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Macroscopic realism of quantum work fluctuations
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We study the fluctuations of the work performed on a driven quantum system, defined as the difference between
subsequent measurements of energy eigenvalues. These work fluctuations are governed by statistical theorems
with similar expressions in classical and quantum physics. We show that we can distinguish quantum and
classical work fluctuations, as the latter can be described by a macrorealistic theory and hence obey Leggett-Garg
inequalities. We show that these inequalities are violated by quantum processes in a driven two-level system and
in a harmonic oscillator subject to a squeezing transformation.
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I. INTRODUCTION

The thermodynamics of quantum systems has become a
rapidly expanding field of research in recent years [1,2]. One of
its main lines of research has been triggered by the discovery of
fluctuation relations, especially the classical work fluctuation
theorems [3,4] and the derivation of their quantum mechanical
counterparts [5]. One prominent example of such a fluctuation
theorem is the Jarzynski relation [3],

〈e−βw〉w = e−β�F , (1)

which relates the average work w performed during a nonequi-
librium transformation with the free-energy difference �F

between two thermal states at inverse temperature β = 1/kT .
It has been shown that if the work performed on a quantum
system is defined in a suitable way, the Jarzynski inequality (1)
holds for classical as well as for quantum systems [6]. While
there has been some debate as to what “suitable” means in
this context [5,7,8], a widely accepted definition of quantum
work is given by the difference in the outcome of projective
measurements of the Hamiltonian operator at different times.
With this definition, the quantum work becomes, in general, a
fluctuating quantity, similar to the fluctuating work in classical
nonequilibrium thermodynamics. While the (nonequilibrium)
work is characterized by a (classical) probability density in
both cases, the origin of the randomness can be quite different.

In classical physics, energies have definite values and work
fluctuations stem from (thermal) fluctuations of mixed initial
states or, in the case of an open system, the random exchange
of energy with the particles in the surrounding heat bath, while
in quantum mechanics, they originate partially from quantum
uncertainty and the resulting fundamental randomness of the
outcome of measurement, i.e., Born’s rule and the projection
postulate.

In this work, we address the question of “how quantum is
quantum work” by investigating to what extent the different
origins of quantum and classical work fluctuation have
measurable consequences.

Our approach to the problem will be to consider processes
where the energy of the system is measured multiple times (see
Fig. 1) and where we can hence study temporal correlations
in the work fluctuations. If the work behaves classically, it
should be describable as a macroscopic, realistic variable,
which is measurable in a noninvasive manner, and hence its
correlations should obey the Leggett-Garg inequalities [9,10].

Leggett-Garg inequalities have been used to analyze quantum
effects in thermodynamics processes and heat engines [11].
While they only apply for correlation functions of dichotomic
variables in their original form, entropic Leggett-Garg in-
equalities have been derived for correlations of more general
variables.

This article is structured as follows: In Sec. II, we introduce
the definition of quantum work and its probability distribution.
In Sec. III, we recall the dichotomic and entropic Leggett-
Garg inequalities and we discuss their application to the
work done on a quantum system. In Secs. IV and V, we
investigate whether the inequalities are obeyed or violated for
a driven two-level system and a squeezed harmonic oscillator,
respectively. In Sec. VI, we discuss the consequences and
possible applications of our results.

II. QUANTUM WORK AND ITS PROBABILITY
DISTRIBUTION

Consider an isolated quantum system with a time-
dependent Hamiltonian Ht = H (λt ), where λt is a varying
control parameter. The state of the system obeys the Liouville–
von Neumann equation ih̄ρ̇t = [Ht,ρt ], and, in general, work
will be performed on it, i.e., energy will be injected into (or
removed from) the system. In order to determine the work
performed during a given process (quantum as well as classi-
cally), one measures the energy of the system before and after
the process. While in classical systems such measurements are
unproblematic, the measurement on a quantum system will in
general have random outcomes and it will change the state of
the system. If one wants to measure the work performed on the
system between the times t0 and t1, one has to probe the system
energy at the beginning and the end of the driving. This will
yield one of the eigenvalues E0

k0
of Ht0 with a probability pk0 ,

where pki
= tr[�i

ki
ρi], and, subsequently, an eigenvalue E1

k1

of Ht1 , with the joint probability pk1,k0 = pk1|k0pk0 depending
on the first measurement at t0 and the conditional probability
pki |kj

= 〈ki |Ui,j |kj 〉. Here, we have introduced the projection
operators on the energy eigenstates, �α

kα
= |kα〉〈kα| of Ht

at t = tα, α = 0,1 and the time-evolution operator Ui,j =
T exp[−i

∫ ti
tj

Htdt] from time tj to ti (T denotes the time
ordering operator). Subsequent time evolution of the quantum
state and measurements are described by the same formalism;
cf. Fig. 1.
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FIG. 1. Illustration of our work-measurement process. The sys-
tem is prepared in an initial thermal state and a measurement of its
energy projects it into an energy eigenstate |k0〉 of the Hamiltonian Ht0

at t = t0. The Hamiltonian leads to a time evolution of the quantum
state between t0 and the later time t1, which can be expressed as a
unitary operator U1,0, which governs the expansion of the state on
the energy eigenstates of Ht1 and causes the stochastic nature of the
energy measurements at t1. The work is defined as the difference
E1

k1
− E0

k0
between the system eigenenergies measured, and, by

evolving the system further and measuring the energy at the later
time t2, we can study correlations between the work done during the
two evolution processes.

One obtains the work by merely subtracting the measured
energies,

Wk1,k0 = E1
k1

− E0
k0

, (2)

and since it depends on the random outcome of projective
energy measurements, it is an inherently fluctuating quantity.
Its probability distribution is given by [5]

p(w) =
∑
k0,k1

δ(w − Wk1,k0 )pk1,k0 , (3)

where, according to the above arguments,

pki,kj
= tr

[
�i

ki
Ui,j�

j

kj
ρj�

j

kj
U

†
i,j

]
(4)

is the joint probability distribution for measuring E
j

kj
at tj and

Ei
ki

at ti .
Assuming that the system is initially in a thermal state ρ0 =

exp(−βH0)/Z0 with Z0 = tr[−βH0], it is rather straightfor-
ward to use the characteristic function [6] for the work proba-
bility distribution given by Eq. (3) and verify that the quantum
Jarzynski equality (1) holds, where 〈. . . 〉w = ∫

. . . p(w)dw

and �F = F1 − F0 with the free energy Ft = −(1/β) ln(Zt ).
Instead of measuring the energy only in the beginning

and the end of a process, one might perform several energy
measurements at different times; see Fig. 1. Probing the system
energy at three instants of time, t0,t1,t2, then leads to the joint
probability distribution,

pk2,k1,k0 = tr
[
�2

k2
U2,1�

1
k1

U1,0�
0
k0

ρ0�
0
k0

U
†
1,0�

1
k1

U
†
2,1

]
. (5)

By summing over indices, one obtains, e.g., pk1,k0 and pk2,k1

from (5). Note that since in general [�j

kj
,Ui,j ] �= 0, the

distribution arising from summing over the middle index k1 is
not equivalent to the distribution pk2,k0 without measurement
at t1.

From Eq. (5), we define the joint probability,

p(w1,w2) =
∑

k0,k1,k2

δ
(
w1 − Wk0,k1

)
δ
(
w2 − Wk1,k2

) × pk2,k1,k0 ,

(6)

to perform the work w1 between t0 and t1, and the work
w2 between t1 and t2. Note that its marginal distribution
p(w1) = ∫

dw2p(w1,w2) is equivalent to Eq. (3) and hence
fulfills the fluctuation relations, while the marginal p(w2) =∫

dw1p(w1,w2) will in general not fulfill such relations
because the system is not in an equilibrium state at t1.

Using Eq. (6), the probability for the total work wtot =
w1 + w2 yields

p(wtot) =
∫

dw1dw2δ(wtot − [w1 + w2])p(w1,w2)

=
∑

k0,k1,k2

δ
(
wtot − Wk2,k0

)
pk2,k1,k0 , (7)

i.e., it depends, as one would expect, only on the difference
between the first and the last energy measurements. While the
intermediate measurements will, in general, influence the final
energy measurement [12], one can prove that the Jarzynski
relation (1) still holds for the total work [12,13].

The measurement backaction and, in particular, the de-
struction of quantum mechanical coherence by the middle
measurement (the first measurement acts on a thermal state
with already vanishing coherences) presents a fundamental
difference between the definition of work in quantum and
classical contexts. While a joint pseudoprobability distribution
for the values of the noncommuting energy observables at
different times can be used to theoretically define work with the
proper mean value and fluctuation properties [14], it has been
shown that no protocol to experimentally measure work exists
that yields a mean value equal to the average energy difference
and follows the usual statistics in the case of incoherent
mixtures [15].

In this article, we shall instead retain the generally
accepted definition of work and address the consequences
of its invasiveness in a more quantitative manner. To this
end, we shall appeal to the Leggett-Garg inequalities [9,10],
which precisely concern correlations between measurements
performed at different times on a quantum system. We note
that Leggett-Garg inequalities have also been applied to char-
acterize the quantumness of a quantum heat engine through
the correlation between the working system observables at
different times [11].

III. LEGGET-GARG INEQUALITIES FOR
WORK MEASUREMENTS

Assuming macroscopic realism and noninvasive measura-
bility of a dichotomic variable that is measured at different
times, ti , with output values Qi = ±1, Leggett and Garg
derived the inequality [9,10]

C21 + C32 − C31 � 1 (8)

for the two-time correlation functions Cij = 〈QiQj 〉.
Here, macroscopic realism means that a (macroscopic)

object with several distinct states is at any time definitely in
one of these states, while noninvasive measurability means that
it is, at least in principle, possible to determine in which state
the system is without disturbing it. If both conditions were
fulfilled, it would be possible to describe the process in Fig. 1
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as a classical process with a probability distribution for the
system energy existing independent from the measurements.

While Eq. (8) is obeyed for classical dynamics, measure-
ments on a quantum system may violate the Leggett-Garg
inequality [16,17]. This violation is readily understood as a
consequence of the measurement backaction, which is absent
in the classical case. In the present work, we shall use
the Leggett-Garg inequality to assess how the definition of
quantum work as the result of projective energy measurements
necessarily implies a quantitative difference between the
fluctuations of quantum and classical work. Note that Eq. (8)
is not associated with the absolute magnitude of energy and
work measurements, but only the statistical correlations of the
variables Qi = ±1, which we can associate with the projective
measurements on two different eigenstates.

For systems with more eigenstates, the measurement
outcome Qi at time ti may attain more than two values
{qi}, and an alternative, entropic Leggett-Garg inequality has
been derived for the correlations between such multivalued
measurement outcomes [18],

H (Q2|Q0) � H (Q2|Q1) + H (Q1|Q0). (9)

Here, H (Qj |Qi) = −∑
qj ,qi

p(qi)p(qj |qi) log2 p(qj |qi) is
the (classical) conditional entropy, where p(qj |qi) is the
conditional probability for outcome qj given the earlier
outcome qi [occurring with probability p(qi)].

We shall now apply the Leggett-Garg and entropic Leggett-
Garg inequalities to the correlations given by Eq. (4) of energy
measurements. These correlations reflect how the definition
of work is affected by measurement backaction effects and,
hence, to what extent the underlying thermodynamic transfor-
mation can be modeled as a classical process.

The mean conditional entropy for energy measurements at
two instants of time is given by

H (Ej |Ei) = −
∑
ki ,kj

pkj ,ki
log2 pkj |ki

, (10)

where the conditional probability pkj |ki
is the quantum

mechanical transition probability |ki〉 → |kj 〉 between the
eigenstates of the Hamiltonian at times ti and tj , as governed
by the unitary time-evolution operator Uj,i , defined above.

For a slowly varying Hamiltonian, the system will adia-
batically follow the time-dependent eigenstate in which it is
prepared by the first measurement, and hence pk1|k0 = δk1,k0

(note the eigenenergies may generally differ and a definite,
nonvanishing amount of work is hence done on the system).
Also, during the subsequent evolution and measurement, the
system follows the same (kth) eigenstate, and due to the
definite outcomes, H (Ej |Ei) = 0 and the entropic Leggett-
Garg inequality (9) for energy measurements is trivially
fulfilled. In the following sections, we shall hence consider
systems that do not evolve adiabatically.

Noting that the probability distribution for the work
done on the system is governed by the joint probability
of the two pertaining energy measurements, wkj ,ki

= E
j

kj
−

Ei
ki

, p(wkj ,ki
) = p(kj ,ki) = p(kj |ki)p(ki), we shall introduce

the corresponding entropy H (wji) = H (Ej ,Ei) = −∑
ki ,kj

pkj ,ki
log2 pkj ,ki

. Using the identity between conditional and
joint entropies [19], H (Ej |Ei) = H (Ej ,Ei) − H (Ei), where

H (Ei
ki

) = −∑
ki

pki
log2 pki

is the entropy of the distribution
pki

, we can rewrite the entropic Leggett-Garg inequality (9) as
a relation for the work distributions,

H(w20) � H(w21) + H(w10) − H (E1). (11)

Here, H(wij ) = −∑
p(wij )�=0 p(wij ) log2 p(wij ) is the entropy

of the work distribution, which is discrete if the corresponding
energy spectrum is discrete. Note that Eq. (11) does not only
depend on the entropy of work distributions but also on the en-
tropy of the middle energy measurement H (E1). Disregarding
this term leads to an inequality that is more easily fulfilled and
which reflects that in a classical system, the entropy of the work
distribution, without the middle measurement at t1, is always
smaller than with this measurement taking place because
classical measurements do not decrease the information [18].
Note that it is easier to observe a violation of the Leggett-Garg
inequality if the entropy of the middle energy measurement
H (E1) is retained in Eq. (11).

As a side remark, we note that to go from Eq. (10)
to Eq. (11), we assume that the work distribution has no
“degeneracies”, i.e., there are no kj ,ki and k′

j ,k
′
i with Wkj ,ki

=
Wk′

j ,k
′
i
. While such degeneracies may be easy to avoid, they

can also be accounted for by using the grouping formula
for the Shannon entropy [19] where joint probabilities with
Wkj ,ki

= Wk′
j ,k

′
i

are grouped together. If p = {p1, . . . ,pn} is
a probability distribution and q = {q1, . . . ,qm} with qj =∑

i∈Ij
pi is another distribution formed by “grouping” the

probabilities pi which correspond to a subset of events with
indices Ij , the Shannon entropy yields

H (q) = H (p) −
∑

j

qjH

({
pi

qj

|i ∈ Ij

})

= H (p) − H̄ (q). (12)

Hence, the grouping reduces the Shannon entropy by an
amount given by weighted entropies of subset probabilities.

IV. VIOLATION OF THE CONVENTIONAL AND
THE ENTROPIC LEGGETT-GARG INEQUALITIES

FOR A TWO-LEVEL SYSTEM

We recall that the work is defined through projective
measurements in the eigenstate basis of the time-dependent
Hamiltonian. One should hence determine the time-evolution
operator in Eq. (4) by solving the Schrödinger equation, and
subsequently evaluate its matrix elements between the eigen-
states at different times. Since both the time evolution of the
state of the system and the time dependence of the eigenstates
are governed by unitary operations, the evolution with respect
to the time-dependent eigenbasis of the Hamiltonian is also
given by a unitary matrix. For the evolution between the
first and the middle measurement, this matrix can hence be
expressed as

U1,0 =
(

e
i
2 (α+β) cos θ

2 e
i
2 (α−β) sin θ

2

−e
i
2 (α−β) sin θ

2 e
−i
2 (α+β) cos θ

2

)
, (13)

with angles α, β, and θ . Since this matrix yields the evolution
of the system with respect to the basis of energy eigenstates,

012115-3



RALF BLATTMANN AND KLAUS MØLMER PHYSICAL REVIEW A 96, 012115 (2017)

the value of θ directly parametrizes the outcome probabilities
for the energy measurements and a small value of θ , e.g., rep-
resents the case of adiabatic evolution. In that limit, the system
follows the energy eigenstates and the measurement outcomes
at different times are correlated. With the representation of the
unitary evolution operators U1,0 and the similarly defined U2,1,
we readily obtain the joint probabilities in Eq. (4).

For simplicity of analysis, we set α = β = 0, so that U1,0

becomes a real rotation matrix. The angle θ in Eq. (13) controls
how much population is transferred between the eigenstates
at different times and, for simplicity, we shall assume that
U2,1 = U1,0.

Mutatis mutandis. We can obtain the joint probabilities
pk2,k0 and pk2,k1 , so that we can study the violation given by
Eq. (8), where the dichotomic variable takes the values ±1 in
the ground and excited states, and of Eq. (11).

In order to quantify the violation of the Eqs. (8) and,
respectively, Eq. (11), we define the Leggett-Garg parameters,

Kcor
3 = 1

4 (1 − C01 − C02 + C12) (14)

and

Ken
3 = 1

2 [H(w21) + H(w10) − H(w20) − H (E1)], (15)

where negative values of the parameters are a signature of
nonclassical behavior. In Fig. 2, we plot Kcor

3 and Ken
3 as

functions of the angle θ . There is some arbitrariness in
assigning the values Qi = ±1 to the two outcomes of the
energy measurements and, in addition, to for Kcor

3 , which does
not violate the Leggett-Garg inequalities for values of θ around
π , we show the function Kcor′

3 which follows from Kcor
3 by

exchanging the values of Q1 = ±1 [10]. By plotting both Kcor
3

and Kcor′
3 , we show that energy measurements, indeed, violate

the Leggett-Garg inequality for all values of θ �= nπ/2. As
the initial state, we chose a thermal state with β = 1/�E,
where �E is the energy splitting of the ground and excited
states. Actually, for a two-level system, the violation of the
Leggett-Garg inequality does not depend on the initial state
and temperature, as the matrix U1,0 yields the same probability

0.0 0.5 1.0 1.5 2.0

θ/π

0.0

0.2

0.4

0.6

0.8

1.0

1.2 Ken
3 Kcor

3 Kcor
3

FIG. 2. The Leggett-Garg parameters given by Eqs. (14) and (15)
as a function of the angle θ . Negative values (the gray area) imply a
violation of the corresponding inequality.

to obtain the same and the opposite eigenstates in the middle
measurement for both initial outcomes.

Figure 2 shows that for small finite θ , all curves are in
the gray area where the Leggett-Garg inequality is violated.
They, however, differ considerably. While either Kcor

3 or Kcor′
3

violate the conditions for macroscopic realism for all angles
except for multiples of π/2, nonclassical correlations between
measurements are not always revealed by the entropic Leggett-
Garg inequality.

V. VIOLATION OF THE ENTROPIC LEGGETT-GARG
INEQUALITY FOR A SQUEEZED HARMONIC

OSCILLATOR

In this section, we study the entropic Leggett-Garg in-
equality for a harmonic oscillator. The quantum harmonic
oscillator is in many aspects well described by classical
physics, e.g., the evolution of the continuous position and
momentum operators solve the same coupled linear equations
as the classical coordinates. The work done on harmonically
trapped particles has been studied quite extensively in both the
classical and the quantum case [20–23].

The harmonic oscillator is described by the Hamiltonian

H = p2

2m
+ 1

2
mω2x2 = h̄ω

(
a†a + 1

2

)
, (16)

with a = √
mω/2h̄[x + (i/mω)p] and [a,a†] = 1. Driving

the system with an arbitrary time-dependent potential strength
ωt will maintain the quadratic form of the Hamiltonian, and
hence result in linear coupled equations for the position and
momentum operators or, equivalently, for the raising and
lowering operators. Their time dependence in the Heisenberg
picture can hence be represented by a Bogoliubov (squeezing)
transformation [24,25],

a(τ ) = U †
τ a Uτ = μ(τ )a + ν(τ )a†, (17)

where μ(τ ) and ν(τ ) are complex functions depending on
details of the driving and Uτ is the corresponding time-
evolution operator.

As in the case of the two-level system, we shall express
the evolution with respect to the operators defining the
energy measurements, Ht = h̄ωt (a

†
t at + 1

2 ). These are the
adiabatically evolved operators and they are also given by a
Bogoliubov transformation. Hence, without loss of generality,
we can also represent the transformation of the quantum
state, expressed in terms of the raising and lowering operators
pertaining to the time-dependent Hamiltonian as a Bogoliubov,
or squeezing, transform,

U
†
10 at0U10 = cosh rat1 + sinh re−iφa

†
t1 . (18)

For simplicity, we omit the phase φ and, using Eq. (18) as
the propagator between two energy measurements, the joint
probability distribution yields

pk1,k0 = tr
[
�1

k1
U10�

0
k0

ρ0�
0
k0

U
†
10

]
(19)

= G2
k1,k0

(r)ρk0,k0 , (20)

with ρnn = 〈n|ρ0|n〉 and Gmn(r) = 〈m|Ur |n〉. The transi-
tion matrix elements for squeezed number states Gmn(r)
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FIG. 3. Violation of Eq. (11) for a squeezed harmonic oscillator
as a function of the squeezing parameter z (between t0 and t1) and z̄

(between t0 and t1). The solid contour encloses the area whereKen
3 gets

negative, i.e., where the inequality gets violated. The dashed contour
denotes Ken

3 = −0.05. As the initial state, we assume a thermal state
with β = 0.1(h̄ω0)−1.

are provided in the Appendix following analytical results
in [26,27]. With the above preparation, we are ready to address
the entropic Leggett-Garg inequality (11), where the time
evolution between t0 and t1 and between t1 and t2 are both
governed by (18), but possibly with two different arguments
r1 and r2.

Plotting the entropic Leggett-Garg parameter Ken
3 as a func-

tion of r1 and r2 for a thermal initial state with β = 0.1(h̄ω0)−1

in Fig. 3 reveals that also for the harmonic oscillator, Eq. (11)
can be violated and the quantum work obeys nonclassical
statistics. Interestingly, even a vanishing small amount of
squeezing is enough to violate the Leggett-Garg inequality.
Increasing the squeezing strength increases the violation until
a maximal violation is obtained at r1 = r2 ≈ 0.02. Further
increase of the squeezing parameter leads to a less pronounced
violation and, finally, Ken

3 turns positive, indicating that the
works statistics can no longer be distinguished from that of
a classical process. This can be understood as a consequence
of the fact that the squeezing of thermal states and number
states generally broadens the number distribution, turning
sub-Poissonian into super-Poissonian statistics [28]. Note also
that for strong squeezing, there is an asymmetry between
r1 (the squeezing between t0 and t1) and r2 (the squeezing
between t1 and t2). In this regime, too much squeezing in
the second interval prevents the violation of the Leggett-Garg
inequality.

It is an interesting question how the violation depends
on the temperature of the thermal initial state. We recall
that for the two-level system, the outcome correlations are
independent of the outcome of the first measurement, and
hence of the initial state. This is different for the oscillator,
since the probability for measuring high-energy outcomes in
the first measurement depends on the initial temperature and
does affect the subsequent correlations. In Fig. 4, we plot
the Ken

3 for different values of inverse temperatures β as a
function of the squeezing parameter r , where we set r1 = r2.
Interestingly, the violation for larger β, i.e., lower temperature,
is less pronounced than for small β. Hence, the quantum

0.00 0.05 0.10 0.15 0.20 0.25 0.30

r

−0.1
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0.2

0.3

0.4

0.5

K
en 3

β = 0.1

β = 0.5

β = 10.0

FIG. 4. The entropic Leggett-Garg parameter for a squeezed
harmonic oscillator as a function of the squeezing parameter and
different thermal initial states with inverse temperatures β expressed
in multiples of 1/h̄ω0.

work statistics appears more nonclassical for higher initial
temperatures. This can also be seen in the upper plot of Fig. 5,
where we plot the minimal value ofKen

3 as a function of β. This
can be understood by the fact that for higher temperatures, the
system is more likely to start in a higher number state after
the first measurement, which is more strongly affected by the
squeezing.

Figure 4 also reveals that for increasing β, the values for
the squeezing parameter r1 = r2, where the maximal violation
occurs, increase. This is studied more generally in Fig. 5,
where we plot the value of r leading to maximal Leggett-Garg
violation as a function of β. We observe a nonmonotonous
dependency with a maximum around β = 1 and approach
towards a constant level for large β.

VI. CONCLUSION

We have shown that quantum work, defined according
to Eq. (2), may show statistical correlations that cannot be
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K
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FIG. 5. Maximal Leggett-Garg violation. Top: The smallest value
of Ken

3 as a function of β. Bottom: The corresponding values of r ,
where Ken

3 assumes the minimal value.
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described by classical macrorealism. This follows from the
violation of Leggett-Garg and entropic Leggett-Garg inequal-
ities for work measurements. In a driven two-level system as
well as in a harmonic oscillator subject to squeezing, these
inequalities are violated for certain driving parameters and
initial temperatures. When both can be evaluated, the entropic
and the normal Leggett-Garg inequalities do not necessarily
identify the same correlations as nonclassical, as their violation
is only a sufficient but not a necessary criterion to abandon
macrorealism. This points to the interest in developing tighter
bounds to rule out the violation of macroscopic realism over
broader parameter ranges.

The study of temporal correlations and their implication
for both foundational and practical questions resembles the
situation in the 1950s, where a multitude of optical phenomena
could be described by stochastically fluctuating classical fields,
but where the Hanbury-Brown and Twiss measurements of
(classical) intensity correlations spurred [29] discussions about
the general validity of classical modeling. This led to the
insight that temporal fluctuations in intensity measurements
can, indeed, exclude classical descriptions of the light field,
and it stimulated the emergence of quantum optics as a research

field. Nonclassical properties of light are, e.g., witnessed by
temporal noise correlations that violate Cauchy-Schwarz in-
equalities, antibunching, and higher-order interference effects,
which have in several cases turned out to be useful properties,
e.g., for precision sensing.

In this spirit, our work is an attempt to quantify temporal
quantum correlations involved in thermodynamic processes
and might be relevant for the evaluation and design of
work extraction protocols [30,31] and (measurement-based)
quantum thermal machines [32], where it was shown recently
that the efficiency of cyclic processes may nontrivially involve
correlations between subsequent cycles [33].
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APPENDIX: ANALYTICAL FORMULA FOR Gmn(z)

In this appendix, we show the explicit expression for the
matrix element Gmn(z) derived in [26–28]. It yields

Gmn(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)m/2
√

m!n!
cosh r

∑N
i=1

(−4)i (sinh z)(m+n)/2−2i (2 cosh z)−(n+m)/2

2i!(1/2m−i)!(1/2n−i)! for m,n even

(−1)(m−1)/2
√

m!n!
cosh r

∑N
i=1

(−4)i (sinh z)(m+n)/2−2i−1(2 cosh z)−(n+m)/2−1

(2i+1)![1/2(m−1)−i]![1/2(n−1)−i]! for m,n odd

0 else,

(A1)

where the summation ends at N = min{m/2,n/2} for n,m even and N = min{(m − 1)/2,(n − 1)/2} for n,m odd, respectively.
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