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Quantum correlations with a gap between the sequential and spatial cases
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We address the problem of whether parties who cannot communicate but share nonsignaling quantum
correlations between the outcomes of sharp measurements can distinguish, just from the value of a correlation
observable, whether their outcomes were produced by sequential compatible measurements on single systems
or by measurements on spatially separated subsystems. We show that there are quantum correlations between
the outcomes of sequential measurements which cannot be attained with spatially separated systems. We present
examples of correlations between spatially separated systems whose quantum maximum tends to the sequential
maximum as the number of parties increases and examples of correlations between spatially separated systems
whose quantum maximum fails to violate the noncontextual bound while its corresponding sequential version
does.
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I. INTRODUCTION

Quantum correlations, here defined as the correlations
between the outcomes of compatible sharp measurements
(i.e., repeatable and only disturbing incompatible measure-
ments [1,2]), exhibit many nonclassical features. Quantum
correlations between spacelike separated measurements on
entangled quantum systems violate local realism as shown by
the violation of Bell inequalities [3]. This is known as quantum
nonlocality. Quantum correlations between timelike separated
compatible sharp measurements on arbitrary quantum states
violate noncontextual realism as shown by the quantum state-
independent violation of noncontextuality inequalities [4].
Quantum contextuality is the collective term used to refer to the
quantum violations of noncontextuality inequalities (including
Bell inequalities) by either single-particle or multiple-particle
systems. Noncontextuality inequalities are bounds on linear
combinations of probabilities P (a, . . . ,c|x, . . . ,z) of obtain-
ing outcomes a, . . . ,c for compatible measurements x, . . . ,z

without making assumptions on how compatibility is achieved.
Quantum correlations between sequential measurements

also are referred to as temporal correlations. Quantum tempo-
ral correlations are nonclassical in several senses. For example:
(i) Their classical simulation requires memory higher than the
information-carrying capacity of the quantum system [5]. (ii)
Their classical simulation with systems of a finite number of
states requires emission of heat due to Landauer’s principle
[6]. (iii) They outperform their classical counterparts for tasks
allowing equal, but limited, communication resources [7].

For illustrating the connection between quantum spacelike
separated correlations and quantum sequential correlations
between compatible sharp measurements, it has been pointed
out [8,9] that, for many correlation observables including the
one in the Clauser-Horne-Shimony-Holt (CHSH) inequality
[10], the predictions of quantum theory are exactly the same no
matter whether: (i) the experiment is performed with spacelike
separated measurements, such as in Ref. [11], (ii) with timelike
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separated measurements on spatially separated subsystems,
such as in Ref. [12], or (iii) with sequential measurements on
single four-level systems, such as in Refs. [13,14]. The typical
configuration for experiments of types (i) and (ii) is illustrated
in Fig. 1(a), whereas the configuration for experiments of type
(iii) is illustrated in Fig. 1(b). In all these cases, the quantum
predictions for the correlation operator of CHSH, namely,

S2 = 〈A1B1〉 + 〈A1B2〉 + 〈A2B1〉 − 〈A2B2〉 (1)

are the same. Recall that 〈AiBj 〉 is the mean value of the
product of the results −1 or 1 of Ai and Bj , which are
measurement settings of Alice and Bob, respectively. In
particular, S2 has the same quantum maximum 2

√
2 ≈ 2.828

in both cases.
However, nonrelativistic quantum theory uses a different

mathematical representation for spatially separated measure-
ments as in (i) and (ii) and sequential compatible sharp
measurements as in (iii). Measurements on spatially separated
systems are represented by operators of the form

Ai = MA
i ⊗ 1B, Bj = 1A ⊗ MB

j , (2)

where ⊗ denotes the tensor product, MP
m is an operator in the

Hilbert space corresponding to system P , and 1P is the identity
operator in the Hilbert space of system P .

On the other hand, sequential compatible sharp measure-
ments on a single system are represented by commuting
self-adjoint operators,

[Ai,Bj ] = 0 (3)

for all i and j . Operators satisfying Eqs. (2) automatically
satisfy Eq. (3). However, Eq. (3) can be satisfied in other
ways.

As shown in the example of S2, despite these different
mathematical representations, in many cases there is no
difference between the predictions of quantum theory for
spatially separated and sequential correlations. Indeed, e.g.,
Tsirelson’s [15] and Landau’s [16] proofs of the quantum
maximum of the CHSH inequality use the representation of
commuting operators rather than the representation of tensor
products. This type of proof, used in some textbooks [17],
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FIG. 1. (a) Scenario in which two parties, Alice and Bob, perform
measurements on two subsystems of a composite system. The
measurement setting is indicated by the yellow button that is pressed.
The measurement outcome is the light (red or blue) that flashes when
the button is pressed. (b) Scenario in which two parties perform
sequential compatible measurements on a single system.

is valid if we recall that already CHSH have shown that
2
√

2 can be attained with spacelike separated quantum
correlations. In this context, it is interesting a result proven
by Tsirelson [18] which, for finite-dimensional Hilbert spaces,
establishes the equivalence of representing local observables
on spatially separated systems as in (2) or as in (3), which
is the representation used in algebraic quantum field theory
[19,20]. However, whether this equivalence also holds for
infinite-dimensional Hilbert spaces is still an open problem
[18,21,22].

In any case, in the sequential scenario, and assuming that
each party is isolated so that they cannot communicate with
each other and despite the fact that there is a system passing
from one party to another, if they only have access to the
probabilities needed to calculate S2, they cannot ascertain
what the other party has performed (i.e., whether the other
party already measured or not or which was the measurement
the other party performed) as compatibility implies that these
probabilities are nonsignaling (i.e., marginal probabilities do
not depend on the compatible measurements performed by the
other parties). Therefore, the experimental value of S2 does
not allow the parties to ascertain whether their outcomes were
produced by measurements on spatially separated systems or
by sequential sharp measurements on a single system.

In this paper we address the problem of whether there
are correlation operators whose value allows the parties who
cannot communicate to ascertain whether their outcomes were
produced by sequential measurements on a single system or
by local measurements on spatially separated systems.

II. FIRST EXAMPLE

Consider the following generalization of the correlation
observable of the CHSH inequality for n � 3 parties, each
having n measurement settings O1

i ,O
2
j , . . . ,O

n
k where the

superindex indicates the party and the subindex indicates her
measurement setting with i,j, . . . ,k = 1, . . . ,n with possible

outcomes −1 or 1,

Sn ≡
n∑

i=1

〈
O1

i O
2
i⊕1 · · · On

i⊕(n−1)

〉

+
n−1∑
i=1

〈
O1

i O
2
i · · · On

i

〉 − 〈
O1

nO
2
n · · ·On

n

〉
, (4)

where ⊕ denotes sum mod n. For local and noncontextual
hidden variables the maximum of Sn is 2(n − 1). This can be
seen as follows. The sets of probabilities consistent with a local
or noncontextual hidden variable models are convex polytopes
whose vertexes correspond to deterministic assignments for
the observables in Sn. Since Sn is linear in the mean values, its
maximum can always be attained by deterministic assignments
to the mean values. Since Sn is a linear combination with
weights one of 2n mean values and, after any deterministic
assignment, the possible values of each of them are −1 or 1, the
value of Sn has to be an even number. The only chance for the
value to be 2n is that the first 2n − 1 terms are 1 whereas the last
term is −1. However, this is impossible for local or noncontex-
tual hidden variables since then

∏n
i=1〈O1

i O
2
i⊕1 · · · On

i⊕(n−1)〉 =∏n
i=1〈O1

i O
2
i · · · On

i 〉, which means that, when the first 2n − 1
terms are all 1, then the last term has to be 1. This proves
the maximum for local and noncontextual hidden variable
models.

Let us now calculate the quantum maximum of Sn.
Let us first assume that O1

i = M1
i ⊗ 12 ⊗ · · · ⊗ 1n, O2

j =
11 ⊗ M2

j ⊗ · · · ⊗ 1n, . . . , On
k = 11 ⊗ 12 ⊗ · · · ⊗ Mn

k . Then,
the quantum maximum is

S tensor
n = 2n cos

(
π

2n

)
. (5)

This can be shown as follows. For n = 3, the method of
Navascués et al. [23] provides an upper bound which, at
level 2 of the hierarchy and up to numerical precision,
is equal to 6 cos (π

6 ) = 3
√

3 ≈ 5.196. This bound is
saturated analytically with projective local measurements
on three qubits in an entangled state. Specifically, with the
state (1 + √

3,1 − √
3, − 1 + √

3,1 + √
3)/4 ⊗ (1,0) and

the measurements corresponding to M1
1 = F (1/3),

M1
2 = F (2/3), M1

3 = F (0), M2
1 = F (1/3), M2

2 = F (2/3),
M2

3 = F (1), M3
1 = M3

2 = M3
3 = F (1/2), where

F (θ ) = cos(θπ )σx + sin(θπ )σz. Note that there are only two
parties whose alternative measurements contribute to the
maximum; the third party always uses the same measurement
setting. Something similar happens for n = 4, . . . ,7. There,
the maximum values obtained numerically lead us to
conjecture that the quantum maximum is the one given by
Eq. (5) and holds for any n � 3. Then, we notice that this
maximum can be attained with only two parties performing
alternative measurements. Finally, one can notice that, when
we trace out all but two particles, what we have is the bipartite
chained Bell inequalities first introduced in Ref. [24] and
rediscovered in Ref. [25]. Since their maximum quantum
values are 2n cos ( π

2n
) [26], this finishes the argument.

Let us now calculate the quantum maximum of Sn when
we replace tensor correlations by compatible correlations.
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Then, if, e.g., we consider the following observables for n

parties:

O1
1 = σz ⊗ 1, O2

1 = 1 ⊗ σx, . . . , On
1 = σz ⊗ σx, (6a)

O2
2 = 1 ⊗ σz, O3

2 = σx ⊗ 1, . . . , O1
2 = σx ⊗ σz, (6b)

. . .

On
n = σz ⊗ σz, O1

n = σx ⊗ σx, . . . , On−1
n = σy ⊗ σy,

(6c)

where σx, σy , and σz are the Pauli matrices and all the
nondisplayed observables are identities (i.e., they are the trivial
observables whose output is always 1), then Sn achieves its
algebraic maximum, i.e.,

Squantum
n = 2n. (7)

Note that operators in the same row or column commute
[27,28] and, therefore, satisfy the compatibility relations
assumed in the definition of Sn given in Eq. (4).

Therefore, any value of Sn higher than the value for
S tensor

n given by Eq. (5) would allow the parties who cannot
communicate to ascertain that they are performing sequential
measurements on single systems rather than local measure-
ments on n separated subsystems.

The gap between quantum spatially separated and sequen-
tial correlations can be measured by, e.g., S

quantum
n /S tensor

n . As
we saw, for n = 2 (i.e., for the CHSH inequality), there is
no gap. The maximum gap occurs for n = 3, which is the
case illustrated in Fig. 2. As the number of parties increases,
S tensor

n tends to S
quantum
n . This leads to the question of whether

is it possible to find scenarios in which the maximum of the
tensor correlations tends to the local maximum as the number
of parties increases, whereas there are quantum sequential

FIG. 2. (a) Scenario in which three parties perform spatially or
spacelike separated measurements on three systems prepared in an
entangled state. (b) Scenario in which three parties perform sequential
timelike separated compatible measurements on a single quantum
system.

correlations violating this bound for any number of parties.
This is precisely the motivation for the next example.

III. SECOND EXAMPLE

Consider 2n + 1 parties with n = 2,3, . . . and suppose that
party i has two possible measurement settings: Oi

1 and Oi
2 with

i = 1, . . . ,2n + 1. Then, consider the following correlation
operator:

T2n+1 ≡ −
2n+1∑
i=1

〈
Oi	1

2 Oi
1O

i⊕1
1 Oi⊕2

2

〉
, (8)

where ⊕ and 	 denote addition and subtraction mod 2n + 1,
respectively. Using a similar argument to the one used in
the previous section, it can be seen that, for local and
noncontextual hidden variable theories, the maximum of T2n+1

is 2n − 1.
Using the result in Ref. [29], which assures that, for the case

of n parties with two dichotomic measurement settings each,
the quantum maximum for spatially separated measurements
on subsystems occurs with projective local measurements
on qubits, it can be shown that, for T5, the quantum tensor
maximum is

T tensor
5 = 3.340. (9)

The analytical form of the state needed is too long for dis-
playing it here. However, it can be recovered knowing that the
measurement settings are Oi

1 = σz and Oi
2 = cos(π/4)σx +

sin(π/4)σz for each party i = 1, . . . ,5.
However, we have found that, for n > 2,

T tensor
2n+1 = 2n − 1, (10)

that is, there is no quantum violation of the hidden-variable
bound. This is due to the fact that the subspace of operators
that can be represented by tensor products becomes smaller
and smaller as the number of parties increases. Note that this
was not the case in the first example where only two parties
effectively contributed to the quantum tensor maximum.

Interestingly, for sequential correlations, quantum theory
takes the algebraic maximum, namely,

T
quantum

2n+1 = 2n + 1. (11)

This can be proven as follows: First, from the expression
of the correlation operator T2n+1 in Eq. (8) we obtain the
corresponding compatibility graph, here defined as the graph
in which nodes represent observables in T2n+1 and observables
in the same straight line are compatible. For n = 2,3, these
compatibility graphs are shown in Figs. 3(c) and 3(d),
respectively.

The Lovász number [30] of a graph G is defined as

ϑ(G) := max
∑

i∈V (G)

|〈ψ |vi〉|2, (12)

where V (G) is the vertex set of G and the maximum is taken
over all sets of unit vectors {|vi〉}, each of them associated
with a node in such a way that nodes in the same straight line
are mutually orthogonal vectors and all unit vectors |ψ〉 in any
dimension. The Lovász number for the graphs of compatibility
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FIG. 3. (a) Compatibility graph of the observables in S3 defined
in Eq. (4). Nodes in the same straight line represent mutually com-
patible observables. Observables Ai,Bj ,Ck, . . . are Alice’s, Bob’s,
Charlie’s,..., respectively. (b) Compatibility graph of the observables
in S4. (c) Compatibility graph of the observables in T5 defined in
Eq. (8). (d) Compatibility graph of the observables in T7. Assuming
that these observables are, in addition, local observables in a Bell
inequality scenario implies the appearance of additional compatibility
relations, which, in terms of resources, means the disappearance
of incompatibilities and therefore the reduction of the maximum
quantum value.

associated with T2n+1 is

ϑ(T2n+1) = n + 1
2 . (13)

Then, we can define the measurement observables in Eq. (8)
as Oi

j = 1 − 2|vi
j 〉〈vi

j | and, if we prepare the system in state
|ψ〉, then T2n+1 = 2n + 1 since

T
quantum

2n+1 = −
2n+1∑
i=1

[
1 − 2

〈∣∣vi−1
2

〉〈
vi−1

2

∣∣ + ∣∣vi
1

〉〈
vi

1

∣∣

+∣∣vi+1
1

〉〈
vi+1

1

∣∣ + ∣∣vi+2
2

〉〈
vi+2

2

∣∣〉]

= −(2n + 1) + 4
2n+1∑
i=1

2∑
j=1

〈∣∣vi
j

〉〈
vi

j

∣∣〉

= 2n + 1. (14)

This finishes the proof.

IV. CONCLUSIONS

There are noncontextuality inequalities which can be inter-
preted both as Bell inequalities involving spatially separated
parties acting on composite systems and as noncontextuality
inequalities involving parties acting sequentially on single
systems. The most famous of these inequalities are the most
ancient generalization of the CHSH inequality, that is, the
bipartite chained Bell inequality with n � 2 settings per party
[24,25]. In these inequalities, the compatibility graph in the
spatially separated case has additional compatibilities with
respect to the compatibility graph of the noncontextuality in-
equality. However, for these inequalities the quantum maxima
are the same in both cases [9].

In contrast, here we have shown that there are correlation
operators for which the difference between their corresponding
spatial and sequential compatibility graphs makes a difference
for the predictions of quantum theory. Consequently, the value
of these correlation operators can be used to distinguish
scenarios such as the one in Fig. 3(a) from scenarios such
as the one in Fig. 3(b).

All the examples presented here involve three or more
parties. Therefore, an obvious question is whether there are
examples with two parties. In principle, we see no reason why
not if one has three or more settings per party and three or
more outcomes per setting. However, we have not found any
example. We leave this problem for future research.

Besides their application to certify that the parties are
not performing measurements of spatially like subsystems
of a composite system, the examples presented here re-
mind us that quantum correlations between compatible sharp
measurements are much richer than those arising in Bell
inequality scenarios and that this more general view may be an
advantage for understanding quantum correlations from first
principles [30–34]. An interesting problem for future research
is identifying the simplest compatibility graphs for which there
is a gap between spatial and sequential correlations together
with the problem of identifying bipartite examples having such
a gap.
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