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The problem of bounding the (Abelian) many-anyon ground-state energy from above, with a dependence
on the statistics parameter which matches that of currently available lower bounds, is reduced to studying the
correlation functions of Moore-Read (Pfaffian) and Read-Rezayi type clustering states.
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I. INTRODUCTION

The importance of the concept of quantum statistics for
our understanding of observed collective phenomena in nature
cannot be overstated. While fermions stack according to the
Pauli principle to form a Fermi sea, with its implications
for atomic structure, conduction bands in solids, etc., bosons
can sit together to display amplified single-particle behavior,
as manifested by Bose-Einstein condensation and the co-
herent propagation of light. Upon restricting to two spatial
dimensions, on the other hand, it turns out to be logically
conceivable to have other types of identical particles than
bosons and fermions, satisfying braid statistics instead of
permutation statistics, and which have been given the name
“anyons” [1–5] (see also ([6], p. 386)). These have the property
that under continuous exchange of two particles their wave
function changes not merely by a sign ±1, but any complex
phase factor eiαπ is allowed, where the real number α is
known as their “statistics parameter.” Moreover, for logical
consistency one has to keep track of any topological winding
of the particles during their exchange. For instance, if one
particle moves around in configuration space in such a way as
to enclose p other particles in a complete (counterclockwise,
say) loop, a phase 2pαπ must arise, while if two particles
are exchanged once and in the process p other particles are
enclosed, the phase must be (1 + 2p)απ . All such topological
complications vanish in the case of α = 0 (bosons) and α = 1
(fermions). The concept has also been extended from phases
(Abelian) to unitary matrices (non-Abelian), but we shall here
stick to the simpler (though not at all simple) Abelian case.
Furthermore, instead of demanding that the wave function
changes its phase according to the above form of topological
boundary conditions, also known as the “anyon gauge picture,”
one may equivalently model such phases by means of attaching
magnetic flux to ordinary identical particles, i.e., bosons or
fermions, resulting in a magnetic many-body interaction. This
is then called the “magnetic gauge picture” for anyons. We
refer to the extensive reviews [7–16] for a more complete
background on the topic.

The idea of particles with attached magnetic flux is
fundamental to the fractional quantum Hall effect (FQHE)
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[17–21], which is a manifestation of a strongly correlated
many-body state of electrons subject to planar confinement
and a strong transverse magnetic field. More recently it
has been proposed that similar effects apply to trapped
bosonic atoms in artificial magnetic fields [22–26], and to
graphene [27,28]. The quasiparticles arising in the FQHE of
electrons are predicted to be anyons with a corresponding
fractional statistics parameter. However, as discussed in ([19],
Sec. 9.8.2), there has been some confusion in the literature
concerning the exact values of α involved. This can be traced
to different conventions but also to the fact that the statistics
parameter has hitherto only been defined indirectly via the
operation of adiabatic braiding and the computation of a
corresponding Berry phase, as first outlined in [29]. Only very
recently has an effective Hamiltonian for anyons been derived
[30], which shows unambiguously how they may arise in a
FQHE context and what the statistics parameter then should be,
confirming that fermions against the background of a fermionic
Laughlin state with odd exponent 2p + 1 effectively couple
to Laughlin quasiholes to behave as emergent anyons with
α = 2p/(2p + 1) (see also [31]).

Despite the concept of anyons having been around now
for almost four decades, a satisfactory understanding of their
physics is still lacking. Due to their complicated many-body
interaction (or geometry) it has not been possible to solve
the anyon Hamiltonian for its complete spectrum or even its
ground state, except in the two-particle case where it can
be reduced to a one-particle problem and thus be solved
analytically [1,4,32], while in the three- and four-particle cases
it has been studied numerically [33–36]. Nevertheless, as is
evident from the vast body of literature (the author can count
more than 300 papers on the topic), there has been a fair amount
of progress on the many-anyon problem, most of which is
based on various approximations. One of the most discussed is
average-field theory (see, e.g., Refs. [10,16,37–39] for review),
where the individual anyons are replaced by their average
magnetic field, something which is arguably reasonable in a
sufficiently dense regime. Other approximations assume either
a very strong external magnetic field, thereby reducing to
lowest-Landau-level anyons which turn out to be solvable with
a connection to Calogero–Sutherland models [14,40], or in the
case of the free dilute gas, that it is sufficient to only take
two-particle interactions into account [32,41]. It has however
been stressed that real progress in understanding the anyon
gas cannot be made without knowledge of the true many-body
spectrum.

In a recent series of works [42–47], the question concerning
the many-anyon ground state has been investigated in the
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light of modern mathematical methods. Interestingly, it was
found that the ground-state energy for the free ideal anyon
gas can be nontrivially bounded from below, but only under
the assumption that α is an odd-numerator rational number
(in contrast to electron FQHE which typically involves odd-
denominator filling factors). To settle the issue whether this
is the true behavior or rather just an artifact of the method
used to obtain the bounds, one also needs to bound the energy
from above using suitable trial states. This however turns out
to be a very difficult problem for anyons, contrary to the more
common situation where finding the upper bound is the easier
part.

We shall here proceed in the setting of Abelian anyons with
no external magnetic field (which is indeed relevant in the
FQHE context; cf., e.g., Ref. [15]), and propose, building on
[43], that good variational ground states for the many-anyon
problem are given by clustering states of the Moore-Read and
Read-Rezayi type that have already been studied for some time
in the context of special (proposedly non-Abelian) regimes of
the FQHE. In particular, these types of states seem to give a
much lower energy for even-numerator rational α than for odd
numerators, and offer a corresponding picture of condensation,
respectively, a reduced Fermi sea of anyons. In view of the
above considerations, such a picture could in the context of
the FQHE potentially have far-reaching consequences.

II. MANY-ANYON GROUND-STATE ENERGY

For concreteness and for easier comparison with the
results which are available in the literature, we consider as
our starting point anyons confined in a harmonic-oscillator
potential. In the magnetic gauge, the Hamiltonian operator for
N nonrelativistic ideal1 anyons with mass m in a harmonic
trap with frequency ω � 0, and in units such that h̄ = 1, is

ĤN = T̂α + V̂ =
N∑

j=1

(
1

2m
D2

j + mω2

2
|xj |2

)
, (1)

where

Dj := −i∇xj
+ αAj (xj )

denotes the magnetically coupled momentum operator of
particle j at position xj ∈ R2. Each particle sees an Aharonov-
Bohm magnetic flux 2πα attached to every other particle, as
is given explicitly by the magnetic potentials

Aj (x) :=
N∑

k=1
k �=j

(x − xk)−⊥, x−⊥ := x⊥

|x|2 = (−y,x)

x2 + y2
. (2)

For reference we take the Hamiltonian ĤN to act on bosonic
states � ∈ L2

sym((R2)N ), and there is associated with the free

kinetic energy operator T̂α a natural subspace (form domain)
DN

α consisting of the states � which have a finite expectation
value for their kinetic energy (see [44], Sec. 2.2 and [46],
Sec. 1.1 for details). The case α = 0 then corresponds to

1That is, without interactions other than the statistical one, and
purely pointlike as opposed to extended; cf. Sec. VI below.

bosons and α = 1 to fermions, with DN
α=0 = H 1

sym(R2N ) and
DN

α=1 = U−1H 1
asym(R2N ) the Sobolev spaces of symmetric

respectively antisymmetric square-integrable functions having
square-integrable first derivatives. In the latter case we have
used the singular gauge transformation U−1∇xj

U = iAj , with

U : L2
sym/asym → L2

asym/sym,

(U�)(x) :=
∏

1�j<k�N

zj − zk

|zj − zk|�(x),

and with the coordinates here represented by zj = xj +
iyj ∈ C, to explicitly switch from fermions to their bosonic
representation via flux attachment. The same transformation
can be used to show that the full spectrum must be periodic
in α up to any even integer 2q, by composing � with U−2q

which preserves symmetry. Also, one could equivalently have
chosen to model everything in terms of fermions with statistics
parameter β := α − 1.

As is very well known, the harmonic-oscillator ground-state
energy

E0(N ) := inf spec ĤN = inf
�∈DN

α \{0}
〈�,ĤN�〉

〈�,�〉
is for bosons E0(N ) = ωN , while for (spinless) fermions
E0(N ) ∼

√
8

3 ωN3/2 as N → ∞ due to the Pauli principle
and the filling of one-body states. For fermions allowed to
have ν � 1 different spin states (or particles obeying Gentile
intermediate statistics [48,49]) it is a simple exercise to show
using the same asymptotics that E0(N ) ∼

√
8

3 ν−1/2ωN3/2.
However, for anyons with statistics parameter α it has now
been established [42–44,46] that

C1 j ′
αN

ωN3/2 � E0(N ) � C2 ωN3/2, (3)

for some universal constants C1 �
√

8/(3j ′
1) and C2 �

√
8/3.

Here j ′
a for a > 0 denotes the first positive zero of the

derivative of the Bessel function Ja of the first kind, satisfying
(see [46])

√
2a � j ′

a �
√

2a(1 + a) (and j ′
0 := 0).

The order a = αN involved is given by the “fractionality” of
α as measured by

αN := min
p∈{0,1,...,N−2}

min
q∈Z

|(2p + 1)α − 2q|. (4)

This expression has the peculiar many-body limit [42, Prop.
5] (see Fig. 1)

α∗ := lim
N→∞

αN = inf
N�2

αN

=
{ 1

ν
, if α = μ

ν
∈ Q reduced, μ odd and ν � 1,

0, otherwise.

In particular, the factor in front of ωN3/2 in the lower bound
in (3) depends on α as

√
α∗ = ν−1/2 for small odd-numerator

fractions and tends to zero with N for even-numerator and
irrational numbers.

In addition to the above, for an arbitrary state � with
fixed total angular momentum L ∈ Z one also has the bound
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α

α∗

α

jα∗

FIG. 1. Plots of α∗ respectively j ′
α∗ for 0 � α � 1. These can be continued to all α ∈ R using periodicity and reflection (conjugation)

symmetry.

[13,50,51]

〈�,ĤN�〉 � ω

(
N +

∣∣∣∣L + α
N (N − 1)

2

∣∣∣∣
)

, (5)

where, if L = −α(N

2 ) (i.e., an average angular momentum
of −α per particle pair) would be achieved exactly on some
state, then the remaining bound is just the ground-state energy
for bosons. As discussed in [50], since E0(N ) = O(N3/2) the
bound (5) implies that as the number of particles increases
there will be more and more level crossings in the ground state
to different angular momenta, resulting in a qualitative picture
(see [50, Fig. 1]) with some interesting features in common
with Fig. 1. Note that, for every finite N , the ground-state curve
is conjectured to be continuous in α and piecewise smooth;
however, the number of such pieces grows like

√
N .

On the other hand, an approach that has been used
extensively in the literature to understand the anyon gas
(see the reviews and references therein) is to employ the
“average-field approximation”2

E0(N ) ≈ inf
� � 0∫
� = N

∫
R2

(
π |α|
m

�(x)2 + mω2

2
|x|2�(x)

)
dx

=
√

8

3

√
|α| ωN3/2. (6)

Here it has been assumed that the anyons see each other via
an approximately constant magnetic field B(x) ∼ 2πα�(x),
with �(x) the local density of particles, and hence they each
have a lowest-Landau-level energy |B|/(2m) ∼ π |α|�/m. In
[45] it has been shown rigorously that such an approximation
is indeed correct in the limit of “almost-bosonic” anyons
(i.e., α → 0; see also [47]) in a confining trap; however,

2This is also known as the mean-field approximation in the
literature, although it is useful to make a distinction between the
names; cf. [16,45].

one needs to be careful with what is meant exactly with the
approximation and how such a limit is performed since strictly
speaking the anyons cannot be ideal but extended (see [52] and
Sec. VI below). Also note that the periodicity for ideal anyons
mentioned above is not naturally implemented in (6), so
we must at least expect to replace α with its periodization α2

from (4).
The main question raised from the bounds (3) and (5) is

whether for certain α such that α∗ � α2—most notably for
even-numerator rational α such as α = 2/3, for which α∗ =
0—and for particular states such that L ∼ −α(N

2 ), the true
ground-state energy E0(N ) could be considerably lower than
the one (6) expected from average-field theory. Building on
[43], we shall here explore the possibility that this is actually
the case.

III. LOCAL EXCLUSION PRINCIPLE FOR ANYONS

In order to understand the origin of the peculiar dependence
of the above energy bounds on α∗, and of the form of the
corresponding proposed trial states, we first need to briefly
discuss the findings in [42,43,46] of a local exclusion principle
for anyons.

Normally when one talks about an exclusion principle for
identical particles one has in mind an occupation picture,
where only a limited number of particles can sit in each
distinguishable one-body state. The prime example is of course
the usual Pauli exclusion principle for fermions, although
various extensions have also been discussed in the literature
[40,48,49,53–56] (the role of such generalized exclusion in the
context of anyons has also been reviewed in [57]). Sometimes
the notion is generously extended to concern exclusion of
coincident points in the configuration space, and anyons have
often been pointed out to obey such exclusion, either because
it is required for their topological definition or because their
singular (for ideal anyons) magnetic interaction forces the
wave function to vanish on the diagonals, just like fermions
do by means of antisymmetry (see also [58]). However, note
that such a notion of exclusion also applies to the hard-core
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Bose gas whose thermodynamic ground-state energy vanishes
in the dilute limit (in analogy with the noninteracting gas) in
two and higher dimensions [59–64].

For anyons whose statistics is generated by a true many-
body interaction (or a very complicated geometry), a stronger
notion of exclusion is required, and such a notion has been
developed in [42,43,46] in the form of an effective repulsive
long-range pair interaction. Namely, recall that the effect
of the statistics is a change of phase of the anyonic wave
function by eiαπ whenever two particles are interchanged via
a simple continuous loop in configuration space, or a total
phase (1 + 2p)απ whenever such an exchange loop at the
same time encloses p other particles. On the other hand,
particles are also allowed to have pairwise relative angular
momenta, and such momenta are by continuity restricted to
only change the phase by an even multiple of π . One way
of viewing this condition (in the magnetic gauge picture) is
that the many-body wave function is modeled as a bosonic (or
fermionic) one and thus it needs to be antipodal-symmetric
(antisymmetric) with respect to the relative coordinate, hence
π -periodic (antiperiodic) in the relative angle. Another way to
see it (in the anyon gauge or geometric picture) is that the wave
function is a section of a locally flat complex line bundle with
the topological continuity condition that its phase around such
a loop should jump by (1 + 2p)απ plus 2π times an arbitrary
winding number. Assuming then that the relative momentum
or winding is the even integer −2q if the particles are orbiting
in a reversed (for α > 0) direction in order to cancel as much
of the magnetic or topological phase as possible, we arrive
at a total phase (2p + 1)α − 2q times π per exchange for
the particle pair. In the kinetic energy, any nonzero remainder
phase of this sort gives rise to a centrifugal-barrier repulsion

Vstat(r) = |(2p + 1)α − 2q|2 1

r2
� α2

N

r2
� α2

∗
r2

, (7)

where r denotes the relative distance of the particle pair,
and we have taken the infimum over all possibilities p ∈
{0,1, . . . ,N − 2} and q ∈ Z to obtain the lower bounds in
terms of αN � α∗. In the case of α = μ/ν being an arbitrary
reduced fraction with an odd numerator μ and a positive
denominator ν, it turns out using simple number theory ([42]
Prop. 5) that this phase mismatch can never be completely
canceled, and in fact α∗ = 1/ν > 0. On the other hand, if μ

is an even number it is evident that cancellation is possible
for particular values of p and q, and therefore α∗ = 0. For
irrational values of α, one can use that any such number
can be approximated arbitrarily well by both even- and
odd-numerator rational numbers and hence α∗ = 0 (although
note that a very large N may be required in such a process).

A geometric interpretation of the potential (7) is that there
is nontrivial curvature (magnetic flux) sitting at each of the
enclosed particles but effectively seen at the center r = 0 of
the particle pair, and its presence is felt by the kinetic energy
in the form of an effective potential. The situation is from
this perspective analogous to that of a free quantum particle
moving on a cone [65–67], here with its apex angle depending
on α and the number of enclosed particles.

In [42] and [46] it has been shown rigorously by means of
a family of magnetic Hardy inequalities that such an effective
pairwise inverse-square “statistical repulsion” (7) indeed arises

V1 V2

V3

j

⇒

xj

αAj

Jj

V∗
1

FIG. 2. Illustration of a coloring of N = 12 particles with ν = 3
colors into K = 4 clusters. Each colored edge corresponds to one unit
−μ of pairwise angular momentum. Also shown is the contribution
to the magnetic potential αAj and the current Jj of particle j due
solely to the cluster V∗

1 .

in the many-anyon system. Although the effect is in some sense
local and weighted only linearly in the number of particles (in
contrast to a usual pair-interaction term in the Hamiltonian),
it is still of long-range type and sufficiently strong to produce
a “degeneracy pressure” (represented concretely in the form
of Lieb-Thirring inequalities; cf. [43,68]) and consequently
nontrivial energy bounds in terms of α∗ for the ideal or dilute
anyon gas, such as (3). We also stress that the method used to
obtain the effective pair potential (7), which was introduced
in [42] and developed to encompass more general situations
in [46], is well suited for numerical investigations of lower
bounds to the ground-state energy.

IV. CONSTRUCTING ANYONIC TRIAL STATES

In order to match the available lower bounds for E0(N )
from above, it was in [43] suggested to study variational trial
states of the form

� = 	ψα ∈ L2
sym(R2N ),

with 	 ∈ L1
loc,sym a locally integrable regularizing factor, N =

νK a suitable sequence of particle numbers, and, in the case of
α being an even-numerator reduced fraction α = μ/ν ∈ [0,1],

ψα :=
∏
j<k

|zjk|−α S

⎡
⎣ ν∏

q=1

∏
(j,k)∈Eq

(z̄jk)μ

⎤
⎦ N∏

l=1

ϕ0(xl), (8)

while for odd numerators μ,

ψα :=
∏
j<k

|zjk|−α S

⎡
⎣ ν∏

q=1

∏
(j,k)∈Eq

(z̄jk)μ
K−1∧
k=0

ϕk (xl∈Vq
)

⎤
⎦. (9)

Here zjk := zj − zk are the pairwise relative complex coor-
dinates with the usual identification C � zj ↔ xj ∈ R2, and
we have grouped, or “colored,” the particles into ν different
colors where Gq = (Vq,Eq) denotes the complete graph over
each such group of |Vq | = K vertices=particles (cf. Fig. 2).
The symmetrization S over all the particles then amounts to
symmetrization over all such colorings, and can be viewed
as passing from a set of distinguishable particles (by color)
to indistinguishable (cf. [69]). The ϕk , k = 0,1,2, . . ., are the
eigenstates (ordered by increasing energy) of a corresponding
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one-body Hamiltonian

Ĥ1 = 1

2m
(−i∇x + Aext(x))2 + V (x), (10)

and in (9) we have formed the Slater determinant of the K first
such states in the variables of each color group Vq to obtain
matching symmetry.

In the harmonic-oscillator case Aext = 0, V (x) =
mω2|x|2/2, these N -body states have angular momentum

L = −μν

(
K

2

)
= −α

(
N

2

)
+ α

ν − 1

2
N, (11)

for (8) and for certain “magic” numbers K in (9) corre-
sponding to filled shells. The symmetrized quantity in (8)
is then a homogeneous polynomial in z̄j which, multiplied
with the Gaussian e−mω|z|2/2, |z|2 = ∑N

j=1 |zj |2, coincides
exactly with the (complex-conjugated bosonic) Laughlin-
Read-Rezayi states for the fractional quantum Hall effect
[69–71]. Also note that, if the ϕk are instead taken to be the
lowest-Landau-level states of a constant magnetic field with
cyclotron frequency ω in symmetric gauge,

ϕk(z) ∝ z̄ke−mω|z|2/2, k = 0,1,2, . . . ,

then the case α = 1/2 in (9) corresponds to the Moore-Read
(Pfaffian) states [71,72] (cf. also [39,73] where pairing of
semions has been discussed).

It is known that these states possess clustering properties,
so that for example the symmetric polynomial3

fN=νK (z) := 1

(ν!)K−1
S

⎡
⎣ ν∏

q=1

∏
(j,k)∈Eq

(zjk)μ

⎤
⎦, μ = 2,4,6, . . .

(together with a confining factor such as the Gaussian) exhibits
clusters of ν particles. This, as well as other interesting and
useful properties of such symmetric polynomials, have also
been observed by means of an identification with correlators
of certain conformal field theories (see, e.g., Refs. [71,74,75])
and with Jack polynomials [76]. For instance, one has that if
the positions of ν particles (i.e., one cluster) are identified,
then (also compare to Fig. 2)

fN (ζ, . . . ,ζ︸ ︷︷ ︸
ν copies

,zν+1,zν+2, . . . ,zN )

=
N∏

j=ν+1

(ζ − zj )μfN−ν(zν+1, . . . ,zN ). (12)

In particular, fN then vanishes whenever ν + 1 or more
particles are brought together. Furthermore, if proceeding
in this way to group all particles into disjoint clusters V∗

q ,
q = 1, . . . ,K , with |V∗

q | = ν [think of complete graphs G∗
q =

(V∗
q ,E∗

q ) dual to Gq in a sense], and then identifying their
positions, say zj = ζq for j ∈ V∗

q , one obtains a Laughlin state

3The normalization factor here is chosen to simplify the identities
below. The number of terms in the symmetrized expression is
(νK)!/[ν!(K!)ν].

with exponent ν2α,

fN (z) =
∏

1�p<q�K

(ζp − ζq)νμ. (13)

Note that this clustering behavior matches very well with
both the form of the magnetic potential Aj and the Jastrow
prefactor in ψα . Namely, the attractive Jastrow factor contracts
the clusters and balances with the intercluster repulsion
coming from the Jack polynomial fN (z̄) in such a way
that each particle xj sees from any other cluster V∗

q /∈ j ,
say located at y ↔ ζ at a large distance r = |r| = |zj − ζ |,
the attraction

∏
k∈V∗

q
|zjk|−α ∼ r−να = r−μ and at the same

time the effective repulsion ∼|zj − ζ |μ = rμ from (12). Also,
the total contribution to the magnetic potential seen by particle
xj from this cluster is αAj (xj ; xk∈V∗

q
) ∼ ναr−⊥, while at the

same time the particle has an orbital angular momentum
around the cluster with an opposite current contribution
Jj = −iψ−1

α ∇jψα(xj ; xk∈V∗
q
) ∼ −μr−⊥, again thanks to (12)

(and complex conjugation). One should also observe that
(see Fig. 2), due to the balance between Jastrow attraction
and Jack repulsion, clusters are formed out of particles with
different colors, i.e., in different groupsVq . Furthermore, every
particle has exactly one edge in Eq going to exactly one
particle in every other cluster, namely the particle of the same
color, and this is what gives the orbital angular momentum
contribution (z̄jk)μ. In this way there is a natural cancellation
between magnetic flux and angular momentum on the level
of each individual particle. The same holds in the case of
the odd-numerator states, which however have an additional
repulsion and possibly angular momentum coming from the
Slater determinant in (9).

In the fully clustered picture (13),

� = 	ψα ∼
∏

1�p<q�K

(
ζp − ζq

|ζp − ζq |

)νμ

(14)

becomes the necessary gauge transformation U−νμ to remove
the overall statistical effects of the clusters (here we have ν

copies of the even integer μ because there are ν particles
moving in each cluster, each seeing a flux να = μ from
every other cluster). Note that the role of 	 is to regularize
the singular short-scale dependence of ψα arising upon
bringing particles very close together (the Jastrow factor in
ψα diverges with each pair like |zjk|−α), and in (14) we have
assumed that this has effectively removed the singular factor∏

(j,k)∈E∗
q
|zjk|−α from within each cluster. We also note that the

states (8) and (9) naturally generalize for α ∈ Z to the correct
gauge copies � = U−α�0 of the bosonic (fermionic) ground
states, �0 = ⊗Nϕ0 (�0 = ∧N−1

k=0 ϕk), in this case leaving out
the need for the regulator 	.

With the assumption that the total energy increases with the
total degree of one-particle states ϕk , the odd-numerator states
clearly have a higher energy than the even-numerator ones,
simply enforced by the symmetry constraint. One needs to
explain, however, why one cannot just take the same states ψα

but shifted to a reducible fraction α = μ/ν = μ′/ν ′, with μ′ =
kμ, ν ′ = kν, and k � 2. Note first that the necessary properties
of the states may not be valid for such fractions and indeed
there are certain assumptions on irreducibility in the context
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0

2π

0

1

FIG. 3. Sequence of three particle configurations chosen to illustrate the properties of the trial states �, here with α = 2/3, N = 12, and
	 = 	r0=1.3 as defined in (17). We fix the positions of 11 particles in two three-clusters (dashed circles), two two-clusters (dash-dotted circles),
and a single particle at three intermediate positions between the two-clusters (dotted circles). Then arg � (top row) and |�|2 (bottom row;
normalization chosen for illustration) are plotted as functions of the remaining particle position on the square [−10,10]2. One may note that
each three-cluster binds two vortices, which produce the desired orbital angular momentum and also cancel the attraction from the cluster very
effectively. The attraction is much stronger from a two-cluster than from a single particle, but entirely absent from three-clusters.

of Jack polynomials [76], but let us proceed anyway with the
discussion, aiming for a better understanding of the argument.

Within the class of even or odd states we expect that the size
of clusters, i.e., the denominator ν respectively ν ′, dictates the
energy of the regulator 	 which therefore favors the irreducible
case k = 1. Also note that we cannot shift from an even state
to an odd one by extending the fraction by k in this way, but
one could certainly take k to be even and thereby shift an odd
state into an even one, and thus argue that the energy should
then become lower (consider, for example, α = 2/6 instead
of 1/3 or, for α = 1, Cooper pairs instead of a single Slater
determinant of fermions). To argue against this possibility we
need to study the pairwise structure of the states closer.

First note that the pairwise relative angular momentum
for any (shifted or not) even state ψα=μ′/ν ′ always comes in
multiples of μ′. The statistical repulsion (7) then always gives
a positive energy unless for some p,q ∈ {0,1,2, . . .}

(1 + 2p)α = qμ′ ⇒ qν ′ = 1 + 2p,

which requires ν ′ to be odd, so that k = 1 (and ν is already
odd if μ was even). We also note that if any ν-particle
clusters happen to be enclosed in the two-anyon exchange
loops, they each contribute ν to p, that is 2να to the magnetic
phase, and at the same time a matching −2μ to the relative
momentum (one −μ for each of the anyons orbiting around
the cluster). Furthermore, on a length scale such that a typical
pair of particles has exactly one multiple of μ as orbital
angular momentum, a full cancellation with the magnetic
phase demands p = (ν − 1)/2 (this is indeed an integer in
the even-numerator case), i.e., about half of the particles of a
cluster are enclosed. On the very smallest scales, i.e., much

less than the average interparticle distance, we can accept a
phase mismatch and strong repulsion, to be controlled by 	,
in analogy with, e.g., the hard-core Bose gas whose energy
vanishes logarithmically with low density in two dimensions
[61,63]. In the case α = 2/3 it is natural that as the scale then
increases a bit we first see exactly one enclosed anyon, p = 1,
of the ν = 3 cluster of which the particle pair is taken, and then
additional full clusters on the scale of the average interparticle
distance (cf. [46], Fig. 3 and Fig. 4). Hence this allows for a
full cancellation of the exchange phase over large scales in this
particular state, thus reducing its overall statistical repulsion on
large regions of the configuration space. However, in general it
seems that there needs to be a delicate balance between 	 and
ψα in order to obtain such special probability distributions, and
this remains the least understood aspect of these trial states at
the moment (see also [77]).

V. IDEAL ANYONS IN A HARMONIC TRAP

At this point one might worry about actually computing
(or at least bounding) the energy of the proposed trial states.
Fortunately, however, it turns out that ψα given in (8) for
even-numerator α is an exact (but singular) eigenfunction of
the harmonic-oscillator Hamiltonian ĤN with (see [13,78–80])

ĤNψα = ω(N + deg ψα) ψα, (15)

where the degree of the state is, by (11),

deg ψα = −α

(
N

2

)
− L = −α

ν − 1

2
N.
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0

2π

0

1

FIG. 4. Similar plot as in Fig, 3 with the same state �. Now three three-clusters are fixed, one particle takes three different positions along
the horizontal axis, while the relative coordinate of the remaining pair of particles is plotted on the square [−20,20]2 with the center of mass
of the pair fixed at the origin. In relative coordinates the picture is antipodal symmetrized, and one may also note that on a circle with radius
equal to the nearest three-cluster distance (dotted) the total phase circulation is 4π . In this way the probability of finding a third particle within
an interparticle distance may possibly be increased without a significant cost in exclusion energy.

Being a singular eigenfunction means that the identity (15)
holds wherever ψα is smooth, namely outside of the fat
diagonal of the configuration space

´ := {x = (x1, . . . ,xN )

∈ (R2)N : ∃ j �= k such that xj = xk}. (16)

Since ψα is not a true eigenstate (normalizable and in the
domain) of the operator ĤN , its formal energy being

ω(N + deg ψα) = ω

(
1 − α

ν − 1

2

)
N < ωN

is not a contradiction to (5). Also, by contrast, note that for ψα

with odd-numerator α

deg ψα ∼ ν

√
8

3
K3/2 = O(N3/2),

although in this case ψα does not have the structure of an exact
eigenfunction since it involves a polynomial in both zj and z̄j .

Two possible choices of regularizing symmetric functions
	 mentioned in [43], giving rise to the expected [58] pairwise
short-scale behavior ∼|zjk|α in �, could be

	r0 =
∏
j<k

|zjk|2α
(
r2

0 + |zjk|2
)−α

, (17)

with a parameter r0 > 0 to be optimized over, or the parameter-
free (but less smooth)

	0 =
N∏

j=1

ν−1∏
k=1

|zj nnk (j )|α, (18)

where nnk(j ) denotes the kth nearest neighbor of particle j

[among particles of the set A ⊆ {1,2, . . . ,N} if instead writing

nnk(j ; A)]. However, as seen below, an ansatz closer to the
Bijl–Jastrow form

	BJ =
∏
j<k

f (|zjk|), (19)

or the Dyson form [60]

	D = f (|z2 1|)f (|z3 nn1(3;1,2)|) . . . f (|zN nn1(N ;1,2,...,N−1)|),
(20)

as used for 2D Bose gases with suitable two-particle correla-
tions f (see [64]), could be better.

We note that taking 	0 as in (18) as a regulator raises the
degree of the state � = 	0ψα for even numerators to formally
[if (15) were still to hold] produce the energy

ω(N + deg �) =
(

1 + α(ν − 1) − α
ν − 1

2

)
ωN

=
(

1 + α
ν − 1

2

)
ωN,

which by (11) exactly matches the lower bound (5). We also
note that for odd-numerator α and magic (i.e., shell-filling)
numbers K ,

ω(N + deg �) ∼ ω ν

√
8

3
K3/2

=
√

8

3
ν−1/2ωN3/2 =

√
8

3

√
α∗ ωN3/2,

which matches both the average-field approximation (6) for
α = α∗ and, for small α∗ and up to the value of the numerical
constant, the improved rigorous lower bound (3) that was
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recently obtained by means of a Lieb-Thirring inequality [46]
as a consequence of the statistical repulsion (7).

Using the above observations, we then shift the problem
of estimating the ground-state energy E0(N ) from above for
even-numerator fractions to concern only the energy of the
regulator 	.

Proposition 1. Assume 	 ∈ H 1
loc(R2N ;R) is such that � =

	ψα ∈ DN
α and (∇	)ψα ∈ L2(R2N ;CN ), where α is an even-

numerator fraction. Then

〈�,ĤN�〉 =
∫
R2N

⎛
⎝ 1

2m

N∑
j=1

|Dj�|2 + mω2

2
|x|2|�|2

⎞
⎠dx

= ω(N + deg ψα)
∫
R2N

|�|2 dx

+ 1

2m

∫
R2N

N∑
j=1

|∇j	|2|ψα|2 dx.

Proof. By taking an appropriate approximating sequence
in H 1(R2N ) = H 1

0 (R2N \ ´) (see [44], Lemma 3) we may
assume without loss of generality that 	 ∈ C∞

c (R2N \ ´)
(smooth with compact support outside ´). Then

Dj� = (−i∇j	)ψα + 	Djψα ∈ C∞
c (R2N \ ´)

and ∑
j

∫
|Dj�|2 dx =

∑
j

∫
Dj� · (−i∇j	)ψα dx

+
∑

j

∫
Dj� · 	Djψα dx,

where, using that αAj is real and a partial integration,∫
Dj� · 	Djψα dx

=
∫

i∇j� · 	Djψα dx +
∫

αAj� · 	Djψα dx

=
∫

�(−i∇j	) · Djψα dx

+
∫

�	(−i∇j · Djψα) dx +
∫

�	αAj · Djψα dx

= −
∫

(−i∇j	)ψα · (Dj� − (−i∇j	)ψα) dx

+
∫

�	Dj · Djψα dx.

Hence

∫ ⎛
⎝ 1

2m

∑
j

|Dj�|2 + mω2

2
|x|2|�|2

⎞
⎠dx

=
∫

�	ĤNψα dx + 1

2m

∫ ∑
j

|∇j	|2|ψα|2 dx

+ 1

2m

⎛
⎝∫ ∑

j

Dj� · (−i∇j	)ψα dx

−
∫ ∑

j

(−i∇j	)ψα · Dj� dx

⎞
⎠,

and by (15) it then remains to be proven that the last expression
is zero. Expanding the derivative and collecting the terms,
and making another partial integration [now for 	2 = |	|2 ∈
C∞

c (R2N \ ´)], one finds that it equals

i

2m

∑
j

∫
R2N

|	|2∇j · (Jj [ψα] + αAj |ψα|2) dx,

where J[u] := i
2 (u∇ū − ū∇u). Finally we may use that ∇ ·

A = 0 and the eigenfunction equation (15) and its complex
conjugate to show that∑

j

∇j · (Jj [ψα] + αAj |ψα|2) = 0

on R2N \ ´, which proves the proposition. �
The energy in the state � thus depends solely on the corre-

lations of the weight |ψα|2 and its balance with the regulator
	, which is required to vanish sufficiently fast as particles
come together. However, if these correlations effectively turn
out to decay faster than the average interparticle spacing then,
in analogy with dilute hard-core bosons [61,63], there may
be room for a smaller energy (note that 	 should not have
Dirichlet but rather Neumann-type boundary conditions at the
interparticle scale).

VI. R-EXTENDED ANYON GAS

That exact eigenstates for the many-anyon problem can be
found at all is far from trivial, and the reason for it to hold for
the above states is that they satisfy a remarkable simplifying
identity. Here we shall consider this identity in detail and
greater generality, in the context of the extended anyon gas.

By an “R-extended anyon” we mean that we have replaced
the singular Aharonov-Bohm flux on each anyon by a uniform
field on a disk of finite radius R > 0. In other words, we replace
(2) by (cf. [30,45,46,52,81,82])

Aj (x) :=
∑
k �=j

(x − xk)⊥

|x − xk|2R
, |x|R := max{|x|,R}, (21)

so that

curl αAj (x) = 2πα
∑
k �=j

1D(xk ,R)(x)

πR2

R→0−−→ 2πα
∑
k �=j

δxk
(x),

where 1D(y,R) denotes the indicator function on a disk of
radius R centered at y. Note that this form for the magnetic
interaction is actually the natural one from the perspective of
emergent anyons [30], for which the size R is implied by the
experimental conditions. There is also a natural dimensionless
parameter in the problem given by the ratio of the size
of the magnetic flux to the average interparticle distance,
γ̄ := R�̄1/2. This has been called the “magnetic filling ratio”
in [46,52,83].
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e

γ̄

α∗ = 0

α∗ = 1/3

α∗ = 1
e

γ̄

α = 1/3

α = 2/3

α = 1

α = 2
α = 3

FIG. 5. Dependence on the density γ̄ of the lower bound e(α,γ̄ ) for the ground-state energy of the extended anyon gas for some values of
α, with constants and scales chosen for illustrative purposes as explained in [46].

Based on the long-range local exclusion principle (7) and
further short-range magnetic bounds that arise only in this
extended context, it was shown rigorously in [46] that a
homogeneous gas of such R-extended anyons satisfies in the
thermodynamic limit (on a box of side length L → ∞ and
with fixed average density �̄ = N/L2) a universal bound for
the energy per particle of the form4

lim inf
N,L → ∞
N/L2 = �̄

E0(N )

N
� C e(α,γ̄ )

�̄

2m
, (22)

where C is a positive universal constant and (dimensionless;
see Fig. 5)

e(α,γ̄ ) ∼
{

2π
|ln γ̄ | + π (j ′

α∗ )2 � 2πα∗, γ̄ → 0 (fixed α �= 0),

2π |α|, γ̄ � 1.

This bound interpolates between a dilute regime where the
effect of the statistical repulsion dominates (note that there
is also, even for α ∈ 2Z \ {0}, a strictly positive interaction
energy which vanishes with the density similar to that of a hard-
core 2D Bose gas), and a dense regime where the dependence
on α matches that which is expected from average-field theory
(6). In [45] it was shown that for R-extended anyons in an
external trap V and in a limit such that the filling γ̄ is high
but the statistics parameter α small (“almost-bosonic” anyons;
see also [47]), the average-field approximation is a correct
description in the sense that the particles become identically
distributed in a self-generated magnetic field. However, given
the linear dependence on the strength of the magnetic field
|α| [our lower bound (22) is valid for any α ∈ R] for high
densities, and the periodicity in α for ideal anyons, there must
be some nontrivial interpolation between these two regimes.

Let us now introduce a convenient notation for an associated
scalar (super)potential (cf. [45])

wR(x) :=
{

ln |x|, |x| > R,

ln R + 1
2 (|x|2/R2 − 1), |x| � R,

4We are taking the lim inf (and assume Dirichlet boundary condi-
tions) here because, although the sequence is bounded, it has not yet
been proved in general that a limit exists.

with

∇wR(x) = (x)−1
R := x/|x|2R

and

WR(x) :=
N∑

j,k=1
j �=k

�wR(xj − xk) = 2π

N∑
j,k=1
j �=k

1D(0,R)

πR2
(xj − xk).

We then have the following property, which is essentially a
result concerning supersymmetry of the corresponding Pauli
operator. It has been discussed in that context in [73,81];
however, we will here supply a different proof.

Proposition 2. Let �±(x) = e∓α
∑

j<k wR(xj −xk )f∓(z), where
f+ is analytic (f− antianalytic) in all the variables zj . Then

N∑
j=1

D2
j �± = ±αWR �±.

In particular, �± are for R = 0 generalized zero-energy
eigenfunctions of the N -anyon kinetic energy operator T̂α

considered on R2N \ ´.
Proof. We find it convenient to work with G(C2), the

complex Clifford algebra over R2, and write for the π/2-
rotation x⊥ = (x e1 + y e2)⊥ = xI , i.e., multiplication from
the right with the pseudoscalar I = e1e2. Note that

∇j�± = e∓α
∑

i<k wR(xi−xk )

⎛
⎝∓α

∑
k �=j

(xj − xk)−1
R f∓ + ∇j f∓

⎞
⎠,

and thus

Dj�± = e∓α
∑

i<k wR(xi−xk )

×
⎛
⎝α

∑
k �=j

(xj − xk)−1
R (±i + I )f∓ − i∇j f∓

⎞
⎠.

Furthermore,

Dj · Dj�± = [(Dje
∓α

∑
i<k wR(xi−xk )) − i e∓α

∑
i<k wR(xi−xk )∇j ]

·
⎛
⎝±iα

∑
k �=j

(xj − xk)−1
R (1 ∓ iI )f∓ − i∇j f∓

⎞
⎠
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= ±α
∑
k �=j

∇j · (xj − xk)−1
R (1 ∓ iI )�±

= ±α
∑
k �=j

�wR(xj − xk)�±,

where the fundamental simplifying identity used is that for any
x,y ∈ C2,

x(1 ± iI ) · y(1 ± iI ) = 0,

since I 2 = −1 and xI · yI = x · y. We have also used ∇ ·
∇I = ∇ · ∇⊥ = 0, and that for z± = x ± iy and f : C → C
analytic

∇(f (z±)) = f ′(z±)(e1 ± ie2) = f ′(z±)e1(1 ± iI ),

and �f = 0. �
In the R-extended case we therefore take as our trial states

� = 	ψα with the Jastrow factor in (8) and (9) replaced by
e−α

∑
j<k wR(xj −xk ), and in the case of the homogeneous gas the

ϕk are taken to be the eigenstates of the Neumann Laplacian
on the square QL of side length L (thus ϕ0 ≡ L−1). Note that
these states are regular even without the factor 	, since

e−αwR (x) =
{|x|−α, |x| > R,

R−αe
α
2 (1−|x|2/R2), |x| � R.

However, in order to obtain the correct balance for a low total
energy, and to take the appropriate limits, we expect that an
additional regulator is still necessary. In particular, in the dilute
limit γ̄ = R�̄1/2 → 0 the Jastrow factor describes an attraction
which needs to be turned into a short-range repulsion, as
illustrated by the below reformulation of the energy in terms
of 	. The proof is almost identical to that of Proposition 1,
where the use of the identity (15) is replaced by Proposition 2.

Proposition 3. Assume 	 ∈ H 1
0 (QN

L ;R) is such that � =
	ψα ∈ DN

α and (∇	)ψα ∈ L2(QN
L ), where α ∈ [0,1] is an

even-numerator fraction. Then

2m〈�,T̂α�〉 =
∫

QN
L

N∑
j=1

|Dj�|2 dx

=
∫

QN
L

⎛
⎝ N∑

j=1

|∇j	|2 + αWR|	|2
⎞
⎠|ψα|2 dx.

In the dilute limit, in which the scattering length of the
soft-disk potential αWR becomes relatively small, this again
seems to be able to produce a low energy for even-numerator
states. Also, for odd-numerator states, naively estimating the
energy of � in terms of that of the one-body states ϕk of the
Slater determinants in (9) yields the tentative bound

2mE0(N ) � ν 2πK2/L2 ∼ 2πα∗�̄ N,

which again matches the available lower bounds. Note also
that the repulsive pair potential αWR that emerged above
matches in the dilute limit the point interaction conventionally
introduced to regularize ideal anyons [84].

VII. CONCLUSIONS

With the ansatz given by the discussed trial states, we have
reduced the difficult problem of bounding the ground-state

energy of a system of N Abelian anyons with even-numerator
rational statistics parameter to the study of the N dependence
of the quantity∫

R2N

(∑N
j=1 |∇j	|2 + αWR|	|2)|ψα|2 dx∫

R2N |	|2|ψα|2 dx
,

which is essentially the energy of a repulsive 2D Bose gas
described by 	 but weighted by |ψα|2. One could try to
estimate this using the techniques of Dingle, Jastrow, and
Dyson (see [60,64] and references therein). Alternatively,
Monte Carlo methods could prove useful in this formulation.
In any case, since the weight |ψα|2 is designed so as to
cancel any long-range correlations by means of its clustering
properties, and since the energy of a dilute 2D Bose gas is
logarithmically small [61,63], the discussed approach indeed
looks very promising. Also, if the anyons are not completely
free but an additional attraction is added then it seems rather
clear from the above expression with suitable 	 that they
would prefer to cluster in this way.

Finally, let us remark that if these are indeed the correct
(approximative) ground states for a many-body system of
Abelian anyons, then they could possibly also explain from
a more fundamental perspective the occurrence of such
clustering states in the FQHE (cf. [15], pp. 239–240, and note
that the usual Read-Rezayi states are supposed to be built of
clusters of k anyons with α = 2/k in a zero magnetic field).
Furthermore, the elementary excitations of such an Abelian
anyon condensed ground state may, according to well-known
properties of clustering states, in turn be non-Abelian anyons.

Note added. The author has in very recent unpublished work
with R. Seiringer proved that the ground-state energy of the
ideal anyon gas satisfies upper and lower bounds in terms of
α2, i.e., linear in α, up to a constant which is weaker than
that in previous bounds in terms of α∗ such as (3) and (22).
However, the arguments discussed here for the proposed trial
states and the conclusions of this paper suggest that these states
may actually be closer to the true ground states of the problem,
and that the exact energy could be lower for even-numerator
α than for odd numerators. Furthermore, in the scale-free
ideal case the clustering behavior seems to be balanced by
the energy cost of localization of the uncertainty principle,
but this may well change with the addition of an attractive
interaction.
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