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Thermalization as an invisibility cloak for fragile quantum superpositions
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We propose a method for protecting fragile quantum superpositions in many-particle systems from dephasing
by external classical noise. We call superpositions “fragile” if dephasing occurs particularly fast, because the
noise couples very differently to the superposed states. The method consists of letting a quantum superposition
evolve under the internal thermalization dynamics of the system, followed by a time-reversal manipulation known
as Loschmidt echo. The thermalization dynamics makes the superposed states almost indistinguishable during
most of the above procedure. We validate the method by applying it to a cluster of spins Y.
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I. INTRODUCTION

The ability of quantum systems to exhibit interference
between different quantum states is central to various fields
of modern-day research, ranging from quantum simulator
technology to the foundations of quantum theory. In the
latter case, observing interference involving an increasingly
large number of particles serves for testing the applicability
limits of quantum mechanics [1,2]. Quantum interference
requires coherent quantum superpositions. However, quantum
coherence is typically lost as a result of interactions between
the system of interest and the environment. This loss of
coherence can be categorized into two processes [3,4]: either
the system becomes entangled with the environment and,
therefore, it is no longer in a pure quantum state, or the
environment acts as a classical time-dependent noise inducing
dephasing. In this work, we focus on the latter and propose a
method for protecting quantum superpositions from dephasing
for generic many-body quantum systems. Our primary interest
is in quantum superpositions which are particularly susceptible
to dephasing, because the noise couples to an extensive
variable characterizing the system and, at the same time, the
superposed states have very different expectation values of that
variable. We call such superpositions “fragile”. For example,
for a quantum spin cluster in a fluctuating magnetic field, the
superposition of states with all spins “up” or “down” along
any axis, [ 141 ---) + [ {44 - - -)1/+/2, is fragile. The notion
of fragility is related to the notion of macroscopic quantum
superpositions—see, for example, Refs. [5,6].

II. IDEA OF THE METHOD

The idea of the method is to use the thermalization dynamics
within a many-body system as an invisibility cloak for coherent
superpositions. We assume that, in the system of interest, the
internal interactions can be controlled experimentally. In such a
case, it would seem natural, at first sight, to protect a coherent
superposition by switching off the interactions completely,
because they are known to cause internal decoherence on top
of dephasing due to the external noise. However, as we show

“w.hahn @skoltech.ru
b.fine @skoltech.ru

2469-9926/2017/96(1)/012119(4)

012119-1

below, there is a better alternative, namely, to let a quantum
superposition initially evolve under the internal dynamics of
the system, then to reverse this dynamics at time 7 by changing
the sign of the interaction Hamiltonian, and, finally, to recover
the initial superposition at time 27y. Such a procedure is used
to generate the so-called “Loschmidt echo” [7-9], also known
as “magic echo” in nuclear magnetic resonance [10-12].
A Loschmidt-echo manipulation in the presence of internal
interactions not only reverses internal decoherence but also
suppresses dephasing due to external noise. The interaction
Hamiltonian of the system must be chosen such that, for
each of the superposed states, the expectation value of the
variable coupled to the noise decays on the time scale much
faster than 7y and, as a result, the superposed states become
much less distinguishable for the noise during most of the time
interval [0,21(]. In addition, after the decay, the above variable
exhibits fast fluctuations caused by internal dynamics, which
further reduces the effective coupling to the noise, thereby also
suppressing dephasing.

The above method for protecting quantum superpositions
is complementary to existing methods [13] which use dy-
namical decoupling [14], decoherence-free subspaces [15,16],
feedback schemes [17,18], and quantum-memory techniques
[19,20]. Our method is particularly suitable for dealing with
large quantum systems in situations where both external noise
and the internal decoherence are present and the internal
decoherence cannot be reversed by the conventional Hahn-
echo technique [10].

III. LATTICES OF SPINS 1

In the following, we illustrate the above method by applying
it to lattices of N; spins . Such a lattice can, for example,
represent a cluster of nuclear spins in a solid. We start with
a general description of dephasing for a noninteracting spin
system in a fluctuating magnetic field. Then, we extend this
description by adding interactions between spins together with
the Loschmidt-echo sequence. Finally, we compare the two
cases by means of direct calculations.

A. Preliminary considerations and theoretical setting

Let us consider Hamiltonian Hy = h(t) }_; S, where Sj;
is the spin-Y z-projection operator for the jth lattice site, and
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h(t) is a fluctuating magnetic field along the z axis. The field
is characterized by the time correlation function (h(0)h(¢)) =
h% . exp(—yt), where hyys is the root-mean-squared value of
h(t) and y is the decay constant. We consider /s < y. In
our calculations, we use /s = 0.0085, y = %, and i = 1.
Let us further assume that the superposition that we want

to protect has the form
1
V2

where |y/1) and |y,) are eigenstates of the total-magnetization
operator M, =Y j Sjz corresponding to the magnetization
values M ; and M, ,, respectively. We choose M, ; and M,
such that |M,, — M_ | ~ N;. Since M, is the variable that
the noise h(t) couples to, the large value of |M,, — M, |
implies that, according to our definition, |W(0)) is a fragile
superposition.

Starting with |W(0)) given by Eq. (1), we obtain at later
times

W(0) = —=[l¥) + [¥2)], ey

1 . .
|W(1)) = ﬁ[e*w"(’)w + e y)], 2)

where the acquired phase difference is

Ap(t) = o) — 1) = (M2 — Mz,1)/0 h(thdt'.  (3)

Since h(t) randomly fluctuates, Ap(#) exhibits a diffusive
random behavior. While coherence is preserved by unitary
dynamics in each individual realization of A(¢), the ensemble
describing all possible realizations of /() exhibits a coherence
decay.

Now let us assume that the spin cluster considered is a
periodic chain with nearest-neighbor (NN) interaction, where
we can engineer interactions, such that the Hamiltonian
becomes

NN
Hi = [aSixSjc + JySiySiy + J:8::8:1 + h(1) Y S,
i,j J

“4)

where J,, J,, and J. are interaction constants satisfying
Jest > y with J3; = J2 4 J7 + J2. The last term in Eq. (4)
equals Hy defined earlier. The Loschmidt echo is to be
implemented by changing the sign of all interaction con-
stants {J,,J,,J;} = {—Jx,—J,,—J;} at time ¢ = 79. Below,
we specifically consider J, = —0.47, J, =0.79, J, = 0.37,
and Y1) = [t11---), [Y2) = [L{{---), where [1) and [{)
describe spins pointing up and down along the z axis. The cor-
responding values of magnetization are M, | = —M,, = N7

The values of the interaction constants are chosen such that
magnetization M, is not conserved, i.e., [H,M,] # 0, and,
moreover, for large ¢ (but still smaller than 7o)

(M2)1(t) = (M:)2(t) — 0, ®)
where (M:),(1)= (1|M (D)|Y1), (M)2(t)= (2| M- (1)]912).

[Here, M,(¢) is an operator in the Heisenberg representation. ]
After the decay of (M;)(¢) and (M,),(¢) shown in Fig. 1,
the noise can distinguish between the superposed states only
on the basis of fluctuations of the order /N, whereas,
initially, the superposed states were distinguishable by their
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FIG. 1. Magnetizations (M.)(¢) and (M.),(t) for initial quantum
states |Y) = [P ---) and |¥p) = |} ---) of a periodic chain
of 18 spins 2 governed by Hamiltonian (4). Symbols represent
numerical calculations, lines are guides to the eye. The interaction
Hamiltonian is reversed at 7y = 15 indicated by the dotted line. This
reversal leads to a nearly perfect revival at t = 21.

total magnetization of the order N (as in the noninteracting
case).

The reversal of the Hamiltonian Hy at = 19 is only partial,
because it does not apply to the noise term. Therefore, the wave
function |W(27p)) is not expected to coincide with [W(0)).
Instead, we parametrize it as

|W(270)) = c1270)[Y1) + c2(270)[¥2) + ¢4(270)|9(270)),
(6)

where |¢(279)) is a state orthogonal to |i) and |y), and
c1(219), ¢2(219), and cy(27p) are complex amplitudes. The
same parametrization is also applicable to the noninteracting
case described by Eq. (2) [with c4(279) = 0].

To compare the coherence loss at time 27y for the interacting
and noninteracting cases, we introduce the coherence measure

C(279) = 2|(c} (2T0)c2(210)), )

where the angle brackets denote averaging over all possible
realizations of 4(¢). The term ¢} (279)c2(270) is the off-diagonal
element of system’s density matrix connecting the states |;)
and [y). The coherence measure C(2tp) is related to the
quantum fidelity (see, e.g., Ref. [21]). The value C(2ty) = 1
implies that the initial coherence between |i) and |y) is
fully retained, while C(275) = 0 means that it is completely
lost. Below, functions Cn(27p) and Cy(21y) represent C(27)
computed for the noninteracting (Hy) and interacting (Hj)
cases, respectively.

B. Simulations

In simulations, we represent the noise by a suffi-
ciently dense set of discrete Fourier harmonics h(t) =
Z,’hw,- cos(w;t +a;), where w; are frequencies [22], o;

random phases, and hw/, = Ahs/ a)i +v2, with A being a
normalization constant.

In the noninteracting case, we substitute the complex
amplitudes c¢1(21p) and ¢,(21p) from Eq. (2) into definition (7),
thereby obtaining Cn(270) = [{exp{i[¢1(270) — 92(2T0)1})|-
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FIG. 2. Coherence measures Ci(27y) and Cn(279) computed
respectively for interacting and noninteracting periodic chains of
18 spins % in the presence of external noise. Symbols represent
numerical calculations, lines are guides to the eye.

We then use Eq. (3), where we perform explicit time integration
to obtain

CnQ2r) =

<cos |:2(MZ,2 —M.,)

X Zhijcos(wﬂo—i_aj)p" ©))

J

J

0.92 - - - -

0 3 6 9 12 15

. 1
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e
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Finally, we calculate Cn(279) by averaging of the above
expression numerically over completely random phases «;.

For the interacting case, we calculate C1(2tp) numerically
by means of direct integration of the Schrodinger equation
[23,24], which does not require complete diagonalization
of the Hamiltonian. When implemented with a fourth-order
Runge-Kutta algorithm, the above method is shown [23] to be
very accurate for the time intervals of interest.

C. Results and discussion

Typical behavior of Cn(21p) and C1(219) is shown in Fig. 2.
Initially, for 7o < 1, Cn(279) ~ C1(210). Atlater times, C1(270)
decays much slower than Cn(27p) which demonstrates the
effectiveness of the proposed method.

Let us now investigate the decay of Cn(21p) and Cy(27¢) for
different system sizes N;.

For the noninteracting case, the results of our simulations
based on Eq. (8) are shown in Fig. 3(a). These results are
in excellent agreement with the theoretical approximation of
Anderson and Weiss [25],

2 70

Cn(270) ~ exp [—w; Q1 — t’)A(t’)dt’], )
0

where A(1') = (Ap(0)Ap(1)) /(Ap*(0)) and o] = (Ap*(0)),
cf. Eq. (3). In our case, w2 = N2h  and A()=e "
Function Cn(279) given by Eq. (9) starts decaying as a
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FIG. 3. Decay of coherence measures as a function of the number of spins N;: (a) noninteracting case, (b) interacting case. In (a) and (b),
symbols represent numerically computed Cx(27y) and C(21), respectively, corresponding to N, indicated in plot legends; thin lines connecting
symbols are guides to the eye; thick lines represent Eq. (9) for (a) and linear function Cj(27p) &~ b(1 — 2I'179) with fitted parameters b and
I'} for (b). [Note the different scale of the vertical axis in (a) and (b).] (c),(d) Asymptotic decay rates 'y and I'; for the noninteracting and
interacting cases, respectively, as a function of N,. Symbols represent the values obtained by fitting the tails of Cn(279) and C1(270); solid blue
line represents Eq. (10); dashed orange line represents Eq. (11) with a fitted prefactor 0.96. Plots (c) and (d) differ only by the scale of the

vertical axis.
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Gaussian and then approaches the asymptotic exponential
regime characterized by the decay rate

h2
Iy = Nf%. (10)

In Fig. 3(c), we plot the values of I'y obtained numerically as
a function of N, together with the right-hand side of Eq. (10).

Numerically computed functions Cy(2ty) are shown for
different N, in Fig. 3(b). The initial oscillations of Ci(27)
are presumably due to the oscillations of the magnetization
shown in Fig. 1. We expect the overall decay of Ci(27)
on a longer time scale to be exponential. However, on time
scales accessible numerically, we only observe the initial
decay and, therefore, fit Cy(27p) with a linear function
C1(2ty) =~ b(1 — 2I'17p), where b is a prefactor and Iy is
the characteristic exponential decay rate plotted in Figs. 3(c)
and 3(d). On the basis of analysis similar to that in Ref. [25],
we estimate

2

hZ
FI ~ Nsﬂ9
Jef

(1)

which is consistent with our numerical results, as illustrated in
Fig. 3(d).
Given Egs. (10) and (11), we obtain
In o Nsﬂ. (12)
I 14
The larger this ratio, the more effective our method. Substi-
tuting typical parameters of our simulations into Eq. (12),
we obtain I'y/ I’y ~ 10%. In general, Eq. (12) implies that the
proposed method becomes more effective when the system
becomes larger and its internal dynamics becomes faster.
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Since the method only requires the system of interest to
thermalize much faster than the correlation time of the noise,
we expect it to be applicable to a broad class of fragile quantum
superpositions in a broad class of quantum systems, where
Loschmidt echo is experimentally realizable [11,26,27].

Let us now make two final remarks:

(i) A necessary requirement for the proposed method is a
sufficiently accurate reversal of the interaction Hamiltonian.
We estimate the acceptable deviation of the experimentally
reversed Hamiltonian from the perfectly reversed one to be
(per spin) of the order of Ay or smaller [28].

(i1) The proposed method can also be used for protecting
fragile quantum superpositions from decoherence by external
particles which are sufficiently slow and/or couple simulta-
neously to sufficiently many particles within the system. A
relevant example here is the decoherence by long-wavelength
photons.

IV. CONCLUSIONS

To conclude, we have proposed a Loschmidt-echo based
method for protecting fragile quantum superpositions in many-
body systems and validated this method by both numerical
simulations and analytical estimates. In the concrete examples
considered, the lifetime of coherent superpositions was shown
to increase by two orders of magnitude.
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