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In the consistent histories approach to quantum theory probabilities are assigned to histories subject to a
consistency condition of negligible interference. The approach has the feature that a given physical situation
admits multiple sets of consistent histories that cannot in general be united into a single consistent set, leading
to a number of counterintuitive or contrary properties if propositions from different consistent sets are combined
indiscriminately. An alternative viewpoint is proposed in which multiple consistent sets are classified according
to whether or not there exists any unifying probability for combinations of incompatible sets which replicates the
consistent histories result when restricted to a single consistent set. A number of examples are exhibited in which
this classification can be made, in some cases with the assistance of the Bell, Clauser-Horne-Shimony-Holt, or
Leggett-Garg inequalities together with Fine’s theorem. When a unifying probability exists logical deductions
in different consistent sets can in fact be combined, an extension of the “single framework rule.” It is argued
that this classification coincides with intuitive notions of the boundary between classical and quantum regimes
and in particular, the absence of a unifying probability for certain combinations of consistent sets is regarded as
a measure of the “quantumness” of the system. The proposed approach and results are closely related to recent
work on the classification of quasiprobabilities and this connection is discussed.
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I. INTRODUCTION

A considerable amount of contemporary theoretical and
experimental research is devoted to elucidating the counterin-
tuitive nature of quantum-mechanical phenomena. Ever since
the birth of quantum theory, features which defy classical
explanation have continued to fascinate [1]. At the same time,
a parallel program has concerned itself with what is perhaps
the opposite issue, which is to explain the emergence of a
quasiclassical domain from an underlying quantum description
[2–4].

The phenomenon of “quantumness” can be characterized
in many ways but it is typically linked with, for example,
interferences, the breakdown of classical logic, entanglement,
and violation of the Bell inequalities. Likewise classicality is
defined in numerous ways but it is linked with decoherence and
the assignment of probabilities which indicate correlations in
time according to classical equations of motion. However, the
typical definitions of quantumness and classicality are quite
far apart. The quasiclassical realm is often depicted as an
asymptotic regime described by very coarse grained variables
suffering negligible interference [2–4]. At the other end of the
scale there are situations which on the face of it appear to be
quantum mechanical in nature but can be modeled in classical
terms, so sit very close to the classical-quantum boundary.

The consistent histories (CH) formulation of quantum
theory was first formulated over thirty years ago and continues
to be a source of interest and useful applications [2,5–24]. It
was formulated in order to free standard quantum theory from
dependence on an assumed separate classical domain, as is
required to extend quantum theory to the whole universe, i.e.,
to quantum cosmology [25], since there can be no separate
classical domain in the very early universe. Instead of a
classical domain the approach focuses on finding the situations
in which probabilities may be assigned to histories and hence
to which classical logic may be applied. This framework has
turned out to be a very useful one for studying the emergence

of classical behavior from quantum theory. One can also
examine from this framework many of the so-called paradoxes
of quantum theory, some of which are then seen to arise from
indiscriminate use of classical logic. Furthermore, the focus
on histories of the system, rather than events at a single time,
means that the approach naturally adapts to situations in which
time enters in a nontrivial way, or indeed in which time is
entirely absent, as is the case in quantum cosmology. In all its
applications it would probably be reasonable to say that the CH
approach has enjoyed considerable success. However, despite
these successes certain aspects of the CH approach have met
with resistance.

The initial mathematical aim of the approach is, for a system
in a given initial state ρ, to determine which sets of histories,
characterized by time-ordered strings of projection operators
Pan

(tn) . . . Pa1 (t1) (or sums of such strings), have negligible
interference and therefore to which probabilities of the form

p(a1,a2, . . . an) = Tr
[
Pan

(tn) . . . Pa1 (t1)ρPa1 (t1) . . . Pan
(tn)

]
(1.1)

may be assigned which obey all the usual sum rules. Such sets
of histories are then said to be consistent. The sequences of
alternatives described by those histories may then be discussed
using the rules of classical logic. One can then, for example,
address whether the correlations these probabilities indicate
are well approximated by classical dynamical laws.

The procedure, however, has a particular feature which is
perhaps the greatest source of criticism. This is that a given
physical situation defined by a fixed initial state (and in some
cases a fixed final state) in general admits more than one
consistent set of histories which is incompatible, i.e., cannot
be combined into a larger, single consistent set. Furthermore,
in situations where there is a fixed final state, it is easy to find
examples where two noncommuting observables, such as spin
in two different directions, each have probability 1 in different
incompatible consistent sets, at variance with naive notions
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of the uncertainty principle. Perhaps even more challenging,
there exist examples with “contrary” properties, in which a
certain variable has probability 1 in one consistent set and an
orthogonal variable has probability 1 in a different consistent
set.

These intuitively challenging features clearly mean that it
is not possible in general to associate definite values with
consistent sets of histories, and indeed the CH approach is
not, and was not intended to be, a hidden variables theory.
Nevertheless these aspects of the CH approach have led
some to question the utility of the entire approach or to
suggest modifications or additional conditions which might
restrict some of the more challenging examples [20,26–28].
Some of these features were noticed by Griffiths in the
very first paper on the subject [8] and he has since offered
numerous robust defences of the criticisms [29,30]. In brief,
he argues that one of the rules of the game is that any logical
deductions must be made within the framework of a single
consistent set of histories—one cannot combine incompatible
sets. If one accepts this “single framework rule,” the intuitively
challenging features indicated above are ruled out and in
particular explicit logical contradictions are not possible.

Although Griffiths’ procedure for handling multiple con-
sistent sets is very reasonable in operational terms, there are
some situations in which we may have good physical reasons
for wishing to talk about properties living in incompatible
consistent sets but the properties of multiple consistent sets
outlined above create an obstruction. This issue arises in
particular if we attempt to use the CH approach to delineate
a clear boundary between the classical and quantum regimes.
The point is that in characterizing the classical regime, we
would like to be able to talk about complementary quantities,
such as positions and momenta, in a single logical framework
so that we could discuss the logical connections between them.
However, the noncommutativity of these quantities means they
are not in general found in a single consistent set—they are
usually found only in different incompatible sets. Hence in this
sort of situation it would be extremely valuable to determine
if, for at least some physically interesting examples, we can
in fact combine certain types of incompatible consistent sets
in some way, i.e., to see if there is any way around the single
framework rule.

The purpose of this paper is to propose an alternative
viewpoint on the use and interpretation of multiple consistent
sets which extends the single framework rule and helps to
characterize the classical-quantum boundary in a way that
meets intuitive expectations. The proposed approach is to relax
the focus on the standard formula for probabilities for histories
used in the CH approach Eq. (1.1) and instead ask in each sit-
uation where incompatible consistent sets exist, if there is any
unifying probability for some of the combined incompatible
sets which replicates the consistent histories result Eq. (1.1)
when restricted to a single consistent set. Although it is clearly
not possible in general to find such a unifying probability we
shall show that there are many examples of multiple consistent
sets in which such a probability (in general nonunique) does
in fact exist and it is then legitimate to combine logical
statements from different consistent sets. In simple examples,
we can use the Bell [31] and Clauser-Horne-Shimony-Holt
(CHSH) [32] inequalities together with Fine’s theorem [33,34]

to make this classification. This procedure leads to a natural
classification of multiple consistent sets, which is physically
motivated and in particular meets the desired objective of
characterizing the classical-quantum boundary. Furthermore,
from this perspective, the existence of multiple consistent sets
without a unifying probability is then simply a measure of the
“quantumness” of the system. It is not, as some have suggested,
a problem with the consistent histories approach.

There have been a number of earlier proposals to classify
consistent sets of histories, most notably by Kent [27] and
Wallden [28]. They were mainly motivated by a desire to
eliminate the most challenging examples of multiple consistent
sets, namely those with contrary properties mentioned above.
However, as we shall see, this classification still allows
multiple consistent sets that contain some significant quantum
behavior. The focus of the present attempt, by contrast, is to
seek a physically motivated classification more in line with
our intuitive understanding of classical and quantum.

Some authors regard such classifications as “set selection
principles” which inform the interpretation of the formalism.
In particular, it is sometimes asserted that, “nature somehow
chooses one set of histories from among those allowed, and
then randomly chooses to realize one history from that set”
[27]. Here, no claims are being put forward about whether
particular histories or sets of histories are realized and it is not
the aim to find a set selection principle that will complete the
program sketched in, for example, Ref. [20]. Rather the main
aim is to explore the consequences of extending the single
framework rule and determine how the intuitively understood
classical-quantum boundary is expressed through the consis-
tent histories approach and in particular how it relates to the
properties of multiple consistent sets.

We summarize the key mathematical properties of the
consistent histories approach in Sec. II. Multiple consistent
sets and the proposed alternative approach to handling them
are discussed in Sec. III. A number of examples with a
unifying probability are given in Sec. IV, along with a brief
discussion of the possible consequences of the nonuniqueness
of the unifying probability. Examples without a unifying
probability are given in Sec. V. The relationship to set selection
principles of Kent and of Wallden are discussed in Sec. VI.
A particularly important example of multiple consistent sets,
concerning the question as to whether quasiclassical behavior
persists to the future, is discussed in Sec. VII. The relationship
between this work and a recent work on the classification of
quasiprobabilities is described in Sec. VIII. We summarize and
conclude in Sec. IX.

II. CONSISTENT HISTORIES APPROACH

We briefly review the formalism of the consistent histories
approach. Full details may be found in many different
places [2,5–24]. Alternatives at a single moment of time are
represented by a set of projection operators {Pa}, satisfying
the conditions

∑
a

Pa = 1, (2.1)

PaPb = δabPa, (2.2)
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where we take a to run over some finite range. A (homo-
geneous) history is represented by a time-ordered string of
projections,

Cα = Pan
(tn) . . . Pa1 (t1), (2.3)

where Cα is usually referred to as a class operator. One
may also consider class operators defined by sums of strings
(and these are known as inhomogeneous histories). Here
the projections are in the Heisenberg picture and α denotes
the string (a1, . . . an). The class operator Eq. (2.3) satisfies the
conditions ∑

α

Cα = 1, (2.4)

and also ∑
α

C†
αCα = 1. (2.5)

Probabilities are assigned to histories via the formula

p(α) = Tr(CαρC†
α), (2.6)

where ρ is the initial density operator. These probabilities are
clearly positive and normalized,∑

α

p(α) = 1, (2.7)

which follows from Eq. (2.6).
The sample space for a quantum system consists of a

projective decomposition of the identity [9,10]. Hence, for
alternatives at a single moment of time the probabilities p(a)
are defined on the sample space consisting of the projective
decomposition of the identity Eq. (2.1). For the case considered
here in which there are n sequential noncommuting projectors,
the corresponding decomposition of the identity Eq. (2.4) is
not a projective one. However, it may be made so using the
temporal logic approach of Isham et al. [21,22], in which
the Cα is replaced by an n-fold tensor product of projectors
acting on an n-fold tensor product Hilbert space. This then
is a projective decomposition of the identity, on the larger
Hilbert space, and defines the histories sample space for the
probabilities Eq. (2.6) [9,10].

This assignment of probabilities to noncommuting quanti-
ties such as those appearing here is only meaningful if there is
no interference between pairs of histories and this is measured
by the decoherence functional,

D(α,α′) = Tr(CαρC
†
α′ ). (2.8)

It satisfies the conditions

D(α,α′) = D∗(α′,α), (2.9)∑
α

∑
α′

D(α,α′) = 1, (2.10)

and note that the probabilities are given by its diagonal
elements

p(α) = D(α,α). (2.11)

The simplest and most important condition normally imposed
is that the probabilities should satisfy the probability sum rules

and this is the case if and only if

ReD(α,α′) = 0, α �= α′, (2.12)

for all pairs of histories α,α′, a condition referred to as
consistency of histories. In many practical situations, there
is present a physical mechanism (such as coupling to an
environment) which causes Eq. (2.12) to be satisfied, at least
approximately, and in such situations, it is typically observed
that the imaginary part of the off-diagonal terms of D(α,α′)
vanish as well as the real part. It is therefore of interest to
consider the stronger condition of decoherence, which is

D(α,α′) = 0, α �= α′. (2.13)

This stronger condition is related to the existence of records
[6,17].

In the search for further conditions for the assignment of
probabilities, it is useful to consider the quasiprobability

q(α) = ReTr(Cαρ). (2.14)

Because it is linear in the Cα , this quantity sums to 1 and also
satisfies the probability sum rules, but it is not in general
positive. However, it is closely related to the probabilities
Eq. (2.7), because Eq. (2.4) implies that

q(α) = Tr(CαρC†
α) + 2ReTr(CαρC̄†

α),

= p(α) + 2ReD(α,ᾱ). (2.15)

Here C̄α denotes the negation of the history Cα ,

C̄α = 1 − Cα. (2.16)

This means that when there is consistency the probabilities are
given by the simpler expression

p(α) = q(α). (2.17)

Consistency therefore ensures that q(α) is real and positive,
even though it is not in general.

These properties suggest an alternative to the consistent
histories approach in which the probabilities are given by q(α),
subject only to the requirement that

q(α) � 0, (2.18)

a condition referred to as linear positivity [35]. (The sample
space is still the histories sample space described above.)
These probabilities agree with the usual assignments p(α)
when there is consistency, but this condition is clearly weaker
than consistency so the reverse is not true.

These properties also suggest an alternative condition,
named partial decoherence [18], which is the requirement that
the probabilities satisfy Eq. (2.17), or equivalently, that each
history has zero interference with its negation. This condition
is stronger than linear positivity, weaker than decoherence, but
can be weaker or stronger than consistency.

The above formulas easily generalize to the case in which
there is a final state ρf , as is the case in postselection. The
probability for histories then is

p(α) = 1

Tr(ρf ρ)
Tr(ρf CαρC†

α) (2.19)
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(and similarly for the decoherence functional) and the
quasiprobability Eq. (2.14) generalizes to

q(α) = 1

Tr(ρf ρ)
ReTr(ρf Cαρ). (2.20)

Both consistency and linear positivity suffer from some
unusual properties under subsystem composition (also known
as the Diośi test [23]). This is the requirement that the condition
for probability assignment for a composite system consisting
of two uncorrelated and noninteracting parts A and B should
be equivalent to the probability assignments for A and B

separately. Partial decoherence comes very close to meeting
subsystem composition, but narrowly fails for inhomogeneous
histories. Only decoherence, Eq. (2.13), satisfies it exactly
(although it can also be satisfied by the very weak procedure
outlined below).

Even weaker conditions ensuring the assignment of prob-
abilities to certain types of histories are possible in some
situations. The above formulas are all concerned with the
conditions under which a specific formula for the probabilities
for histories may be successfully assigned. However, there
are certain situations when it is of interest to ask the simpler
question as to whether any probability exists, subject to
certain conditions. This is closely related to the question of
determining whether certain situations admit a local hidden
variable description.

To give a specific example, suppose we have a system such
as a spin system with dichotomic variables in which there
are three possible projections and for which there exist non-
negative probabilities p(a1,a2), p(a2,a3), and p(a1,a3), non-
negative either because they correspond to pairs of commuting
observables, or because linear positivity is satisfied for each
pair. Suppose, however, that consistency of histories and linear
positivity fail to yield a formula for a positive probability
p(a1,a2,a3) matching the three given pairwise probabilities.
Does this mean that there is no probability? The answer is
that sometimes there is. In particular, some probability exists
matching the three pairwise probabilities if and only if the Bell
inequalities [31] are satisfied:

−1 � C12 + C13 + C23 � 1 + 2 min{C12,C13,C23}, (2.21)

where the Cij are the correlation functions of the three
probabilities, for example,

C12 =
∑
a1a2

a1a2 p(a1,a2). (2.22)

Similarly, when we have four pairwise probabilities the
necessary and sufficient condition for the existence of an
underlying probability is the set of eight CHSH inequalities
[32]. These important results (Fine’s theorem [33,34]) are
simply existence theorems—they do not provide a general
formula for the probabilities of quantum-mechanical form.
Nevertheless, there is a significant difference between the
case where some probability exists and the case where no
probability exists. (Note however that the problem of matching
a probability to a given set of marginals is in general a very
difficult problem [36].)

This procedure provides a way of assigning probabilities
to histories or to noncommuting observables; this is demon-
strably weaker than linear positivity. It also has the appealing

feature that it is compatible with subsystem composition [37].
We will make use of this procedure in what follows to analyze
multiple consistent sets.

Significantly, the sample space for probabilities defined in
this way is no longer the histories sample space described
above, but is instead the sample space of a local hidden variable
theory which may have the form, for example, of a classical
phase space [38]. This is a step outside the conventional CH
framework but confers some useful advantages, as we shall see.

III. MULTIPLE CONSISTENT SETS

In the Copenhagen interpretation, it is usually asserted that
the only quantities we can talk about in an unambiguous
way are quantities that are physically measured. By contrast,
in the CH approach, it is claimed that we can extend that
discussion to quantities that are not measured, using consistent
sets of histories and classical logic. For example, we can
talk about what is going on with a quantum system between
measurements, or after initial preparation but before the first
measurement takes place. Or, we can talk about past histories
of the universe even though the only measurements made are in
the present moment. However, this extension from measured
to unmeasured quantities turns out to be subtle due to the
existence of multiple consistent sets and care is required in
terms of deciding what sort of logical deductions can be made.

A. A simple spin example

To exemplify this, consider the following example first
given by Griffiths in his original paper on the CH approach
[8]. The example is a simple spin system, initially in the up
state in the z direction |↑〉 and postselected to be in the |+〉
state in the x direction, where

|+〉 = 1√
2

(|↑〉 + |↓〉). (3.1)

We take the Hamiltonian to be zero and ask what happens
between initial preparation and final measurement using a
projector Pa . The probability is given by Eq. (2.19) which
turns out to be

p(a) = 2|〈+|Pa|↑〉|2. (3.2)

If we take Pa to project onto the z spin we get pz(↑) = 1,
pz(↓) = 0, so the two histories are consistent and have
probability 1 for spin up. On the basis of this we might
be inclined to say the spin is up in the z direction between
measurements. However, if we take Pa to project onto the x

spin we get px(+) = 1 and px(−) = 0. So again the histories
are consistent but we get probability 1 for spin + in the x

direction, which suggests that the spin takes definite value in
the x direction between measurements.

One can look at a more complicated history in which both
spins are projected on intermediately, using a class operator of
the form

Ca1a2 = P z
a2

P x
a1

. (3.3)

However, it is easily shown that such histories are not
consistent. That is, we cannot combine the probabilities for the
two consistent sets into a single consistent set with probability
given by the formula Eq. (2.19). [One can work instead with
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the opposite operator ordering in the class operator Eq. (3.3)
and the resulting histories then are in fact consistent, but this is
the essentially trivial case in which the first projector coincides
with the initial state and the second projector coincides with the
final state. We will suppose that the physical situation dictates
that the above ordering is the appropriate one.]

It would clearly be incompatible with the uncertainty
principle to assert that both the x and z spin are definite in this
way, so what are we to make of these properties? As indicated
in the Introduction, Griffiths argues that in any application of
classical logic to a quantum system with a consistent sets of
histories, any deduction must be made within the framework
of a single consistent set. Deductions belonging to different
consistent sets cannot be combined. In this example, we
therefore cannot deduce that the spin takes definite values
in both directions. This example is the simplest example of
an essentially universal feature of the CH approach which is
that a given physical situation in which we attempt to ascertain
what is happening between measurements admits a number of
different consistent sets which, if taken at face value, appear
to have properties at variance with certain intuitive notions of
basic quantum mechanics.

B. An alternative approach

Let us now focus in more general terms on what it would
mean to think of the spins in both directions as possessing
definite values. The CH approach does not allow this. However,
the CH approach is specifically tied to probabilities for
histories given by Eq. (2.19). But what would happen if
we worked instead with other probabilities, such as the
quasiprobability Eq. (2.20), or the more general approach of
the last section not involving a specific formula? It is easy in
this simple example to write down a unifying probability that
does the job, namely

p(a1,a2) = px(a1)pz(a2). (3.4)

This is clearly positive and also matches the above marginals
for p(a1) in the x direction and p(a2) in the z direction. In
particular, p(+, ↑) = 1 and the remaining components are
zero. Therefore, a consistent joint probability for both spins
exists, although it is not the CH probability, Eq. (2.19). (One
could also try the quasiprobability Eq. (2.20) associated with
the class operator Eq. (3.3) but this has a negative component.)

Because some probability for both spins exists, there is no
contradiction in asserting that both spins take definite values.
Indeed, it is well known that all the predictions of a single spin
system of this type may be replicated by a hidden variable
theory [31].

These important observations lead to the following strategy.
In each situation in which there are two or more consistent
sets, we can ask if there is any unifying probability for the
combined consistent sets which matches the CH probabilities
when restricted to each individual consistent set. If such a
probability exists, then we can assert that logical statements
from different consistent sets can be combined. (Here, we
are of course invoking the well-known connection between
Boolean logic and probability emphasized by Omnès [12–14].)

This approach clearly steps beyond the conventional CH
approach although it is not in contradiction with it. In the

CH approach with the single framework rule statements from
different consistent sets cannot be combined, but here we
argue that they can be, without contradiction, in some, but
not all circumstances. It thus seems reasonable to introduce
an extended single framework rule: Logical statements from
different consistent sets cannot be combined unless a unifying
probability for those consistent sets exists.

Note that a given system may have many incompatible
consistent sets and generally, only some of those sets can
be combined in the way described above. This means that
we still cannot, in general, assign definite values to all the
quantities describing the system, although we may do so within
the framework of those sets for which there is a unifying
probability in which we are contemplating measuring some
of the variables and then using the probability to deduce the
values of other unmeasured quantities lying within the unified
consistent sets.

With three or more consistent sets one can encounter
more complicated combinations of incompatible sets but the
extended single framework rule continues to apply. Consider
for example a situation in which there are three consistent sets,
which we denote CS1, CS2, CS3 and suppose that there exists a
unifying probability for two of the possible pairs, CS1,CS2 and
CS2,CS3, but not for the pair CS1,CS3. This means first of all
that there is no unifying probability for all three sets. Second,
it means that we are allowed to make logical deductions
within the unified sets CS1 ∪ CS2 and CS2 ∪ CS3, but the
extended single framework rule means that we are not allowed
to combine logical statements between these two unified sets,
and in particular we cannot invoke a “transitivity” argument
involving CS2 to combine statements between CS1 and CS3.

Note also that since the probabilities for each consistent set
may be expressed, via Eq. (2.17), in terms of the Goldstein-
Page quasiprobability, Eqs. (2.14), it is always possible to write
down a unifying quasiprobability for the combined multiple
consistent sets, namely, the quasiprobability Eq. (2.14) ob-
tained by combining the class operators from each set. This is
clearly a natural thing to check but it may or may not be positive
in each case. If it is not, there often exist other ways of con-
structing a unifying probability as outlined in the last section.

As stated, the general search for a unifying probability
outlined in the last section entails a switch from the histories
sample space to a local hidden variable theory sample space.
This is a significant change but carries two key advantages.
First of all, it addresses the ontological questions surrounding
multiple consistent sets (i.e., to what extent can we assign
definite values to the histories in different consistent sets),
in a way that is thoroughly consistent with conventional
thinking around hidden variable theories. Second, it also
brings the CH approach (with the extended single framework
rule) into a position where the quantum-classical boundary
is characterized in a way closer to intuition and with other
standard definitions of that boundary. We will see this in detail
in the examples of the following sections.

C. Another simple example

Another simple but very different example, given by Omnès
[13], consists of a free particle in three dimensions initially
in an outgoing spherical wave state |ψ〉 (e.g., a radioactive
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decay) and the final state ρf is a measurement which localizes
in position. We can then ask what happens between initial
and final states at a sequence of times t1,t2, . . . tn. There
are a number of different consistent sets. First, we could
take the class operators to describe a sequence of coarse-
grained projections onto ranges of positions denoted by centers
x1,x2 . . . xn, not too closely spaced in time and onto reasonably
large spatial regions. These histories are probability close to 1
when the spatial regions lie along a straight line path and are
approximately zero otherwise, hence are consistent histories.
Second, we could instead do a sequence of projections onto
ranges of momenta with centers p1,p2, . . . pn and we will find
the probability is close to 1 for momenta close to the expected
classical trajectory.

One cannot in general combine these different sets into a
single consistent set since they refer to incompatible quantum
properties. However, it is easy to see that there is a unifying
probability for these two incompatible sets, namely the simple
product,

p(x1,x2 . . . xn) p(p1,p2, . . . pn), (3.5)

which trivially matches the desired marginals. Here the sample
space is the Cartesian product of n (discretized) classical phase
spaces for the point particle in three dimensions.

A third possibility is to consider also the projections onto
the state or its negation at each time, using a projector Pa , with
a = 1,2, where P1 = |ψ〉〈ψ | and P2 = 1 − P1, and we denote
these histories by a1,a2, . . . an. These histories will be exactly
consistent with probability 1 for the single history consisting
of the evolving state and probability 0 for any other history.
There is then the possibility of combing all three of the above
consistent sets using the probability

p(x1,x2 . . . xn) p(p1,p2, . . . pn) p(a1,a2 . . . an), (3.6)

which again matches the desired marginals. The sample space
is then the Cartesian product of the sample space for Eq. (3.5)
with the histories sample space for p(a1,a2, . . . an).

In both of the examples in this section, the desired
unifying probability is easily obtained by taking a product
of the probabilities for each consistent set (although this
is not necesssarily the only way to obtain it). Hence these
examples are reasonably trivial, because each consistent set
has no alternatives in common with the other sets. The more
challenging (and perhaps more common) case is that in which
the consistent sets have partial overlap, and this we now
consider.

IV. EXAMPLES WITH A UNIFYING PROBABILITY

A. EPRB State

We first consider a particularly instructive example in which
there is a unifying probability for some parameter ranges but
not for others. The example is the standard Einstein-Podolsky-
Rosen-Bohm (EPRB) situation, in which we consider a pair
of particles A and B whose spins are in the singlet state,

|�〉 = 1√
2

(| ↑〉 ⊗ | ↓〉 − | ↓〉 ⊗ | ↑〉), (4.1)

where | ↑〉 denotes spin up in the z direction. We consider
the spins of particle A in the directions characterized by unit

vectors a1 and a2 and with values s1, s2; and on particle B in
directions a3 and a4 with values s3, s4, where each s may take
values ±1. The probabilities for pairs of such alternatives, one
on A, one on B are each of the form

p(s1,s3) = Tr
(
P a1

s1
⊗ P a3

s3
|�〉〈�|), (4.2)

where the projection operators are given by

P a
s = 1

2
(1 + sa · σ ), (4.3)

where σi denotes the Pauli spin matrices. We similarly define
three more pairwise probabilities p(s1,s4), p(s2,s3), p(s2,s4).
Each of these four probabilities defines a set of “histories”
which is trivially decoherent, since the projection operators
within each set commute.

Combining the above sets into larger consistent sets is
nontrivial. Suppose we consider histories involving both spins
of each particle. To analyze these histories, we need the
decoherence functional,

D(s1,s2,s3,s4|s ′
1,s

′
2,s

′
3,s

′
4) = Tr

(
Cs1s2s3s4 |�〉〈�|C†

s ′
1s

′
2s

′
3s

′
4

)
,

(4.4)

where

Cs1s2s3s4 = P a2
s2

P a1
s1

⊗ P a4
s4

P a3
s3

(4.5)

and we have selected an ordering in which a1 precedes a2

and a3 precedes a4. The decoherence functional is trivially
zero for s2 �= s ′

2 and s4 �= s ′
4, but is not in general diagonal (or

diagonal in its real part) due to the presence of noncommuting
operators. This means that in general the four consistent sets
defined above cannot be combined into a single consistent set
in which all four spin components are specified. Hence the
four consistent sets are incompatible in general.

However, we can now ask whether there is a unifying
probability matching the four probabilities p(s1,s3), p(s1,s4),
p(s2,s3), p(s2,s4) from the four consistent sets. One possible
way to approach this might be to try the quasiprobability

q(s1,s2,s3,s3) = ReTr
(
P a2

s2
P a1

s1
⊗ P a4

s4
P a3

s3
|�〉〈�|), (4.6)

which clearly matches the four probabilities. It is not positive in
general but will be positive for a parameter range that is larger
than that for which the decoherence functional is diagonal,
since it only requires the interference terms to be suitably
bounded, not zero. (Hence the problem of multiple consistent
sets is generally weaker for the linear positivity approach [35].)

But we can also ask very generally, without appealing to
a specific formula, is there any probability, perhaps defined
on a hidden variables sample space, which matches the four
pairwise ones? The answer to this question, as indicated in
Sec. II, is given by Fine’s theorem [33,34], which states that
there exists a non-negative probability p(s1,s2,s3,s4) matching
the given four pairwise probabilities if and only if the eight
CHSH inequalities hold [32]. These inequalities have the form

|C13 + C14 + C23 − C24| � 2, (4.7)

plus three more similar relations with the minus sign in the
other three possible locations. Hence there is a unifying
probability for the incompatible consistent sets as long as
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the CHSH inequalities hold. As noted in Ref. [37], these
inequalities can hold even when Eq. (4.6) is not positive.

It is instructive to consider a specific example, namely that
in which measurements are made only in the x or z direction, so
we take a1 = a3 = (0,0,1) and a2 = a4 = (1,0,0). The proba-
bilities p(s1,s3) and p(s2,s4) then show perfect anticorrelation.
It is then tempting to assert that the spins take definite values
and the standard argument, essentially that of EPR [39], then
appears to indicate that one can deduce the spin in both
directions of both particles using this anticorrelation.

In a consistent histories analysis, the histories in which
the spins in both directions of both particle is specified are
not consistent [as is easily shown using Eq. (4.4)]. The
anticorrelation exists within certain consistent sets, but the
single framework rule forbids such logical deductions from
being combined with statements made in other, incompatible
sets. (See also the CH analysis by Griffiths of this situation
[11].)

However, from the point of view of the approach of this
paper, this is not the end of the road. The correlation functions
for this situation are C13 = C23 = −1 and C14 = C23 = 0 so
all the CHSH inequalities are satisfied. This means that there
is in fact some probability distribution coinciding with the
four marginals. In general one would expect there to be a
family of such distributions but it turns out in this case that the
quasiprobability Eq. (4.6) is positive so it does the job. Using
the explicit formula given in Ref. [37], this turns out to be

q(s1,s2,s3,s4) = 1

16
(1 − s1s3)(1 − s2s4), (4.8)

which is clearly non-negative and exhibits the desired corre-
lations. (Since the quasiprobability turns out to be positive in
this case, the sample space is in fact the usual histories sample
space.)

According to the extended single framework rule, logical
statements from different consistent sets may be combined
in this case, since a unifying probability exists. This means
it is consistent to assert that the two particles have definite
spins in both the x and z directions. Physically, it corresponds
to the known fact that this situation admits a local hidden
variables description. The CH approach with the usual single
framework rule misses this essentially classical situation. This
example illustrates particularly clearly why it is of interest to
explore an extended single framework rule.

B. EPR state

Another closely related and pertinent example is the
original EPR state [39], which in one dimension is the
two-particle state

ψ(x1,x2) = N exp

(
− (x1 − x2)2

σ 2
− σ 2(x1 + x2)2

)
, (4.9)

where the parameter σ may be taken to be very small and
is there to make the state a normalizable Gaussian, and N is
a normalization factor. The state is therefore tightly peaked
about x1 = x2 and in momentum space the state ψ̃(p1,p2)
is tightly peaked about p1 = −p2. One can consider two
different consistent sets, one in which the positions of each
particle are specified, the other in which the momenta are

specified. These are characterized by projections onto small
ranges of position and momentum. The probabilities indicate
the correlations described above. However, one cannot in
general combine these two different consistent sets into a single
consistent set due to the presence of noncommuting operators,
so the two sets are incompatible.

We now therefore ask if there is a unifying probability
in which the coordinates and momenta of both particles
are specified. This was answered by Bell a long time ago
[40]. The point is that the (regularized) EPR wave function
Eq. (4.9) is a Gaussian, which implies that its Wigner
function W (x1,p1,x2,p2) is non-negative [41], and is precisely
the desired unifying probability matching the probabilities
|ψ(x1,x2)|2 and |ψ̃(p1,p2)|2 for the two consistent sets. The
sample space is the classical phase space for two particles
moving in one dimension. It is therefore consistent to assert
that the coordinates and momenta of both particles take definite
values.

C. Histories of a single spin

Another instructive example is that provided by the spin
systems studied in the Leggett-Garg inequalities—the analog
of the EPRB situation for a single particle characterized by
alternatives at three or more times [42]. We focus on a variable
Q̂ = σz which evolves under Hamiltonian H = 1

2ωσx (where
σx,σz are the usual Pauli matrices). We consider the two-time
probabilities

p(s1,s2) = Tr
[
Ps2 (t2)Ps1 (t1)ρPs1 (t1)

]
, (4.10)

where the projectors at each time are P = 1
2 (1 − sQ̂). It is

easily shown that these two-time histories are not consistent in
general, however, they are for the case of a maximally mixed
initial state, in which case it may be shown that

p(s1,s2) = 1

2
(1 + s1s2C12), (4.11)

where the correlation function C12 is given by

C12 = 1

2
〈Q̂(t2)Q̂(t1) + Q̂(t1)Q̂(t2)〉. (4.12)

With the above Hamiltonian and choice of Q̂, we have C12 =
cos ω(t2 − t1). Details may be found, for example, in Ref. [43].
This is a more general example of the “hopping model” [44].

We may also consider similar two-probabilities at times
t2,t3 and times t1,t3. We thus obtain three consistent sets of
histories with probabilities p(s1,s2), p(s2,s3), and p(s1,s3).
These are incompatible since the underlying set of histories
in which Q is specified at all three times is inconsistent in
general. However, like the Bell and CHSH cases, we can ask
if there is any probability matching the three marginals and
the answer is again that some probability p(s1,s2,s3) exists if
and only if the four Bell inequalities Eq. (2.21) hold. (In this
context they are referred to as the Leggett-Garg inequalities.)
Again we step beyond the usual quantum-mechanical history
sample space to a “classical history” sample space, of the type
one might use in a stochastic process, in which Q takes definite
values at three times.

012123-7



J. J. HALLIWELL PHYSICAL REVIEW A 96, 012123 (2017)

D. Comments on the nonuniqueness of the
unifying probability

Armed with above examples we are now in a position to
address a potentially worrisome feature of the procedure used
to identify a unifying probability, namely the fact that it will in
general be nonunique. A natural question to ask is whether
this nonuniqueness may affect the logical or probabilistic
reasoning we are seeking to apply when different consistent
sets are combined.

The point here is that any such reasoning is made using
only the probabilities within each separate consistent set, i.e.,
using only the marginals, and these are uniquely defined (even
though they can be matched to a nonunique family of unifying
probabilities). Hence although in the extended framework rule
we are moving from a specific formula for the probabilities to
a general formula, the two formulas must match at the level of
individual consistent sets.

Differently put, the question we are interested in is whether
the logical or probabilistic reasoning within a given consistent
set can be unambiguously combined with the logical or
probabilistic reasoning within another set. E.g., if A implies
B in one consistent set and B implies C in another consistent
set, does this mean that A implies C? The answer is yes if
a unifying probability exists and there is no ambiguity since
the marginal probabilities used in making these deductions
are uniquely defined. The existence or otherwise of a unifying
probability is simply a test to make sure that such deductions
can be consistently made.

Similar statements hold in examples in which the reasoning
is probabilistic rather than logical. There are actually few
examples of this type, although it is still necessary to be sure
that the reasoning is consistent.

Interestingly, in the example at the end of Sec. IV A, in
which some of the marginals are zero and hence definite
logical connections can be made, it turns out that the unifying
probability Eq. (4.8) is in fact unique. This is reasonably easily
seen from explicit moment expansions given in Refs. [34,37]
and the detailed proofs of Fine’s theorem in Ref. [34]. Loosely
speaking, the anticorrelations between s1 and s3 and between
s2 and s4 essentially fix Eq. (4.8) uniquely. One would expect
this to be true for other similar examples, since if some of the
marginal probabilities are zero the corresponding components
of the unifying probability (which are summed to give the
marginals) must also be zero, thereby imposing significant
restrictions on the possible form of the unifying probability.
However, no general proof of this claim is given here but this
will be investigated elsewhere.

V. EXAMPLES WITHOUT A UNIFYING PROBABILITY

The EPRB and Leggett-Garg examples of the previous
section clearly supply examples without a unifying probability
distribution if the CHSH or Leggett-Garg inequalities are
violated. However, a more striking and important example
of multiple consistent sets is the three box problem [45]. This
is essentially equivalent to a triple slit interference experiment.
It consists of a three state system with initial state

|ψ〉 = 1√
3

(|1〉 + |2〉 + |3〉), (5.1)

and final state

|ψf 〉 = 1√
3

(|1〉 + |2〉 − |3〉). (5.2)

We consider simple histories in which there is a projection P

in between the initial and final state. The probability for this
is given by

p = 3|〈ψf |Pa|ψ〉|2, (5.3)

where we have used the fact that |〈ψf |ψ〉|2 = 1/3. We
consider two different consistent sets. In the first set there
are two histories, given by projections P1 = |1〉〈1| and its
complement P23 = |2〉〈2| + |3〉〈3|. We easily find that

p(1) = 1, p(2 or 3) = 0. (5.4)

In the second set, we consider P2 = |2〉〈2| and its complement,
P13 = |1〉〈1| + |3〉〈3|, and we find that

p(2) = 1, p(1 or 3) = 0. (5.5)

On the face of it, this appears to be a contradictory state of
affairs since in one set the system is predicted to be definitely
in state 1 and in the other set the system is definitely in state
2. As indicated already, we are not allowed to combine logical
statements in different sets. Nevertheless, this is one of the
most disconcerting examples of incompatible consistent sets.

One can, as in previous examples, ask whether there is a
unifying probability for both sets, as there is in some previous
examples. However, it is clear that the only way to find one is
to allow some of the probabilities to be negative. For example,
the quasiprobabilities p(1) = 1 = p(2) and p(3) = −1 are
consistent with the above properties. Hence there is no unifying
probability in this case and we do not expect to be able to assign
definite properties across multiple consistent sets.

Physically these properties are not surprising if we consider
the closely related triple slit experiment. There, we have wave
functions ψ1,ψ2,ψ3 emerging from three slits and impinging
on a detector a short distance away. The wave functions are
carefully chosen so that there are some cancellations at the
detector, ψ2 + ψ3 = 0 and ψ1 + ψ3 = 0. This means that
detector registers nothing if we cover up slit 1 or slit 2 but
has a nontrivial reading if we cover slits 1 and 2, an apparent
contradiction if viewed in classical terms.

However, these results are unremarkable from the point
of view of quantum mechanics, since we know that two
nontrivial wave functions may be superposed in such a way
as to give zero at a particular point. From this point of view,
these disconcerting features are indications of quantumness.
This is consistent with, and indeed a good example of, our
hypothesis that quantumness may be measured by the absence
of a unifying probability.

Other examples of incompatible sets lacking a unifying
probability distribution and with contrary properties are easily
found such as the hopping model of Ref. [44], discussed at
length in Ref. [28], and the GHZ state, discussed in Ref. [10].

VI. COMPARSION WITH EARLIER SET
SELECTION PRINCIPLES

A number of previous authors have proposed set selection
principles designed to eliminate the sort of behavior exhibited
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in the above examples. We briefly consider the proposals of
Kent [27] and Wallden [28]. Following their nomenclature for
the moment, we will refer to the probability Eq. (2.6) as the
measure μ(α) on a set of histories. The essence of the three
box problem is that it is a “zero cover” situation in which the
coarse graining of histories with nonzero measure leads to a
history with zero measure. The set selection principles of Kent
and Wallden are designed to rule out this situation.

Kent accomplishes by restricting to “ordered consistent
sets,” which is in essence the requirement that the measure
behaves in a monotonic way under coarse graining [27]. This
clearly implies that it is not possible to obtain a measure zero
history by coarse-graining histories with nonzero measure.

Wallden offers the slightly weaker proposal to restrict to
“preclusive consistent sets” [28]. These are consistent sets
of histories {α} for which there are no zero-measure coarse
grainings if μ(α) �= 0.

These two principles successfully isolate the contrary
features of the three box problem and similarly for other
examples. However, they clearly still admit multiple consistent
sets without a unifying probability distribution, as long as
there are no zero-cover situations. For example, this will be
the case in the EPRB example for parameter ranges which
violate the CHSH inequalities (except perhaps for very special
choices of parameters). That is, they admit situations in which
classical notions are violated at a statistical level, but there
are no outright contradictions from a classical perspective.
Hence if viewed as a set selection principle, the requirement
of a unifying probability is clearly stronger (and so more
restrictive) than the requirements of ordered consistent sets,
or preclusive consistent sets.

VII. PERSISTENT CLASSICALITY

Another significant example of multiple consistent sets
first discussed by Dowker and Kent concerns the question
of whether or not a system exhibiting quasiclassical behavior
persists in being quasiclassical into the future [20]. Consider
a system characterized by alternatives a1,a2, . . . an at times
t1,t2, . . . tn, which correspond to quasiclassical variables, such
as coarse-grained positions. We suppose that their histories
are consistent so their probabilities p(a1,a2, . . . an) are well
defined. If these probabilities are strongly peaked around
the classical equations of motion (and perhaps a few other
reasonable properties hold), we would say that the histories
describe quasiclassical behavior.

Consider now how these histories may be fine grained
to specify their behavior to the future of tn, at times
tn+1,tn+2 . . . tN , say. We could consider future alternatives con-
sisting of the same quasiclassical variables, an+1,an+2 . . . aN .
If these extended histories are consistent their probabilities
p(a1, . . . an; an+1 . . . aN ) would be well defined and qua-
siclassical behavior persists to the future. However, one
could also fine-grain to the future using completely different
variables, with alternatives bn+1,bn+2 . . . bN , which could refer
to nonclassical features of the system. If these histories are
consistent we get another well-defined set of probabilities,
p(a1, . . . an; bn+1 . . . bN ). These two sets of consistent histo-
ries will be incompatible in general, but the second set could
exhibit behavior very far from quasiclassical.

Dowker and Kent showed, on general grounds, that it is
possible to construct incompatible consistent sets of this type.
They did not give an explicit example, but these are presumably
not hard to find. They argue that this sort of example makes
it difficult to claim that the CH approach predicts emergent
classicality since there is no principle favoring either one of
these consistent sets. Proponents of the CH approach typically
respond by saying that the CH approach makes probabilistic
predictions for given sets of histories but remains silent on the
issue of whether one set, or the other, or both sets are realized,
in any sense. Nevertheless, this particular feature of the CH
approach has been a particular source of criticism (see for
example Ref. [46]).

The approach of the present paper offers an alterna-
tive view on this example. As in the previous examples,
we ask if there is any unifying probability of the form
p(a1, . . . an; an+1,bn+1, . . . aN ,bN ), defined on a suitably cho-
sen sample space, which matches the two probabilities above
obtained from the CH approach. If such a probability exists, it
is then consistent to assert that the alternatives in both sets of
histories take definite values. If there is no such probability, we
cannot make this assertion. Without a more specific example
it is difficult to say much more here. However, on the basis of
the examples seen previously, we can say that there will be at
least some cases in which a unifying probability exists and it is
reasonable to talk about both types of future histories as if they
both “happen.” Furthermore, we can also say that in the cases
where no unifying probability exists, the existence of very
different consistent sets is simply a measure of quantumness,
and the fact that it is not possible to say in classical terms
“what happens” is no more surprising than, for example, the
difficulty of saying what happens in situations where the Bell
inequalities are violated.

To be clear, this is by no means a resolution of the issue
in the sense sought by Dowker and Kent, who looked for a
principle which would favor certain types of consistent sets
over others. It is simply the observation that this disconcerting
feature is a reflection of quantumness, so would be a property
of any approach to quantum theory, not just the CH approach.

VIII. RELATIONSHIP TO THE CLASSIFICATION
OF QUASI-PROBABILITIES

The approach of this paper—the idea of finding a uni-
fying probability matching a given set of marginals—has
a clear relationship to recent work on the classification of
quasiprobabilities [37]. In that work it was noted that when
quasiprobabilities crop up in quantum mechanics, these are
sometimes due to genuinely quantum-mechanical phenomena,
but they can also arise in essentially classical situations where
there is in fact a genuine probability distribution describing the
situation but standard approaches do not automatically reveal
it. Hence one needs a way to distinguish between these two
situations, and to construct the probability distribution where
it exists.

The approach is as follows. Suppose one is given a
quasiprobability q(a1,a2, . . . an), for example Eq. (2.14). Any
quasiprobability will always have a set of marginals which
are non-negative. For example, in the case of Eq. (2.14) the
single time quasiprobabilities obtained by summing out n − 1
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alternatives are non-negative. Suppose that we determine that
largest set of non-negative marginals, each obtained by coarse
graining the quasiprobability. Since they are non-negative,
they may then be regarded as genuine probabilities for this
coarse-grained set of quantities.

Given these marginals one can now ask whether there is
a genuine probability p(a1,a2, . . . an) which matches the set
of marginals. If there is, the underlying quasiprobability is
called “viable.” If not, it is “nonviable.” In simple examples,
Bell and CHSH inequalities may be used to determine where
this probability exists and the difference between nonviable
and viable is clearly the difference between a genuinely
quantum situation not describable in classical terms and a
classical situation for which a probability is not easily found
by standard approaches. In simple terms, the marginals of
viable quasiprobabilities can be used as if they were marginals
of a true probability, and hence without contradiction, whereas
the marginals of nonviable quasiprobabilities cannot be used
in this way.

One can now see the relationship between this classification
and the classification of multiple consistent sets described in
this paper. As noted earlier, given a family of incompatible
consistent sets of histories, there is always a quasiprob-
ability, namely Eq. (2.14), which has positive marginals
matching the probabilities of each consistent set. Hence the
question of the existence or not of a unifying probability
coincides precisely with the definitions of viable and nonviable
quasiprobabilities.

IX. SUMMARY AND CONCLUSION

The consistent histories approach has proved to be a very
valuable tool for extending the Copenhagen interpretation,
understanding the classical limit, and delineating the degree to
which classical logic may be applied to quantum-mechanical
situations. The existence of multiple consistent sets adds
subtleties to the interpretation of the approach but the single
framework rule provides a clear limitation on what logical
deductions can be made.

The consistent histories approach in its standard presen-
tation entails a specific formula for probabilities, Eq. (1.1),
together with specific conditions, namely decoherence or
consistency, under which these probabilities are well defined.
The essence of the approach to multiple consistent sets
described here is to take a step outside the conventional
consistent histories framework and note that decoherence
and consistency are part of a larger hierarchy of classicality

conditions which includes the weaker condition of linear
positivity, and most importantly and weaker still, the technique
of finding a unifying probability for a given set of marginal
probabilities. In particular, the present work was based on
the simple observation that, if one relaxes focus on the usual
probability formula Eq. (1.1) and associated sample space,
then some incompatible consistent sets do in fact possess a
unifying probability and it is then consistent to assert that some
logical deductions can be combined across different consistent
sets. This led to the proposal of an extended single framework
rule, allowing a wider set of logical deductions to be made
as long as a unifying probability exists. In some examples,
this partially alleviates some of the ontological questions that
surround multiple consistent sets, i.e., the question of the
extent to which one can assign definite values to quantities in
different consistent sets. Of course, it remains true that it is not
possible in general to assign definite values to the alternatives
describing incompatible consistent sets, but the proposal put
forward here indicates that it is possible in more situations
than previously suspected.

Furthermore, the existence or not of a unifying probability
provides a natural definition in the CH approach of the
classical-quantum boundary which coincides in a number of
examples with intuitive notions and also with other commonly
used (but very weak) classicality measures, such as the Bell,
CHSH, or Leggett-Garg inequalities, or non-negative Wigner
function. In particular, quantumness is seen to be the absence
of a unifying probability for certain consistent sets of interest.
This particular issue does not appear to have been addressed
previously in the CH approach, which has instead been
very focused on the emergence of classical behavior in the
asymptotic regime of histories of very coarse-grained variables
exhibiting negligible interference.

Numerous examples of situations both with and without a
unifying probability were given. In all cases there was clear
accord with intuitive notions of classical or quantum. The
proposed classification of consistent histories was compared
with earlier (although differently motivated) set selection prin-
ciples and found to be more restrictive. This work also bears
a close relationship with a recently proposed classification of
quasiprobabilities and this connection was discussed.
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