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Comparing conditions for macrorealism: Leggett-Garg inequalities versus no-signaling in time
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We consider two different types of conditions which were proposed to test macrorealism in the context of
a system described by a single dichotomic variable Q. This is the view that a macroscopic system evolving
in time possesses definite properties which can be determined without disturbing the future or past state. The
Leggett-Garg (LG) inequalities, the most commonly studied test, are only necessary conditions for macrorealism,
but, building on earlier work J. J. Halliwell, Phys. Rev. A 93, 022123 (2016), it is shown that when the four
three-time LG inequalities are augmented with a certain set of two-time inequalities also of the LG form, Fine’s
theorem applies and these augmented conditions are then both necessary and sufficient. A comparison is carried
out with a very different set of necessary and sufficient conditions for macrorealism, namely the no-signaling in
time (NSIT) conditions proposed by J. Kofler and C. Brukner, Phys. Rev. A 87, 052115 (2013) and L. Clemente
and J. Kofler, Phys. Rev. A 91, 062103 (2015), which ensure that all probabilities for Q at one and two times
are independent of whether earlier or intermediate measurements are made in a given run, and do not require
(but imply) the LG inequalities. We argue that tests based on the LG inequalities have the form of very weak
classicality conditions and can be satisfied in the face of moderate interference effects, but those based on NSIT
conditions have the form of much stronger coherence witness conditions, satisfied only for zero interference.
The two tests differ in their implementation of noninvasive measurability and so are testing different notions of
macrorealism: the augmented LG tests are indirect, entailing a combination of the results of different experiments
with only compatible quantities measured in each experimental run, in close analogy with Bell tests, and are
primarily tests for macrorealism per se; in contrast, the NSIT tests entail sequential measurements of incompatible
quantities and are primarily tests for noninvasiveness.

DOI: 10.1103/PhysRevA.96.012121

I. INTRODUCTION

A. Macrorealism and the Leggett-Garg inequalities

The notion of macroscopic realism (macrorealism), intro-
duced by Leggett and Garg [1–3], is the idea that a time-
evolving macroscopic system can possess definite properties
at a number of times uninfluenced by measurements of it.
Macrorealism (MR) was proposed by way of analogy to the
notion of local realism for spatially entangled systems and
indeed leads to a set of inequalities obeyed by the temporal
correlation functions of a single system, similar to the Bell
and Clauser-Horne-Shimony-Holt (CHSH) inequalities. Most
investigations to date focus on a single dichomotic variable
Q which is measured in various ways at three (or more)
times, leading to the determination of the temporal correlation
functions of the form

C12 = 〈Q(t1)Q(t2)〉. (1.1)

These are argued, for a macrorealistic theory, to obey the
Leggett-Garg (LG) inequalities,

1 + C12 + C23 + C13 � 0, (1.2)

1 − C12 − C23 + C13 � 0, (1.3)

1 + C12 − C23 − C13 � 0, (1.4)

1 − C12 + C23 − C13 � 0, (1.5)
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which are identical in mathematical form to the Bell in-
equalities. Measurements at four times lead to a set of eight
LG inequalities identical in mathematical form to the CHSH
inequalities.

To derive these inequalities, the notion of macrorealism is
broken down into three separate assumptions. These are as
follows:

(1) Macrorealism per se (MRps): the system is in one of
the states available to it at each moment of time.

(2) Noninvasive measurability (NIM): it is possible in prin-
ciple to determine the state of the system without disturbing
the subsequent dynamics.

(3) Induction (Ind): future measurements cannot affect the
present state.

Any experimental test thus tests the combination of these
assumptions. Induction is always taken for granted so what is
being tested is the combination of MRps and NIM. To ensure
NIM, Leggett and Garg proposed that the measurement of
the correlation functions be carried out using ideal negative
measurements, in which the detector is coupled to, say, only
the Q = +1 state, at the first time, and a null result then
permits us to deduce that the system is in the Q = −1 state but
without any interaction taking place, from the macrorealistic
perspective. This procedure rules out alternative classical
explanations of the correlation functions [4–6] analogous to
the way in which signaling is ruled out in Bell experiments
and has been successfully implemented in a number of recent
experiments [7–10]. Many other experimental tests of the LG
inequalities have also been carried out, on a variety of different
physical systems [11,12].

Numerous aspects of the LG inequalities and the question
of what they actually test for have been significantly clarified
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by Maroney and Timpson [13]. They argued that MRps
actually comes in three different varieties. The first, which
they refer to as “operational eigenstate mixture macrorealism,”
includes spontaneous collapse models, such as those of the
Ghirardi-Rimini-Weber type [14]. This is the notion of MRps
that Leggett and Garg seemed to allude to in their early papers
and it is only this type of MRps that can be ruled out by the LG
inequalities, so this is the variety of MRps we have in mind
in the present paper. Of the other two varieties of MRps, the
most significant one is the realist theories of the Bohmian type,
which cannot be ruled out by the LG inequalities, unless some
sort of locality arguments can be brought to bear on the ex-
perimental arrangement. (This was also noted by Bacciagalupi
[15]). The remaining type has the form of restricted Bohmian
theories (and include the Kochen-Specker model [16] for
two-dimensional Hilbert spaces), but for Hilbert spaces of
dimension greater than three, these can be ruled out [17].

The NIM requirement is the source of considerable debate
in LG inequality tests. Part of the debate is that, like
MRps, NIM can be interpreted in a number of different
ways depending on exactly what is measured and how the
measurements are carried out. Most experimental tests of the
LG inequalities measure the three correlation functions in three
different experiments, analogous to the Bell case, with each
involving measurements at just two times and noninvasiveness
imposed only in each separate experiment. Furthermore, even
within each experiment involving two times, there are a
number of different choices to be made, as we shall see in
more detail. A much stronger reading of NIM is to assert that it
should not make any difference if one, two, or three sequential
measurements are made in the same experiment. Both of these
versions of NIM permit access to the information required
to determine whether MRps holds, but since MR is defined
to be the conjunction of both MRps and NIM, it means that
there are different versions of MR depending on how the NIM
requirement is implemented.

The purpose of this paper is to explore the consequences
of these different implementations of NIM. For convenience,
we will denote the stronger version of NIM consisting of
sequential measurements at three times by NIMseq and the
weaker one, in which NIM is only satisfied in a piecewise (pw)
way, by NIMpw. These different characterizations of NIM will
be further refined as required.

B. Parallels with Bell experiments

The LG framework for testing macrorealism was designed
by analogy with Bell experiments and it does indeed have
some genuinely close parallels. For example, in simple models
involving a single spin system with Q given in terms of the
Pauli matrices by Q = a · σ , where a is a unit vector, the
correlation functions have the form C12 = a(t1) · a(t2), and so
are identical in form to the Einstein-Podolsky-Rosen-Bohm
(EPRB) correlation functions and violations of the LG inequal-
ities are easily found. Moreover, in practice, measurements of
Q at two different times are typically accomplished using an
ancilla (see, for example, Ref. [7]), which entangles with the
state of the primary system at the first time, and the correlation
function is then obtained from measurements of both system
and ancilla at the second time. Thus we are really dealing with
an entangled pair, just like Bell experiments.

However, the analogy fails at a number of points. As
Maroney and Timpson have argued [13], Bell and LG tests
are not methodologically on a par since the notion of noninva-
siveness typically carries some model-dependent assumptions
and so is difficult to motivate as a general feature, unlike local
causality in Bell experiments [18].

This paper will focus on another key difference with the
Bell case, which is the question of sufficient conditions for
macrorealism. The LG inequalities are necessary conditions
but they are not sufficient, as has been noted by a number
of authors [19,20]. By contrast, in Bell experiments, Fine’s
theorem [21–25] guarantees that the Bell [26] or CHSH [27]
inequalities are both necessary and sufficient conditions for
the existence of an underlying probability matching the given
correlation functions, and so are necessary and sufficient
conditions for local realism. This means that the Bell or CHSH
inequalities are a decisive test.

The point at which Fine’s theorem fails to apply to the
LG framework relates to the description of the system at
two moments of time. The probability p(s1,s2) for the values
s = ±1 of Q at times t1, t2, from which the correlation
function C12 is obtained, refers to incompatible quantities
(i.e., noncommuting ones in quantum mechanics), whereas the
analogous quantities in the Bell case are compatible. This is a
reflection of no-signaling in the Bell case and the no-signaling
conditions are a key assumption in Fine’s theorem since they
ensure that all the pairwise probabilities are consistent with
each other. The analogous conditions do not hold in the LG
framework. For example, suppose we carry out sequential
measurements of Q at t1 and t2, yielding probability p12(s1,s2)
and compare with the probability p23(s2,s3) obtained by
carrying out sequential measurements at t2 and t3. We would,
in general, find that expected relations of the form

∑

s1

p12(s1,s2) =
∑

s3

p23(s2,s3), (1.6)

do not hold. This means in essence that MR can already fail at
the two-time level, a feature not normally discussed in the LG
framework. This difference with the Bell case means that the
LG inequalities alone are not a decisive test of MR since they
could be satisfied even when MR fails.

This naturally leads to the question as to whether this
difference can be rectified, i.e., do there exist conditions for
MR which are decisive? As noted above, the underlying issue
in the LG framework is that from a quantum mechanical
perspective, the probabilities p(s1,s2) are probabilities for a
pair of noncommuting observables. Quantum mechanics may
still assign probabilities to such observables, but there are a
number of different ways of doing so and they often come
with additional conditions. Consequently, we will find that the
difference between the LG and Bell framework can in fact be
rectified, but in at least two very different ways, corresponding
to different implementations of NIM.

C. Necessary and sufficient conditions for macrorealism

The first way to derive necessary and sufficient conditions
for MR that we shall explore is to work with the weaker form
of noninvasiveness, NIMpw, and stay as close as possible to the
original LG framework, in which the correlation functions are
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determined in a number of different runs, and find a way to fill
the shortfall between the LG inequalities and the requirements
of Fine’s theorem. Since this shortfall arises because sequential
measurements will not in general satisfy no-signaling-type
conditions of the form given by Eq. (1.6), we seek another
way of finding information about the system at two times
which does not solely involve sequential measurements. This,
we will show, consists of doing sufficiently many experimental
runs so that only compatible quantities are measured in each
run, noninvasively, and then deriving LG-type inequalities
for two times which determine whether or not MR holds
at two times. This yields a set of two-time and three-time
LG inequalities which, when the two-time LG inequalities
hold, have a mathematical form identical to that of the Bell
system and are therefore necessary and sufficient conditions
for MR. Hence, the desired parallel with the Bell system and a
decisive test for MR is achieved using an augmented set of LG
inequalities measured in a judiciously chosen set of runs. The
measurements are noninvasive, by design, so this protocol is
perhaps most accurately thought of as a direct test of MRps.
This approach was outlined already in Ref. [28] but is reiterated
here, first to give a very different presentation which stresses
and amplifies a number of significant features and, second, to
compare with the second approach described below.

The second way is to follow the much stronger reading of
NIM outlined above, NIMseq, and restrict to initial states and
other parameter ranges so that relationships of the form given
by Eq. (1.6) hold for sequential measurements. Such relation-
ships were named no-signaling in time (NSIT) conditions by
Kofler and Brukner [19]. In particular, Clemente and Kofler
[20] proposed a scheme in which the underlying three-time
probability p123(s1,s2,s3) is determined in a single experiment
by sequential measurements at all three times, subject to a set
of two- and three-time NSIT conditions, similar to Eq. (1.6).
When these conditions hold, the probability p123(s1,s2,s3) is
a properly defined probability for a set of three independent
variables, and hence the set of NSIT conditions is a necessary
and sufficient condition for MR. The LG inequalities are not
involved in this sort of test, but are clearly implied by the set of
NSIT conditions. These conditions test a combination of NIM
and MRps (and induction). It is very different from a Bell
test since it involves sequential measurement of incompatible
quantities. This test is also of the same type as some of the
“coherence witness” tests proposed recently [8,29,30].

These two possibilities clearly delineate two extremes in
terms of how strongly or weakly NIM is implemented. We will
also find intermediate possibilities that involve combinations
of both. (We also note here a possible connection with the
so-called Wigner Leggett-Garg inequalities, which lie midway
between the LG inequalities and no-signaling conditions [31].)

The different varieties of NIM explored in this paper are
clearly matters over which the experimentalist has choice and
control, and therefore likewise the consequent definitions of
macrorealism under test. Hence, it is not the purpose of this
paper to promote any particular version of NIM and MR
ahead of another. Rather, the purpose is simply to classify
and compare different definitions of MR.

Note also that in talking about measurements which we
refer to as “noninvasive,” we have in mind a theoretical
ideal situation (for example, that in which only compatible

quantities are measured in the same experiment, hence there
is no possibility, in principle, for one measurement to disturb
another). In practice, experimental clumsiness is difficult to
eliminate and this leaves loopholes for alternative explanations
of the results [32]. See Refs. [7,8] for further discussions of
how this may be handled in specific experiments.

D. This paper

We begin in Sec. II by describing the EPRB experiment
in some detail. This is to assist the comparison with LG
tests. We note in particular that first of all, Bell tests involve
combining probabilities for incompatible quantities obtained
from different experiments and, secondly, the Bell and/or
CHSH inequalities can be satisfied in the face of nonzero
quantum coherence. In Sec. III, we describe some aspects
of the measurement of temporal correlation functions and
motivate the procedure of determining which variables to
measure in each experimental run. Tests of macrorealism
involving the augmented LG inequalities are described in
Sec. IV, and tests involving NSIT conditions are described
in Sec. V. Some quantum mechanical aspects of the LG and
NSIT approaches are briefly discussed in Sec. VI, along with
a simple property of coherence witnesses. We summarize and
conclude in Sec. VII.

II. THE EPRB EXPERIMENT

To fix ideas, it is very useful to briefly review the EPRB
experiment. We consider a pair of particles A and B in the
entangled state,

|�〉 = 1√
2

(|↑〉 ⊗ |↓〉 − |↓〉 ⊗ |↑〉), (2.1)

where |↑〉 and |↓〉 denote spins in the z direction [26,27].
Measurements are made on the spin of A in directions a or a′,
with outcomes s1,s2 taking values ±1, and on B in directions
b or b′ with outcomes s3,s4. We thus determine the four
probabilities p(s1,s3),p(s1,s4),p(s2,s3),p(s2,s4). In quantum
mechanics, they are given by

p(s1,s3) = 〈�|P a
s1

⊗ P b
s3
|�〉, (2.2)

where the projection operators onto spin in direction a are
defined in terms of the Pauli matrices by

P a
s = 1

2 (1 + sa · σ ). (2.3)

These probabilities obey no-signaling conditions, of the form
∑

s1

p(s1,s3) = p(s3) =
∑

s2

p(s2,s3), (2.4)

where p(s3) = 〈�|P b
s3
|�〉. Suppose the four pairwise prob-

abilities can be regarded as the marginals of an underlying
probability p(s1,s2,s3,s4), so that, for example,

p(s1,s3) =
∑

s2,s4

p(s1,s2,s3,s4). (2.5)

If such a probability exists, then the correlation functions
C13,C14,C23, and C24, defined by

Cij =
∑

s1,s2,s3,s4

sisjp(s1,s2,s3,s4), (2.6)
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must satisfy the eight CHSH inequalities, consisting of the two
relations

−2 � C13 + C14 + C23 − C24 � 2, (2.7)

plus six more obtained by moving the minus sign in front of C24

to the three other possible locations [27]. According to Fine’s
theorem, these eight inequalities are also a sufficient condition
to guarantee the existence of an underlying probability [21–
25]. The CHSH inequalities are therefore a definitive test of
local realism.

It is not hard to find quantum states for which these
inequalities are violated and this has also been experimentally
verified. Hence quantum theory exhibits many situations in
which local realism cannot be maintained.

A number of comments can be made here, for the sake
of future comparison with the Leggett-Garg situation. The
measurements are carried out using four experiments, where
each experiment measures a pair of quantities which are
compatible (commuting, in the quantum description), which
means that each pairwise probability, p(s1,s3) for example, is
unambiguously defined and obeys no-signaling conditions for
the form given by Eq. (2.4). However, the sought after under-
lying probability p(s1,s2,s3,s4) matching the given marginals
includes some incompatible pairs. This is the essence of this
sort of test—to determine whether a set of quantities which
in quantum mechanics are noncommuting nevertheless have
a local description in which they may be assigned definite
values. The determination of the existence or not of this
probability is carried out indirectly, by taking a series of partial
snapshots of the system and then using the CHSH inequalities
and Fine’s theorem to determine whether the partial snapshots
are consistent with an underlying notion of local realism.

One might instead contemplate attempting to determine the
underlying probability directly using sequential measurements
of the incompatible variables. If the measurements in the a and
b directions were measured first, followed by measurements in
the a′ and b′ direction, then the resulting quantum mechanical
measurement probability is

p1234(s1,s2,s3,s4) = 〈�|P a
s1
P a′

s2
P a

s1
⊗ P b

s3
P b′

s4
P b

s3
|�〉. (2.8)

However, this would not yield a true probability for four
independent variables because measurement probabilities of
this form for noncommuting variables do not obey the
probability sum rules. For example, summing out s2 and s4

gives the expected result for p(s1,s3), given by Eq. (2.2),
but summing out s1 and s3 does not give the corresponding
expected result for p(s2,s4), except perhaps for special initial
states or very particular choices of the four spin vectors. This
failure of the sum rules is due to quantum interference. In
simple physical terms, the first measurement disturbs the result
of the second. Because of this feature, we do not use sequential
measurements of the noncommuting variables in the EPRB
experiment to test local realism. (Although note, however, that
interesting results can be obtained if the first measurement is
weak [33].)

Note also that requiring Eq. (2.8) to satisfy the sum rules,
i.e., requiring zero interference, is a much stronger condition
than the CHSH inequalities. This means that the CHSH
inequalities can be satisfied and thus an underlying probability

can exist even when the sum rules for Eq. (2.8) fail. That
is, a local hidden-variable model replicating the correlation
functions can exist even in the face of nonzero interferences,
as long as they are not too large.

III. MEASURING TEMPORAL CORRELATION
FUNCTIONS

We now consider the noninvasive measurement of the
temporal correlation functions, by way of preparation for
the augmented LG protocol in the next section. The original
LG framework envisaged the measurement of a two-time
probability p(s1,s2) from which the correlation function is
obtained,

C12 =
∑

s1,s2

s1s2 p(s1,s2). (3.1)

From this probability, one can also determine the averages,

〈Q1〉 =
∑

s1,s2

s1 p(s1,s2), (3.2)

〈
Q

(1)
2

〉 =
∑

s1,s2

s2 p(s1,s2), (3.3)

where we use the shorthand Qi to denote Q(ti). The superscript
(1) acknowledges the possibility that the value of Q2 could be
disturbed by the earlier measurement at t1. These quantities are
generally not required in standard LG tests, but will be utilized
in the more comprehensive tests of MR considered here. The
two averages and the correlation function uniquely determine
the probability, via the moment expansion,

p(s1,s2) = 1
4

(
1 + s1〈Q1〉 + s2

〈
Q

(1)
2

〉 + s1s2C12
)
. (3.4)

(This useful representation is described in more detail in
Refs. [34,35].)

The probability p(s1,s2) is typically determined by sequen-
tial measurements involving an ideal negative measurement at
the first time, which means that there is no possibility from
a macrorealistic perspective that the value of the correlation
function can be explained to be the result of the disturbance
produced by the first measurement. However, as indicated if we
were to measure 〈Q(1)

2 〉, we would find that it is in fact disturbed
by the earlier measurement, at least for some initial states,
and so would not be the same as the quantity 〈Q2〉 obtained
in the absence of an earlier measurement. This is because
the experimental apparatus will obey the laws of quantum
mechanics and ideal negative measurements still cause wave-
function collapse, even though they are noninvasive from the
macrorealistic point of view [36]. For this reason, sequential
measurements generally do not obey NSIT conditions, such as

∑

s1

p12(s1,s2) = p2(s2), (3.5)

where p12(s1,s2) denotes the probability obtained from mea-
surements at both t1 and t2 and p2(s2) denotes the probability
obtained from a measurement at t2 only, with no earlier
measurements. In the NSIT protocol to be described in
Sec. IV in which NIMseq is implemented, Eq. (3.5) is quite
simply enforced by restriction of the parameters of the model.
However, the augmented LG protocol to be described in
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Sec. III, in which NIMpw is implemented, offers a different
way of proceeding and we now give the background to this.

The macrorealist may have some difficulty explaining the
failure of ideal negative measurements to satisfy Eq. (3.5).
On the one hand, there is a macrorealistic argument for the
noninvasiveness of ideal negative measurements, yet on the
other hand, 〈Q2〉 can be measurably disturbed, which casts
doubt on the validity of the argument that the value of C12

cannot be explained by a classical model with disturbing
measurements. This feature of ideal negative measurements
is normally not problematic since most experiments are
interested only in the correlation function, and not the value
of 〈Q2〉. However, in the present approach, in which we are
addressing the question as to whether MR holds at the two-time
level, we will also need the values of the averages of Q, so this
feature needs to be addressed.

In the Bell case considered in the previous section, in each
experimental run, measurements are made only of quantities
which are compatible, namely only one spin component for
each particle in each run. One then attempts to combine
the results from different incompatible runs into a single
probability. The Leggett-Garg case is fundamentally different
in this respect in that the two-time probability refers to
the probability for two noncommuting operators Q̂1, Q̂2.
However, there is more similarity with the Bell case than might
be immediately apparent.

From a quantum mechanical point of view, the quantities we
are interested in determining are the averages of the operators
Q̂1, Q̂2, and their anticommutator operator,

Ĉ12 = 1
2

(
Q̂1Q̂2 + Q̂2Q̂1

)
, (3.6)

since the correlation function is given by C12 = 〈Ĉ12〉. (This
operator is trivially proportional to the identity in the simplest
spin models, but not so for more general models.) The
operator Ĉ12 has the (not immediately obvious) property that
it commutes with Q̂1 and Q̂2,

[Q̂1,Ĉ12] = 0 = [Q̂2,Ĉ12]. (3.7)

This property, previously noted in Ref. [37], follows from the
fact that Q̂2 = 1. This means that the pair Q̂1 and Ĉ12 are, in
fact, compatible quantities, even though Q̂1 and Q̂2 are not.
For short time intervals, this property reduces to the statement
that Q̂ commutes with (dQ̂/dt)2. The latter quantity is a
measure of whether or not Q̂ is about to change sign, in either
direction. So although the velocity dQ̂/dt will be disturbed
by a measurement of Q̂, it is possible, perhaps surprisingly, to
specify both the value of Q̂ and whether it is about to change
sign.

In the interests of noninvasiveness, it is then very natural
to separate the determination of 〈Q̂1〉, 〈Q̂2〉, and C12 into two
separate experiments, in which 〈Q̂1〉 and C12 are determined
in one experiment and 〈Q̂2〉 is determined in a separate
experiment. In that way, only compatible quantities are
measured in each run, as in the Bell case.

Furthermore, this sheds some light on the apparently
contradictory feature of ideal negative measurements noted
above. If we use an ideal negative measurement to measure
only 〈Q1〉 and C12 in a single experiment, then there is no
sense, even at the quantum level, that the measurement of Q1 in

some way disturbs the value of C12 because we are measuring
compatible quantities. (Or, in other words, C12 is insensitive to
superpositions of eigenstates of Q̂1.) However, a subsequent
measurement of 〈Q2〉 would be disturbed since Q1 and Q2

are incompatible. Hence it makes sense to reject the value
of 〈Q2〉 determined as part of two sequential measurements
since it will have been disturbed by the earlier measurement,
and instead measure 〈Q2〉 in a different run.

Although in the above discussion we are using the quantum
mechanical notion of incompatibility, this can clearly be deter-
mined operationally without recourse to quantum mechanics.
By doing a number of different experiments, the macrorealist
could determine which sets of quantities can be measured
together without disturbing each other.

Note also that we are talking about C12 as if it was a separate
quantity from Q1, whereas in sequential measurements C12

is determined by measuring Q1 followed by Q2. However,
there are in fact measurement protocols in which C12 can
be measured directly without determining Q1 or Q2. For
example, the “waiting detector” model of Ref. [37] measures
only whether or not Q(t) changes sign during the time
interval [t1,t2], from which the correlation function C12 is
readily determined, but without determining Q1 or Q2. A
similar protocol is described in Ref. [38], in which an ancilla
registers the value of C12 but without collapsing superposition
states of Q̂1.

The above observations indicate that it is useful to regard
invasiveness as consisting of two distinct components. There
is the invasiveness that would be present classically in the
presence of interaction with a measuring device. This inva-
siveness can be avoided using an ideal negative measurement.
But there is also a second type of invasiveness that arises only
when incompatible quantities are measured sequentially. This
is clearly a quantum effect and is not avoided by an ideal
negative measurement, but can be avoided by using different
experiments for incompatible quantities as proposed here. The
macrorealist can offer no understanding of the incompatibility
of certain measurements, but can check for it experimentally
and hence avoid it by a judicious choice of experimental runs.

In summary, the weaker sense outlined in Sec. I, NIMpw,
can be implemented by grouping the variables one wishes to
measure into compatible sets and measuring only compatible
variables in each experimental run. Macrorealistic arguments
for noninvasiveness then persist to the quantum level, which
may then be upheld by experiments (subject to the caveats
expressed in Sec. I about the clumsiness loophole).

IV. NECESSARY AND SUFFICIENT CONDITIONS FOR
MACROREALISM USING LEGGETT-GARG

INEQUALITIES

We now exhibit a set of necessary and sufficient condi-
tions for macrorealism using an augmented set of Leggett-
Garg inequalities and using NIMpw. Following the approach
described in the previous section, we carry out a set of
experiments to determine the averages and second-order
correlation functions of Q(t) at three times, by measuring
only compatible quantities in each experimental run and using
ideal negative measurements. There are numerous ways to
group the compatible quantities. A convenient choice is to do
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four experiments in which we measure 〈Q1〉 and C12 in the
first run, 〈Q2〉 and C23 in the second, C13 in the third, and 〈Q3〉
in the fourth. (With a different type of measurement, one could
also consider combining the last two into a single experiment
since C13 and 〈Q3〉 are compatible.)

Macrorealism is the question as to whether or not there
exists an underlying probability p(s1,s2,s3) matching the six
moments measured in the way described above. We build this
up in three steps.

First, the single time probabilities are given by

p(si) = 1
2 (1 + si〈Qi〉), (4.1)

for i = 1,2,3, and these are non-negative by construction.
Second, there are three two-time probabilities, given by

p(si,sj ) = 1
4 (1 + si〈Qi〉 + sj 〈Qj 〉 + sisjCij ), (4.2)

where ij = 12,13,23. Because the averages 〈Qi〉 are measured
in such a way that there can be no disturbance from an
earlier measurement, these two-time probabilities will obey
all compatibility conditions of the form

∑

si

p(si,sj ) = p(sj ) =
∑

sk

p(sj ,sk). (4.3)

These relations are of course mathematically identical to the
NSIT conditions, given by Eq. (3.5), but there is no sense
in which they indicate the absence of “signaling,” since the
two-time probabilities are assembled indirectly from different
experiments, not measured sequentially in a single experiment.
Instead these relations are simply the compatibility relations
between the two-time probabilities that are required for Fine’s
theorem to apply.

In a macrorealist theory in which the averages and cor-
relation function are noninvasively measured, the two-time
probabilities given by Eq. (4.2) are guaranteed to be non-
negative. This follows very easily from a simple argument
similar to the derivation of the LG inequalities. We have

(1 + siQi)(1 + sjQj ) � 0, (4.4)

and, averaging this, we obtain

1 + si〈Qi〉 + sj 〈Qj 〉 + sisjCij � 0. (4.5)

These 12 conditions, which we will call two-time Leggett-Garg
inequalities, are necessary conditions for macrorealism at the
two-time level. They are also sufficient because if satisfied,
the left-hand side of Eq. (4.5), multiplied by 1

4 , are precisely the
probabilities given by Eq. (4.2) matching the given averages
and correlation functions.

Finally, the most general possible form of the desired three-
time probability is

p(s1,s2,s3) = 1
8 (1 + s1〈Q1〉 + s2〈Q2〉 + s3〈Q3〉 + s1s2C12

+ s2s3C23 + s1s3C13 + s1s2s3D). (4.6)

It involves a coefficient D, essentially the triple correlator,
which is not measured in the experiment. The question is
whether there is any possible value of D for which

p(s1,s2,s3) � 0. (4.7)

Fine’s theorem guarantees that this is indeed possible under
the following conditions: the 12 two-time LG inequalities

given by Eq. (4.5) hold; the compatibility conditions given
by Eq. (4.3) hold; and the four three-time LG inequalities,
given by Eqs. (1.2)–(1.5), hold.

The proof of this result is spelled out in detail in Ref. [22].
However, it is easily seen as follows. In the inequality (4.7), the
four values of s1,s2,s3 for which s1s2s3 = −1 yield four upper
bounds on D. Similarly, the four values of s1,s2,s3 for which
s1s2s3 = 1 yield four lower bounds on D. Hence there exists a
D for which Eq. (4.7) holds as long as the four lower bounds
are less than the four upper bounds. These yield 16 relations,
which consist of precisely the 12 two-time LG inequalities and
the four three-time LG inequalities.

A key feature of this protocol is the 12 two-time LG
inequalities, given by Eq. (4.5). It is these that fill the shortfall
in the usual three-time LG inequalities and lead to conditions
for MR which are both necessary and sufficient.

Concisely summarized, the protocol just described tests a
specific definition of MR, consisting of three sets of two-time
LG inequalities, one set of three-time inequalities, together
with induction and piecewise noninvasive measurability. This
definition of MR is arguably the weakest one possible, and
we write

MRweak = NIMpw ∧ LG12 ∧ LG23 ∧ LG13 ∧ LG123 ∧ Ind.

(4.8)

Like the Bell and CHSH inequalities, it may be satisfied in the
face of nonzero interferences, as long as they are not too large.

The 12 two-time and four three-time LG inequalities can
be readily simplified by a particular choice of initial state
[10,12,30]. Suppose that we choose the initial state of the
system to be an eigenstate of Q̂1 at time t1, with eigenvalue
+1. Then, C12 = 〈Q2〉 and C13 = 〈Q3〉. The four three-time
LG inequalities (1.2)–(1.5) then read

1 + 〈Q2〉 + 〈Q3〉 + C23 � 0, (4.9)

1 − 〈Q2〉 − 〈Q3〉 + C23 � 0, (4.10)

1 + 〈Q2〉 − 〈Q3〉 − C23 � 0, (4.11)

1 − 〈Q2〉 + 〈Q3〉 − C23 � 0, (4.12)

which therefore coincide with four of the 12 two-time LG
inequalities. The remaining eight two-time LG inequalities
consist of trivially satisfied conditions of the form |〈Qi〉| � 1.
Hence, in this simplified situation, the four inequalities (4.9)–
(4.12) are necessary and sufficient conditions for MRweak. In-
equalities of this general form have been tested experimentally
[10,12,30].

The above protocol is readily extended to the four-time
situation, for which we find

MRweak = NIMpw ∧ LG12 ∧ LG23 ∧ LG34 ∧ LG14

∧LG1234 ∧ Ind. (4.13)

That is, there are four two-time LG inequalities together with
the eight four-time LG inequalities, which have the form

−2 � C12 + C23 + C34 − C14 � 2, (4.14)

plus the three more pairs of inequalities obtained by moving
the minus sign to the other three possible positions.
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V. NECESSARY AND SUFFICIENT CONDITIONS FOR
MACROREALISM USING NO-SIGNALING IN TIME

We now review very different conditions for macrorealism
which make use of no-signaling in time conditions and do not
involve the LG inequalities at all. The most comprehensive
version of this approach is that of Clemente and Kofler
[20] which is followed here. (Coherence witness conditions
[8,29,30] are simpler examples of this approach and conditions
similar to the ones that follow have been given by Maroney and
Timpson [13].) They suppose that the system is measured using
sequential measurements at three times, with all measurements
done in the same experiment and then conditions are imposed
to ensure that these measurements are noninvasive, hence
we are working with NIMseq. This procedure accesses the
underlying three-time probability p(s1,s2,s3) directly, but the
nature of the measurements means that the procedure works
only under conditions considerably stricter than those required
in the augmented LG tests.

In the face of potentially invasive sequential measurements,
the most general possible form for the three-time probability
is

p123(s1,s2,s3) = 1
8

(
1 + s1〈Q1〉 + s2

〈
Q

(1)
2

〉 + s3
〈
Q

(12)
3

〉

+s1s2C12 + s2s3C
(1)
23 + s1s3C

(2)
13

+s1s2s3D
)
. (5.1)

Here, the superscripts again acknowledge that the values of
averages and correlation functions can depend on whether
earlier or intermediate measurements are made. So, for
example, 〈Q(12)

3 〉 can depend on whether measurements were
made at both t1 and t2, and C

(2)
13 can depend on whether a

measurement is made at the intermediate time t2. In contrast
to the three-time probability discussed in the LG framework,
given by Eq. (4.6), here the triple correlator D is determined
by the measurement process. We assume induction throughout
so there is no possibility of dependence on later measurements
[39].

Equation (5.1) is non-negative by definition since it is a
measurement probability. However, because of the possible
dependencies of its components on the context of the measure-
ment, it is not the probability of an independent set of variables,
and so is not yet the sought after description of macrorealism
that we seek. Clemente and Kofler therefore imposed a set of
NSIT conditions at two and three times to ensure this.

We consider the related measurement probabilities in which
measurements are made at only two times, or just one time:

p13(s1,s3) = 1
4

(
1 + s1〈Q1〉 + s3

〈
Q

(1)
3

〉 + s1s3C13
)
, (5.2)

p23(s2,s3) = 1
4

(
1 + s2〈Q2〉 + s3

〈
Q

(2)
3

〉 + s2s3C23
)
, (5.3)

p12(s1,s2) = 1
4

(
1 + s1〈Q1〉 + s2

〈
Q

(1)
2

〉 + s1s2C12
)
, (5.4)

p3(s2) = 1
2 (1 + 〈Q3〉). (5.5)

Clemente and Kofler then impose the NSIT condition
∑

s2

p23(s2,s3) = p3(s3) (5.6)

conveniently denoted NSIT(2)3, which implies that 〈Q(2)
3 〉 =

〈Q3〉. The NSIT condition
∑

s1

p123(s1,s2,s3) = p23(s2,s3), (5.7)

which we denote NSIT(1)23, implies that C
(1)
23 = C23, 〈Q(1)

2 〉 =
〈Q2〉, and 〈Q(12)

3 〉 = 〈Q(2)
3 〉 (which therefore equals 〈Q3〉).

Finally, the NSIT condition
∑

s2

p123(s1,s2,s3) = p13(s1,s3) (5.8)

which we denote NSIT1(2)3, implies C
(1)
13 = C13 and 〈Q(12)

3 〉 =
〈Q(2)

3 〉 (and so they are both equal to 〈Q3〉). These three
NSIT conditions therefore establish that all averages and
correlation functions take values independent of whether
earlier measurements were performed, and the three-time
probability may then be written as

p123(s1,s2,s3) = 1
8 (1 + s1〈Q1〉 + s2〈Q2〉 + s3〈Q3〉
+s1s2C12 + s2s3C23 + s1s3C13

+s1s2s3D). (5.9)

Hence this combination of NSIT conditions are the necessary
and sufficient conditions for a variety of macrorealism that is
clearly stronger than that described in the previous section,
and we write

MRstrong = NSIT(2)3 ∧ NSIT(1)23 ∧ NSIT1(2)3 ∧ Ind. (5.10)

From the quantum mechanical point of view, the NSIT
conditions can only hold if the interferences are zero.

There are other combinations of NSIT conditions which
achieve the same result [20]. An extension to the four-time
case is presumably possible. It will not be described here, but
the moment expansion for four dichomotic variables, given in
Ref. [34], is a useful starting point.

In contrast to the LG case, where the measurements are
noninvasive by design, the sequential measurements used
in these NSIT conditions are invasive in general. In any
experimental test, it is therefore necessary to adjust the initial
state and measurement times (and perhaps other parameters
too) to ensure that the NSIT conditions are satisfied. This
is why this definition of MR appears to involve far more
restrictive conditions than in the augmented LG case, i.e.,
equalities, rather than inequalities [20]. The NSIT conditions
are primarily measures of NIM for sequential measurements,
whereas NIM is already taken to be satisfied, by design, in the
augmented LG case. Of course, the values of the averages and
correlation functions in Eq. (5.9) must be the same as those
determined in the augmented LG protocol, in Eq. (4.6), but the
conditions under which they can be determined are different
in each case: in Eq. (5.9) they can be determined only if the
equalities consisting of the NSIT conditions hold, whereas in
Eq. (4.6), no such restrictions are required.

The two different types of protocols described in this and the
last section are not the only possibilities and clearly delineate
the two extremes. A third, intermediate option naturally arises,
which is to do three experiments with sequential measurements
made at only two times in each case, and then require that
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the three measured two-time probabilities all satisfy two-time
NSIT conditions, of the form (5.6); in addition, we then require
that the three-time LG inequalities are satisfied. This therefore
tests the following version of MR:

MRint = NSIT(1)2 ∧ NSIT(1)3 ∧ NSIT(2)3 ∧ LG123 ∧ Ind.

(5.11)

Like the augmented LG protocol, it stays close to the spirit
of the original LG framework and clearly supplies necessary
and sufficient conditions for macrorealism. It requires zero
coherence at the two-time level, but allows nonzero coherences
at the three-time level, as long as they are suitably bounded.
This protocol readily extends to the four times, analogous to
the augmented LG case for four times.

All the two-time NSIT conditions can be satisfied quite
easily, in a quantum mechanical description, by choosing an
initial state such as 〈Q̂(t)〉 = 0 at all three times. Also, NSIT(1)2

and NSIT(1)3 can be satisfied by choosing an initial state at t1

diagonal in Q̂1. Furthermore, in practice, the NSIT conditions
in MRint will only be satisfied approximately and it is then
necessary to develop extended forms of the LG inequalities
appropriate to the case in which there is some signaling. This
extension has been carried out by Dzhafarov and Kujala [40]
(and is also briefly reviewed in Ref. [37]).

VI. NSIT VS TWO-TIME LG INEQUALITIES IN A
QUANTUM MECHANICAL DESCRIPTION

In a quantum mechanical description, a direct comparison
may be made between the NSIT conditions and LG inequalities
for two times using explicit measurement formulas. The
probability for two sequential projective measurements at
times t1,t2 is

p(s1,s2) = Tr
[
Ps2 (t2)Ps1 (t1)ρPs1 (t1)

]
, (6.1)

where the projection operators Ps(t) are defined by Ps(t) =
eiHtPse

−iH t and

Ps = 1
2 (1 + sQ̂). (6.2)

By contrast, the two-time LG inequalities (1.3) correspond in
quantum mechanics to the quantities

q(s1,s2) = 1
2 Tr

{[
Ps2 (t2)Ps1 (t1) + Ps1 (t1)Ps2 (t2)

]
ρ
}
, (6.3)

which may also be written in the form given by Eq. (4.2).
Equation (6.3) may be measured either by measuring the
averages and correlation function in various runs, as described,
or, as argued in Ref. [28], more directly, using sequential
measurements in which the first one is a weak measurement
[41]. Equations (6.1) and (6.3) have the same correlation
function [42] and same 〈Q̂1〉, but differ in the average of Q̂(t)
at the second time. The sequential measurement probability
given by Eq. (6.1) does not satisfy the NSIT conditions given
by Eq. (3.5) in general. By contrast, Eq. (6.3) formally satisfies
NSIT, but can be negative [43].

The relation between these two measurement formulas is
given by

p(s1,s2) = q(s1,s2) + 1
8 〈[Q̂(t1),Q̂(t2)]Q̂(t1)〉s2. (6.4)

The extra term on the right-hand side, which vanishes for
commuting measurements, represents interferences (as shown
more explicitly in Ref. [28]). If we impose NSIT on p(s1,s2),
this clearly implies that the interference term is zero and hence
that p(s1,s2) = q(s1,s2). This also means that q(s1,s2) � 0,
which is equivalent to the two-time LG inequalities (1.3).

However, the converse is not true: q(s1,s2) � 0 clearly does
not imply NSIT for p(s1,s2). Furthermore, since p(s1,s2) is
always non-negative, the two-time LG inequalities q(s1,s2) �
0 will be satisfied if the interference term is bounded:

1
8 |〈[Q̂(t1),Q̂(t2)]Q̂(t1)〉| � p(s1,s2). (6.5)

This confirms in this case the general story described earlier:
NSIT conditions require zero interference but the LG inequal-
ities, like the CHSH case, require only bounded interference.

NSIT for p(s1,s2) and q(s1,s2) � 0 are both conditions for
MR at two-times, but they are different types of conditions.
NIM is assumed to hold already in the measurement of
q(s1,s2), and q(s1,s2) � 0 is therefore a direct measure of
MRps. By contrast, NSIT for p(s1,s2) measures a combination
of NIM and MRps, without being able to distinguish between
them.

Note also that some of these relations between NSIT
and the two-time LG inequalities are specific to the (most
commonly studied) case in which measurements are made
of the dichotomic variable Q̂. However, for Hilbert spaces
of dimension three or more, one can consider “degeneracy-
breaking” measurements described by one-dimensional
projections Pn, where n = 1,2 · · · dimH, and construct the
two-time measurement probability p(n1,n2) and associated
quasiprobability q(n1,n2), and from there construct the two-
time correlation functions of Q. This possibility arises in some
of the coherence witness measures recently studied (see, for
example, Ref. [30]). However, the relationship between NSIT
conditions for p(n1,n2) and q(n1,n2) � 0 is then not as simple
as the case described above. For example, the NSIT condition

p2(n2) =
∑

n1

p12(n1,n2) (6.6)

has no immediate logical relation to the analogous relation for
p(s1,s2). This is related to the fact that p(s1,s2) need satisfy
only one probability sum rule in order to be well defined, but
for p(n1,n2) there is more than one type of probability sum
rule. A consequence of this is that q(n1,n2) can in fact be
negative, but Eq. (6.6) can still be satisfied. These interesting
possibilities, which are best understood from the perspective
of the consistent histories approach to quantum mechanics
[44–48], will be pursued in more detail elsewhere.

With these explicit formulas in hand, there is also a
connection to coherence witness conditions [8,29,30]. One
can define a witness W (s2) measuring the degree to which
NSIT is violated:

W (s2) =
∣∣∣∣
∑

s1

p12(s1,s2) − p2(s2)

∣∣∣∣. (6.7)

This is easily seen to be proportional to the interference term,

W (s2) = 1
4 |〈[Q̂(t1),Q̂(t2)]Q̂(t1)〉|. (6.8)
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There is therefore a simple relation between the degree of
violation of NSIT and the two-time LG inequalities. If the
witness is bounded according to

1
2W (s2) � p(s1,s2), (6.9)

then q(s1,s2) � 0. Hence witness conditions, which are usually
used to check NSIT, can also be used to check the two-time LG
inequalities. This result is also in keeping with the observation
in Ref. [31] that violations of NSIT have to reach a threshold
value before the LG inequalities are violated.

VII. SUMMARY AND CONCLUSION

The purpose of this paper was to elucidate and compare two
very different sets of necessary and sufficient conditions for
macrorealism which differ in the way in which they implement
the notion of noninvasive measurability. In the first, the weaker
form, measurements are made using a number of different
experiments in which only compatible quantities are measured
in each run and then the underlying probability, when it exists,
is assembled indirectly. The measurements are noninvasive in
a piecewise way, denoted NIMpw. The probability then exists
provided that a set of two- and three-time LG inequalities
holds (and also induction). This leads to a weak notion of
macrorealism, which we write as

MRweak = NIMpw ∧ LG12 ∧ LG23 ∧ LG13 ∧ LG123 ∧ Ind.

(7.1)

In the second, stronger form, proposed by Clemente and Kofler
[20], macrorealism is defined by a series of NSIT conditions
for sequential measurements in which all three measurements,
of incompatible quantities, are made in the same experiment,
together with induction:

MRstrong = NSIT(2)3 ∧ NSIT(1)23 ∧ NSIT1(2)3 ∧ Ind. (7.2)

An intermediate notion of MR also naturally arises, in which
there are three pairwise experiments with NSIT satisfied for
each pair, with all correlation functions required to satisfy the
three-time LG inequalities (and induction):

MRint = NSIT(1)2 ∧ NSIT(1)3 ∧ NSIT(2)3 ∧ LG123 ∧ Ind.

(7.3)

These three conditions have a clear logical connection,

MRstrong ⇒ MRint ⇒ MRweak, (7.4)

but the converse implications clearly do not hold. The relation
between the NSIT conditions at two times and the two-time
LG inequalities was spelled out explicitly in the quantum
mechanical analysis in Sec. VI. We also noted a relation
between the two-time LG inequalities and the degree of
violation of coherence witness conditions, offering a useful
way of checking the two-time LG inequalities.

MRstrong is primarily a measure of noninvasiveness and, in
the quantum case, is satisfied only when the interferences are
zero, so is essentially the same type of condition as a number
of coherence witness conditions. By contrast, MRweak allows
nonzero interferences. The measurements are noninvasive by
design and hence MRweak is, in effect, a direct test of MRps.
Both of these types of macrorealism have been discussed and
tested, at least in part, in a number of previous works. The
purpose of the present work has been to make clear that these
are different notions of macrorealism, due to the different ways
in which NIM is implemented, although each is clearly of
interest to explore and test.

From the perspective of the consistent histories approach to
quantum mechanics [44–48], these different notions of macro-
realism correspond to the fact that there exists a hierarchy
of classicality conditions. This is utilized and explored in
Ref. [49].

For all of the protocols described in this paper, it would
clearly be of interest to check experimentally a full set
of necessary and sufficient conditions for macrorealism.
This should not be difficult to accomplish with a modest
extension of recent experiments: two- and three-time LG
inequalities have been tested in many different experiments
and, likewise, two-time NSIT conditions. What is required is
an experiment which tests the appropriate combination of such
conditions.
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