
Dmin

FIG. 1. Lower bound Dmin = 2ε − 1
2 (4 − βCHSH) [RHS of

Eq. (11)] on average total disturbance obtained from nonlocality
and no-signaling principle for the case of CHSH inequality for
βCHSH = 2

√
2 corresponding to maximally nonlocal correlations

attainable within the framework of quantum mechanics (dashed line)
and Dmin = 1

2 (βCHSH −
√

8 − 4(2ε)2) [RHS of Eq. (15)] obtained
from quantum predictions (thick line).

Bell inequalities can be chosen. Intuitively, one can notice
that the more information is gained, the more disturbance is
introduced into the system. One can also note that whenever
the local content L vanishes (we are at the extreme point of
no-signaling correlations), arbitrarily small information gain
causes disturbance.

VI. EXAMPLES

Two example trade-offs can be obtained from CHSH
inequality, and its generalization—chain Bell inequality. The
CHSH inequality reads

βCHSH = 〈A1B1〉 + 〈A1B2〉 + 〈A2B1〉 − 〈A2B2〉 � 2, (10)

with maximal value βmax
CHSH = 4. There are just two observables

on either side; thus when Bob gently measures B1, he disturbs
the observable B2, and the trade-off stands as

D = D(B2) � 2ε − 1
2 (4 − βCHSH), (11)

where we used Eq. (9) with n = 2, w = 2, I = 2ε, and
L = 4 − βCHSH. The right-hand side (RHS) of Eq. (11), i.e.,
a lower bound Dmin on average total disturbance D, becomes
simplified for maximally nonlocal correlations exhibited by
the so-called Popescu-Rohrlich box with βCHSH = 4 to Dmin =
I = 2ε. For nonmaximally nonlocal correlations, there is
some threshold value of ε, denoted εth, for which the lower
bound Dmin is nontrivial. For example, at the Tsirelson bound
βCHSH = 2

√
2, attained for maximal correlations allowed in

quantum regime, Dmin = 2ε − (2 − √
2) and εth = 0.293, as

depicted in Fig. 1 (dashed line).
The chain inequality [25] is given by

βchain =
n−1∑
k=1

(〈AkBk〉 + 〈AkBk+1〉) + 〈AnBn〉 − 〈AnB1〉

� 2n − 2 (12)
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FIG. 2. Lower bound Dmin = 4
n
ε − 1

n
(2n − βchain) [RHS of

Eq. (13)] on average total disturbance obtained from nonlocality and
no-signaling principle for the case of chain Bell inequality, where
we choose βchain = 2n cos( π

2n
) [24] with n denoting the number of

observables.

and βmax
chain = 2n. Analogous to the CHSH inequality, for the

gentle measurement of B1, we obtain

D =
∑
i �=1

D(Bi) � 4

n
ε − 1

n
(2n − βchain). (13)

The dependence of the lower bound Dmin on average total
disturbance [RHS of Eq. (13)] on information gain, as well as
on number of observables n, is presented in Fig. 2. Note that
the larger the number of observables, the more the threshold
εth(n) moves towards zero. At the same time, the disturbance
goes down as O( 1

n
).

In Appendix E we present another example of Bell
inequality—generalized chain inequality—in a form of total
XOR game for which we provide an optimal quantum strategy.
It appears that for some range of parameters the obtained
disturbance can be even greater (going down with number of
observables n as O( 1

n1/2+δ ) for small δ > 0) than in the previous
two examples.

VII. COMPARISON WITH QUANTUM UNCERTAINTY

We shall now examine how much the uncertainty imposed
solely by nonlocality in the no-signaling world is weaker than
that implied by nonlocality in the quantum mechanical world.
To this end, we use the quantum monogamy relation for the
case of CHSH (for derivation see Appendix F),

(βCHSH)2 + 4
∣∣〈Bg

1 B1
〉∣∣2 � 8, (14)

which together with Eq. (6) gives the following trade-off:

Dq(B2) � 1
2 (βCHSH −

√
8 − 4(2ε)2), (15)

with 〈Bg

1 B1〉 = 2ε. In Fig. 1 we illustrate this result for
βCHSH = 2

√
2 (thick line) and compare with its counterpart

in no-signaling world (dashed line). One can notice that the
minimal disturbance in the former case is greater than for the
latter. Such behavior is expected since no-signaling constraints
are in general weaker than quantum mechanical ones [26].

VIII. CONCLUSIONS

In this paper, we have developed a perceptive way of
obtaining the measurement uncertainty principle from no-

signaling and nonlocality. In particular, we considered a
bipartite scenario where one party chooses to measure one
of his observables, whereas the second party first performs a
gentle measurement of one observable (gaining only partial in-
formation about the outcome) and, then, a strong measurement
of another observable (where the information gain is maximal).
Subsequently, assuming only impossibility of superluminal
communication between two parties (i.e., the no-signaling
principle) and violation of Bell inequality, we have examined
a relation between information gain and disturbance implied
by the very act of the gentle measurement. Our results for the
case of sharp measurement (i.e., ε = 1

2 ) reproduce the extreme
case discussed by Oppenheim and Wehner in [15].

Remarkably, while, as we have shown, nonlocality implies
measurement uncertainty, the connection between preparation
uncertainty and nonlocality is quite opposite: it has been
shown [15] that preparation uncertainty excludes too strong
nonlocality (cf. [27]).

Our results indicate that for general probabilistic theories
obeying the no-signaling principle, the disturbance implied
by statistics that can be observed in labs (i.e., the statistics
predicted by quantum mechanics) is trivial until information
gain reaches some threshold value of εth. This threshold can
be shifted towards zero by considering more observables (as
in the case of chain Bell inequality).

Moreover, our trade-off has the following cryptographic
interpretation. Alice prepares a bipartite system and sends one
subsystem to Bob. If the latter subsystem is intercepted and
measured by an eavesdropper, then, at the end, Alice and Bob
share a disturbed box. For this reason, our results can have
potential applications in cryptography based on sending states
as in BB84 protocol rather than by performing measurements
on shared entangled states of unknown origin.

An open question would be to obtain the ultimate envelope
describing the trade-off, i.e., to find the largest possible
disturbance for a given information gain. In our work, we
have found a Bell inequality that leads to disturbance partially
greater than for the usual chain inequality; however, we only
observed it to happen for a large number of observables n.
Therefore, there still remains an open question of how to
obtain the optimal Bell inequality implying the largest possible
disturbance for a given information gain ε, irrespective of
the value of n (for the whole range of n). So far our
best bound for such an envelope is the one given by chain
inequalities.
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APPENDIX A: GENTLE MEASUREMENT

In this section we provide a more detailed description of the
gentle measurement of observable B1 performed by Bob. Let
us explicitly state the assumptions that the gentle measurement
should satisfy. These assumptions are natural and, in particular,
are satisfied by a quantum gentle measurement, as we shall
see later. Suppose first that we do not measure the gentle
observable, but only the sharp one. The probability distribution
of the outcome is denoted by p(b1|B1,a,Ax). Let us also
consider a situation where the observable B1 is first measured
gently (denoted as B

g

1 ) and then sharply. Since, a priori, the
statistics of the latter sharp measurement might be disturbed by
the preceding gentle measurement, we will for a while denote
its outcome by b′

1. The corresponding resulting probability
distribution we denote by p̃(b′

1,b
g

1 |B1,B
g

1 ,a,Ax). We will now
make two assumptions. First, we assume that the marginal
probability of outcome b′

1 is the same as that of b1, i.e.,

p̃
(
b′

1 = j
∣∣B1,B

g

1 ,a,Ax

) = p(b1 = j |B1,a,Ax), (A1)

where p̃(b′
1|B1,B

g

1 ,a,Ax) = ∑
b

g

1
p̃(b′

1,b
g

1 |B1,B
g

1 ,a,Ax), for
any state of the system (recall that various states of Bob’s
system are prepared by different choices of Alice’s observable
and by different outcomes of her measurements). Second, we
assume that the conditional probability distribution computed
from the above-mentioned joint probability distribution is
given by

p̃
(
b

g

1 = i
∣∣b′

1 = j,B1,B
g

1 ,a,Ax

) =
{

1
2 + ε if i = j,

1
2 − ε if i �= j,

(A2)

which is almost like Eq. (3) of the main text. The only
difference is that instead of b1 as in Eq. (3), we have b′

1.
However, our first assumption implies, in particular, that joint
probability distribution of b′

1 with Alice’s outcomes is the
same as that of b1. Thus, for all our purposes, the two random
variables are indistinguishable. Hence we can drop the prime
in the above conditions, obtaining Eq. (3).

We will now show that quantum measurements satisfy the
above assumptions. To this end, consider a sharp measurement
of B1 described by projection operators,

P̂0 = |0〉〈0|, (A3)

P̂1 = |1〉〈1|, (A4)

performed on an arbitrary qubit state

|�〉 = β|0〉 +
√

1 − β2|1〉, (A5)

with β ∈ R,0 � β � 1, which leads to the following marginal
probability distributions for outcomes b1 ∈ {0,1}:

p(b1 = 0|B1) = β2, (A6)

p(b1 = 1|B1) = 1 − β2. (A7)

The gentle measurement for B1 is described by Kraus
operators,

Ê0 =
√

1
2 + ε|0〉〈0| +

√
1
2 − ε|1〉〈1|, (A8)

Ê1 =
√

1
2 − ε|0〉〈0| +

√
1
2 + ε|1〉〈1|. (A9)

In order to show that with such definitions of sharp and
gentle measurements, the two assumptions mentioned above
are satisfied, we consider a procedure where the gentle
measurement is followed by the sharp one.

The marginal probability distributions for outcomes b
g

1 ∈
{0,1} are given by

p̃
(
b

g

1 = 0
∣∣Bg

1

) = Tr(Ê0|�〉〈�|Ê†
0)

= (
1
2 + ε

)
β2 + (

1
2 − ε

)
(1 − β2), (A10)

p̃
(
b

g

1 = 1
∣∣Bg

1

) = Tr(Ê1|�〉〈�|Ê†
1)

= (
1
2 − ε

)
β2 + (

1
2 + ε

)
(1 − β2), (A11)

where |�〉 is described in Eq. (A5), and Ê0, Ê1 in Eqs. (A8)
and (A9).

After obtaining the outcomes b
g

1 = 0 and b
g

1 = 1, the
postmeasurement states are given by

∣∣�g

0

〉 = Ê0|�〉√
〈�|Ê†

0Ê0|�〉

=
√

1
2 + εβ√(

1
2 + ε

)
β2 + (

1
2 − ε

)(
1 − β2

) |0〉

+
√

1
2 − ε

√
1 − β2√(

1
2 + ε

)
β2 + (

1
2 − ε

)
(1 − β2)

|1〉, (A12)

∣∣�g

1

〉 = Ê1|�〉√
〈�|Ê†

1Ê1|�〉

=
√

1
2 − εβ√(

1
2 − ε

)
β2 + (

1
2 + ε

)
(1 − β2)

|0〉

+
√

1
2 + ε

√
1 − β2√(

1
2 − ε

)
β2 + (

1
2 + ε

)
(1 − β2)

|1〉. (A13)

The second measurement is thus performed on the above
postmeasurement states, and leads to the following conditional
probabilities for the outcome b′

1 = 0:

p̃
(
b′

1 = 0
∣∣bg

1 = 0,B1,B
g

1

) = Tr
(
P̂0

∣∣�g

0

〉〈
�

g

0

∣∣P̂ †
0

)
=

(
1
2 + ε

)
β2(

1
2 + ε

)
β2 + (

1
2 − ε

)
(1 − β2)

, (A14)

p̃
(
b′

1 = 0
∣∣bg

1 = 1,B1,B
g

1

) = Tr
(
P̂0

∣∣�g

1

〉〈
�

g

1

∣∣P̂ †
0

)
=

(
1
2 − ε

)
β2(

1
2 − ε

)
β2 + (

1
2 + ε

)
(1 − β2)

, (A15)
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where P̂0 is given in Eq. (A3), and |�g

0 〉 and |�g

1 〉 in Eqs. (A12)
and (A13).

Using p̃(b′
1 = j |B1,B

g

1 ) = ∑
i=0,1 p̃(b′

1 = j |bg

1 = i,B1,

B
g

1 )p̃(bg

1 = i|Bg

1 ) together with Eqs. (A10),(A11) and
Eqs. (A14),(A15), we obtain that p̃(b′

1 = 0|B1,B
g

1 ) = β2;
hence it is equal to p(b1 = 0|B1) of Eq. (A6). The same
reasoning applies to the case of b′

1 = 1. Therefore, we
have showed that our first assumption works for quantum
mechanics.

To show that our second assumption holds [i.e., that
Eq. (A2) holds] we write

p̃
(
b

g

1 = i
∣∣b′

1 = j,B1,B
g

1

)
= p̃

(
b′

1 = j
∣∣bg

1 = i,B1,B
g

1

) p̃
(
b

g

1 = i
∣∣Bg

1

)
p̃
(
b′

1 = j
∣∣B1,B

g

1

) . (A16)

Now, replacing p̃(b′
1 = j |B1,B

g

1 ) with p(b1 = j |B1) (since
they are equal), and inserting Eqs. (A10),(A11) and
Eqs. (A14),(A15), we obtain the required identity.

APPENDIX B: DISTURBANCE

In this section we examine the relation between change
of nonlocality and the disturbance caused in the system. In

particular, we prove Eq. (6) from the main text given in the
following form:

nD � |β(p) − β(p̃)|, (B1)

where n is the number of Alice’s observables and β(p),β(p̃)
are the values of the Bell quantity evaluated on ini-
tial p(a,b|Ax,By) and final statistics p̃(a,b|Ax,By,B

g

1 ) =∑
b

g

1
p̃(a,b,b

g

1 |Ax,By,B
g

1 ), respectively. We prove that the
change in nonlocality, quantified by the change of an arbitrary
Bell quantity (with coefficients bounded by 1), inevitably leads
to nontrivial disturbance.

Proof. First, note that any Bell inequality can be written
(up to a constant factor) as

∑
a,b,x,y

c(a,b,Ax,By)p(a,b|Ax,By) � βcl, (B2)

where

|c(a,b,Ax,By)| � 1. (B3)

We then have

|β(p) − β(p̃)| =
∣∣∣∣ ∑

a,b,x,y

c(a,b,Ax,By)
(
p(a,b|Ax,By) − p̃

(
a,b

∣∣Ax,By,B
g

1

))

�
∑

a,b,x,y

∣∣(p(a,b|Ax,By) − p̃
(
a,b

∣∣Ax,By,B
g

1

)∣∣
=

∑
a,b,x,y �=1

∣∣(p(a,b|Ax,By) − p̃
(
a,b

∣∣Ax,By,B
g

1

)∣∣

= n
∑
y �=1

(∑
a,x

1

n
p(a|Ax)

∑
b

∣∣p(b|By,a,Ax) − p̃
(
b
∣∣By,B

g

1 ,a,Ax

)∣∣)

= n
∑
y �=1

(∑
a,x

1

n
p(a|Ax)Da,x(By)

)
= nD, (B4)

where in the first equality we used Eq. (B2), in the first inequal-
ity, Eq. (B3), and, in the second equality, Eq. (2) from the main
text, i.e., that p(b1|B1,a,Ax) = p̃(b1|B1,B

g

1 ,a,Ax),∀a,x. In
the last equality we assume that all the choices of Alice’s
observable are equiprobable, i.e., p(Ax) = 1

n
∀x. �

APPENDIX C: RELEVANCE OF BELL INEQUALITIES
FOR OBSERVABLE

In the main text, for a chosen observable B1 we defined the
relevance w(B1) ≡ w given by

w = βmax − βmax
1 , (C1)

with βmax standing for maximal algebraic value of the Bell
quantity and βmax

1 for maximal value of Bell quantity with
deterministic observable B1.

1. Monogamy relation with relevance w

In this section, we consider the situation where Alice and Bob
measure |X | = n and |Y| = m number of binary observables
Ax and By , respectively. Let us first prove the following
monogamy relation (related to some Bell quantity β) whose
strength is determined by the relevance w (C1)

β + w
〈
B

g

1 B1
〉
� βmax, (C2)

where 〈Bg

1 B1〉 describes the correlations between observables
B

g

1 and B1.
Proof. Let us consider the tripartite box

p̃(a,b,b
g

1 |Ax,By,B
g

1 ) and convex decompose it as

p̃
(
a,b,b

g

1

∣∣Ax,By,B
g

1

) =
∑

i

ripi(a,b|Ax,By) ⊗ qi

(
b

g

1

∣∣Bg

1

)
,

(C3)
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with ri � 0,
∑

i ri = 1. This can be done owing to the fact
that Grace measures a single observable B

g

1 . By convexity,
it is sufficient to restrict the analysis to boxes of the form
p(a,b|Ax,By) ⊗ q(bg

1 |Bg

1 ). Let us further decompose the
bipartite box p(a,b|Ax,By) shared by Alice and Bob into two
types of extremal boxes. The extremal boxes in the two-party
scenario for arbitrary number of inputs and binary outputs were
classified in [28]. From this classification, we see that with
probability pN we have a box with fully random observable
B1, and with probability pD , a box where the observable
B1 is deterministic. In the first case, the statistics of B1 is
fully correlated with other observables of Alice-Bob’s box
producing a fully random output which gives 〈Bg

1 B1〉N = 0,
whereas in the second case, the statistics of B1 being
uncorrelated with other observables is deterministic which for
an appropriate choice of q(bg

1 |Bg

1 ) gives 〈Bg

1 B1〉D = 1. Then
〈Bg

1 B1〉 = pN 〈Bg

1 B1〉N + pD〈Bg

1 B1〉D , where 〈Bg

1 B1〉N = 0
and 〈Bg

1 B1〉D = 1. Therefore, pD = 〈Bg

1 B1〉. Now, for any
Bell quantity β

β � pNβmax + pDβmax
1 = (

1−〈
B

g

1 B1
〉)
βmax + 〈

B
g

1 B1
〉
βmax

1

= βmax − (
βmax − βmax

1

)〈
B

g

1 B1
〉
(C4)

and we recover (C2) with substitution (C1). �

2. Examples of relevance w

(1) For total function XOR games with uniform proba-
bilities of inputs, i.e., correlation Bell inequalities of binary
outputs with ±1 coefficients.

The relevance w is defined in Eq. (C1). Let us restrict
the analysis to extremal boxes [28]. In order to obtain
βmax

1 we must consider all extremal boxes with B1 being
deterministic. In general, such boxes can have more than one
deterministic observable. Suppose then that the box is defined
by having kA deterministic observables on Alice’s side and kB

deterministic observables on Bob’s side. In such a case, the
matrix of correlators C = 〈AxBy〉, where x = 1, . . . ,n and
y = 1, . . . ,m, takes the form

C =

⎡
⎢⎢⎣

m-kB︷ ︸︸ ︷
[βns]

kB︷︸︸︷
[0]

[0] [βcl]

⎤
⎥⎥⎦

}
n − kA,}
kA,

(C5)

where [0] denotes the zero matrix with respective dimensions
and [βns] ([βcl]) the matrix of correlators for the no-signaling
(classical) part of the box. Analyzing the nonzero part of the
matrix C (C5), we conclude that the Bell quantity for such a
box depends on the number of deterministic observables, such
that

β1 � max
{
(n − kA)(m − kB) + kAkB,βmax

cl

}
. (C6)

Notice that the value (n − kA)(m − kB) + kAkB is maximized
only if kA = n and kB = m, in which case kAkB = βmax

cl , or if
kA = 0 and kB = 1 where the correlation matrix becomes

C ′ =

⎡
⎢⎢⎢⎣

m-1︷ ︸︸ ︷
[βns]

1︷︸︸︷
[0]

⎤
⎥⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭n. (C7)

Hence we obtain

β1 � max
{
n(m − 1),βmax

cl

}
. (C8)

Eventually, substituting the RHS of Eq. (C8) to the definition
of relevance w (C1), we have

wtot � min
(
n,βmax − βmax

cl

)
, (C9)

where we derived the first term in the bracket by taking
βmax = nm. Note that wtot = n for a generic total function
XOR game, when the coefficient matrix C is a random
Bernoulli matrix, i.e., each entry Cij takes value ±1 with
probability 1

2 independent of other entries. This can be seen
for example from the bound on ‖ · ‖∞→1 shown in [29] which
translates to the statement that, for such random XOR games,
the expected classical value is bounded as

βmax
cl � 2(n

√
m + m

√
n). (C10)

(2) For Bell-CHSH inequality.
Directly from the value of relevance w obtained for

total function XOR games in Eq. (C9) with the substitution
n= 2, βmax = 4, and βmax

cl = 2, we obtain

wCHSH = 2. (C11)

(3) For chain Bell inequality.
Since the box with one deterministic observable cannot vio-

late the chain inequality, we obtain βmax
1 = 2n − 2. Therefore,

from Eq. (C1) we get

wchain = 2 (C12)

with the substitution βmax = 2n.

APPENDIX D: INFORMATION GAIN VERSUS
DISTURBANCE TRADE-OFF

In this section we prove our main result [Eq. (9) in the main
text]

nD � wI − L, (D1)

where w is given by Eq. (C1), I = 〈Bg

1 B1〉 denotes the
information gain, and L = βmax − β is the degree of locality.

First, let us show that

I ≡ 〈
B

g

1 B1
〉 = 2ε. (D2)
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Proof. 〈
B

g

1 B1
〉 = p

(
b

g

1 = b1
) − p

(
b

g

1 �= b1
)

= 1

2
+ ε −

(
1

2
− ε

)
= 2ε, (D3)

where in the second equality we used the formula (3) from the
main text. �

Now, we can prove our main result (D1).
Proof.

nD � β(p) − β(p̃) � β − βmax + w2ε, (D4)

where in the first inequality we used Eq. (B1) and in the second
inequality we used Eq. (C2) for β = β(p̃).

Therefore

nD � w2ε − (βmax − β) (D5)

and we obtain Eq. (D1) withI = 2ε (D2) andL = βmax − β.�

APPENDIX E: GENERALIZED CHAIN INEQUALITY

Suppose that Alice and Bob receive inputs x,y ∈ [n] and
output a,b ∈ {0,1}. We consider the correlation Bell inequality
(partial function XOR game) In,k described by the coefficient
matrix C = (ty−x)nx,y=1 with

tl =

⎧⎪⎨
⎪⎩

1, if |l| � k − 1 ∨ l = k,

−1, if |l| � n − k + 2 ∨ l = −(n − k + 1),

0 else

(E1)

for a fixed parameter k � n/2. The coefficient matrix thus has
the following banded Toeplitz form

C =

k

{

k

{

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k+1︷ ︸︸ ︷
1 1 1 1 0 . . . 0

k-1︷ ︸︸ ︷
− 1 −1

1 1 1 1 1 0 . . . 0 −1
1 1 . . . 1 1 1 0 . . . 0
0 1 1 . . . 1 1 1 0 0
... 0 1 1

... 1 1 1 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0
... 0 1 1

... 1 1 1

0
...

... 0 1 1
... 1 1

−1 0 . . . . . . 0 1 1 1 1
−1 −1 0 . . . . . . 0 1 1 1
−1 −1 −1 0 . . . . . . 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(E2)

Proposition 1: The relevance w(Bi) of observable Bi for
the inequality In,k given by the coefficient matrix in (E1)
with parameter k � n/2 is w(Bi) = 2k for any i ∈ [n]. The
no-signaling value of the inequality is given by βns = 2kn.
The quantum value of the inequality is given by

βq = n csc
( π

2n

)
sin

(
kπ

n

)
. (E3)

For n divisible by k, the classical value of the inequality is
given by

βcl = 2k(n − k). (E4)

Proof. Recall that the relevance w(Bi) is defined by
w(Bi) = βmax − βmax

i with βmax
i being the maximum no-

signaling value of the Bell quantity when observable Bi is
forced to be deterministic. Now, the maximal no-signaling
value of the Bell quantity is evidently equal to the maximal
algebraic value (the inequality being an XOR game for which
there always exists a no-signaling strategy that wins), and is
given by

βns = βmax = 2kn, (E5)

since for every input x of Alice, there are 2k inputs y of Bob
such that the coefficients Cx,y obey |Cx,y | = 1.

Now, we follow an analogous argument to the total function
XOR games by setting observable Bi to be deterministic, and
considering all the extremal no-signaling boxes from [28].
Let kA denote the number of Alice’s observables for which
she returns a deterministic output in the extremal no-signaling
box and let kB denote the number of Bob’s observables set to
be deterministic. For kA,kB � 2k, the value achieved by this
no-signaling strategy is given by

βmax
i � 2k(n − kA − kB) + 2kAkB. (E6)

The other strategy to check is the fully deterministic
(classical) strategy. We claim that for n divisible by k

βcl = 2kn − 2k2. (E7)

This value is achieved when Alice and Bob deterministically
output a,b = 0 for all x,y.

We will prove Eq. (E7) by writing the coefficient matrix C

as a sum of k2 chain Bell expressions, each with n/k inputs so
that the classical value of the individual chain expressions is
2(n/k − 1). Accordingly, the corresponding chain expressions
are given by

(n/k)−2∑
i=0

Aj+ik+l−1(Bj+ik + Bj+(i+1)k)

+Aj+n−k+l−1(Bj+n−k − Bj )

� 2(n/k − 1) ∀j ∈ [k],l ∈ [k], (E8)

with An+m := −Am for all m ∈ [k]. The classical value (E7)
then follows from the sum of the classical value of the chain in-
equalities, i.e., (k2)(2(n/k − 1)) = 2nk − 2k2. Evidently, the
optimal value for w is then given from (E6) by kA = 1,kB = 0
which achieves the value 2kn − 2k leading to w(Bi) = 2k.

We now show the optimal quantum strategy for the game.
Consider the strategy given by measuring the state

|φ+〉 = 1√
2

(|00〉 + |11〉) (E9)

with observables

Ax = sin (θx)σx + cos (θx)σz,
(E10)

By = sin (θy)σx + cos (θy)σz,
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where σx,σz are the standard Pauli matrices and the measure-
ment angles are given by

θx = (x − 1)
π

n
, θy = (2y − 1)

π

2n
. (E11)

This strategy gives the following correlations:

〈Ax+jBx〉 = cos

(
(2j + 1)π

2n

)
,

(E12)

〈AxBx+j 〉 = cos

(
(2j − 1)π

2n

)
∀ 0 � j � n − 1.

It therefore achieves the value βq �
∑k

j=1 2n cos ( (2j−1)π
2n

) for
the Bell quantity. Let us now show that this strategy is in fact
optimal.

To do this, we show that the strategy achieves the upper
bound on βq given as βq � n‖C‖ [24,30,31], where ‖C‖
denotes the spectral norm, i.e., the maximal singular value
of the coefficient matrix C. While C given in (E1) is a Toeplitz
matrix, it is not circulant, but a “sign-flipped circulant matrix”
with each row obtained from the previous row by a shift to
the right and a sign change on the corresponding entry. Still,
we consider as an ansatz the system of eigenvectors |λj 〉 with
j ∈ {0, . . . ,n − 1} with entries

|λj 〉i = ωn−i
j , (E13)

with ωj = exp (−iπ(2j+1)
n

). The corresponding eigenvalues of
C are then given by

λj =
∑k+1

i=1 ωn−i
j − ∑n

i=n−k+2 ωn−i
j

ωn−1
j

. (E14)

It is readily seen that the eigenvalue equations are satisfied;
the mth eigenvalue equation being, for m � k − 1,(

k+m∑
i=1

ωn−i
j −

n∑
i=n−k+m+1

ωn−i
j

)
|λj 〉m = λjω

n−m
j , (E15)

which is satisfied by (E13) and (E14) by applying multiple
times the identity exp (−iπ (2j + 1)) = −1. Similarly, for k �
m � n − k,

k+m∑
i=m−k+1

ωn−i
j |λj 〉m = λjω

n−m
j , (E16)

and for n − k + 1 � m � n,(
n∑

i=m−k+1

ωn−i
j −

m−n+k∑
i=1

ωn−i
j

)
|λj 〉m = λjω

n−m
j . (E17)

The singular values of C are then given from (E14) by |λj |, so
that the upper bound n‖C‖ is given after simplification by

βq �
k∑

j=1

2n cos

(
(2j − 1)π

2n

)

= n csc
( π

2n

)
sin

(
kπ

n

)
. (E18)

The qubit strategy achieving this bound shows that the strategy
is optimal. �

0.1 0.2 0.3 0.4 0.5

0.02

0.04

0.06

0.08

0.10
Dmin

FIG. 3. The comparison of lower bound Dmin on average
total disturbance implied by chain Bell inequality (red lines),
Dmin = 4

n
ε − 1

n
(2n − βchain), where βchain = 2n cos( π

2n
), with that

implied by generalized chain inequality (black lines), Dmin = 4kε

n
−

2[k − ∑k

j=1 cos ( (2j−1)π
2n

)] given in Eq. (E19), for n = 100, . . . ,1000.

For the inequality given by (E1), the information gain versus
disturbance trade-off is given as

D � 4kε

n
− 2

⎛
⎝k −

k∑
j=1

cos

(
(2j − 1)π

2n

)⎞
⎠. (E19)

The second term tends to zero for appropriate choice of k. With

cos ( (2j−1)π
2n

) = 1 − ( (2j−1)π
2n

)
2 + O( (2j−1)4

n4 ), and
∑k

j=1(2j −
1)2 = (4k2 − 1)k/3, we see that one may choose up to k =
O(n1/2−δ) for any δ > 0 such that n2δ > π2/(6ε) to get a
nontrivial information gain versus disturbance relation, with
D = O(n−1/2−δ).

In Fig. 3 we compare the obtained trade-off in Eq. (E19)
with the trade-off for chain Bell inequality depicted in the
main text in Eq. (13), and show the case where the former
outperforms the latter. To this end, we choose the number of
Alice’s measurement choices in a range n = 100, . . . ,1000.

APPENDIX F: QUANTUM MONOGAMY RELATION FOR
CHSH INEQUALITY

Here, we prove a quantum monogamy relation for the case
of CHSH in the following form [Eq. (14) in the main text]:

(βCHSH)2 + 4
∣∣〈Bg

1 B1
〉∣∣2 � 8. (F1)

Proof. To this end, we use the result of [32] that

(
βAB

CHSH

)2 + (
βBC

CHSH

)2 � 8, (F2)

where

βAB
CHSH = 〈A1B1〉 + 〈A1B2〉 + 〈A2B1〉 − 〈A2B2〉, (F3)

βBC
CHSH = 〈B1C1〉 + 〈B1C2〉 + 〈B2C1〉 − 〈B2C2〉. (F4)

Now, let us choose C1 = C2 = B
g

1 . Therefore, from (F4) we
get βBC

CHSH = 2|〈B1B
g

1 〉|. Substituting this into Eq. (F2), we
obtain (F1). �
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