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In this paper, we prove that KG(3) < KG(4), where KG(d) denotes the Grothendieck constant of order d .
To this end, we use a branch-and-bound algorithm commonly used in the solution of NP-hard problems. It
has recently been proven that KG(3) � 1.4644. Here we prove that KG(4) � 1.4841, which has implications for
device-independent witnessing dimensions greater than two. Furthermore, the algorithm with some modifications
may find applications in various black-box quantum information tasks with large number of inputs and
outputs.
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I. INTRODUCTION

The Grothendieck constant KG [1] is an enigmatic constant
arising in Banach space theory [2] with several recent
applications in communication complexity [3] and algorithms
[4,5]. It is known to be in the range 1.6769 < KG < 1.7823,
however, its exact value is still unknown. The lower bound
above has been given by Davie and Reeds [6], and the upper
bound is due to Krivine [7]. There is a refined version of the
Grothendieck constant, the Grothendieck constant of order d,
denoted by KG(d). The definition of KG(d) for any finite d � 2
is given below. Note that the original constant KG is recovered
for d → ∞.

Let us first define L(M) by the optimization problem,

L(M) = max
ai=±1,bj =±1

n∑
i=1

n∑
j=1

Mijaibj , (1)

over all possible signs of ai,bj , i,j = 1, . . . ,n, where M =
(Mij ) is an arbitrary n × n real-valued matrix. The optimiza-
tion problem (1) is called Kn,n-quadratic programming in the
computer science literature [8]. This is known to be an NP-hard
problem in the parameter n [9]. The Grothendieck inequality
[1,10] states that∑n

i=1

∑n
j=1 Mij �ai · �bj

L(M)
� K(d), (2)

for all unit vectors �a1,�a2, . . . ,�an ∈ Rd and �b1,�b2, . . . ,�bn ∈ Rd ,
where K(d) is a universal constant for a fixed d. The smallest
value of this constant K(d) such that the inequality still holds is
called the Grothendieck constant of order d, which we denote
by KG(d). Recall that KG = limd→∞ KG(d).

Despite efforts, the value of the constant KG(d) is not
known in general and its exact value is only known for d = 2:
KG(2) = √

2 [7,11]. For larger d, there appeared better and
better lower bounds [6,12–16] and upper bounds [7,17,18] to
KG(d) in the literature.

Our goal is to improve on existing lower bounds for KG(d)
in the case of small dimensions d. Note that according to
the definition (2), a lower bound to KG(d) arises by giving
an explicit matrix M and explicit unit vectors �ai and �bj in
dimension d. Denoting by

Q(M,d) =
n∑

i=1

n∑
j=1

Mij �ai · �bj (3)

the nominator in the left-hand side of the inequality (2), we
get the following lower bound:

Q(M,d)

L(M)
� KG(d). (4)

Currently, the best-known lower bound is given by KG(4) �
1.4456 in Ref. [14]. In this paper, we improve on this bound up
to KG(4) � 1.4841. Since KG(3) is known to be smaller than
1.4644 [18], the strict relation KG(3) < KG(4) follows. As a
by-product, we also improve the best lower bound on KG(3).
To this end, we combine the so-called distance algorithm
[16,19] with a branch-and-bound algorithm [20]. Let us note
that there is a connection between the Grothendieck constant of
order d and the nonlocality of XOR games [21]. This link has
been established by Tsirelson [22,23] and further expanded in
Ref. [24]. Our result KG(3) < KG(4) will have implications in
this direction as well, entailing a so-called dimension witness
for systems beyond qubits [25]. Since both the distance and the
branch-and-bound methods have been applied independently
in versatile schemes, we believe that together they will find
applications in other nonlocality scenarios and large-scale
quantum information tasks as well.

The paper is organized as follows. In Sec. II, we introduce
the branch-and-bound (BB) algorithm to solve problem (1) and
we also present test cases showing its performance for large n

matrix dimensions. In Sec. III, the lower bounds are improved
both for KG(3) and KG(4). In particular, a 92 × 92 matrix
M is constructed in Sec. III A showing that KG(4) � 1.4731,
which is further improved to KG(4) � 1.4841 in Sec. III B
by invoking the distance algorithm. Similarly, it is shown
in Sec. III C using a 90 × 90 matrix that KG(3) � 1.4359.
Note that the best lower bound so far was KG(3) � 1.4261,
presented in Ref. [16]. The connection with nonlocal quantum
correlations and the implications for device-independent di-
mensions witnesses are discussed in Sec. IV. The paper ends
with conclusions in Sec. V.

II. THE BRANCH-AND-BOUND (BB) ALGORITHM

A. Description of the algorithm

Let us recall from the introduction that a good lower bound
to KG(d) requires a suitable n × n matrix M along with a
specific arrangement of unit vectors �ai,�bj . Armed with these,
we also need a method which is able to efficiently evaluate the
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maximum L(M) in formula (1) for large matrix dimensions n.
In this section, we propose a solution based on a branch-and-
bound technique [20], which is feasible on a standard computer
up to n ∼ 90.

It is known that assuming the Unique Games Conjecture
[26], it is NP-hard to approximate the above problem to any
factor better than the Grothendieck constant KG [8]. Actually,
if M is the Laplacian matrix of a graph, then the maximum
in (1) coincides with the value of the maximum cut of this
graph. The maximum cut problem is one of 21 NP-complete
problems of Karp [27].

Notice that the optimization problem (1) reduces to the
following problem (where the n × n matrix M is the input to
the problem):

L(M) = max
ai=±1

n∑
j=1

∣∣∣∣∣
n∑

i=1

Mijai

∣∣∣∣∣, (5)

where maximization is performed over all possible ±1 signs of
ai, i = 1, . . . ,n. This reformulation of the problem allows us
to eliminate variables bj from the optimization. Note, however,
that a brute-force search evaluation of this problem becomes
infeasible already for relatively small n, as one has to compute
all the 2n−1 distinct cases. Such a brute-force technique was
used in Refs. [16,28], and the biggest n one could afford (in a
reasonable time) on a normal desktop PC was n = 42.

In contrast, the BB algorithm is able to cope with generic
matrices M with dimensions up to n ∼ 90 in a reasonable time
as it will be discussed next. In our specific problem (5), the
BB algorithm performs a systematic enumeration of candidate
solutions for ai, i = (1, . . . ,n) by means of state space search
[20]: We can think of our set of candidate solutions as a rooted
binary tree with the full set at the root. Let us label a given
branch by a particular choice of ±1 signs of {a1,a2, . . . ,an}
variables. Then the algorithm explores branches of this tree
representing subsets of the solution set. Before enumerating
the candidate solutions of a branch, the branch is checked
against estimations of upper bounds on the optimal solution,
and the branch is removed if it cannot produce a better solution
than the best one found so far by the algorithm.

The estimation of the upper bound is based on the following
inequality. Let us fix values of ai = {+1, − 1},i = 1, . . . ,k,
corresponding to the level k of the branching tree. Then we
have the following upper bound:

max
ak+1,...,an

n∑
j=1

∣∣∣∣∣
n∑

i=1

Mijai

∣∣∣∣∣
�

n∑
j=1

∣∣∣∣∣
k∑

i=1

Mijai

∣∣∣∣∣ + max
ak+1,...,an

n∑
j=1

∣∣∣∣∣
n∑

i=k+1

Mijai

∣∣∣∣∣, (6)

where maximization is carried out over all possible ±1 signs
of ak+1, . . . ,an. It is noted that the first term on the right-hand
side of Eq. (6) has some fixed value, which for consecutive k’s
can be computed at low cost by reusing results from previous
computations.

An efficient upperbounding is a crucial part of the algo-
rithm, since without discarding branches, the technique traces
back to a brute-force search of all possible solutions, which
amounts to evaluating 2n−1 solutions growing exponentially
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FIG. 1. Time required to compute L(M) as a function of the
matrix dimension n of M . The plot has a log-log scale. The
purple square and blue circle markers correspond to the curves with
parameter k = 0 and k = n/4, respectively. The red line is for the
sake of comparison.

with n. According to the upper bound (6), the decision about
which branches to remove can be taken quickly. We refer
the interested reader to the Appendix for a detailed technical
description of the algorithm along with simple illustrative
examples.

Let us stress that the BB algorithm described above allows
us to give an exact value for the problem (1) if all entries
of matrix M are integers. This algorithm was implemented
in Haskell language; see Ref. [29]. The code performs exact
integer arithmetic and includes assembly code in certain
crucial parts to boost the computation.

B. Numerical tests

In this section, some benchmark tests are presented. We
generated n × n random M matrices for a given n, where
the integer coefficients of the matrix M were chosen within
the range [−100,+100] uniformly at random. After averaging
over 1000 random matrices for a fixed n, we plot the time
required for computing L(M) using the BB algorithm as a
function of n in the range 10 � n � 60 (it is noted that for
50 < n � 60, the average was taken over only 30 matrices to
save computation time). The code was run on a single core of
a standard desktop PC. Figure 1 shows the performance of the
BB algorithm on a log-log plot. Note that there is a parameter
k in the algorithm, which designates the level of the tree above
which all nodes are forced to be visited. In this way, we can save
computation time since less decisions have to be taken about
discarding branches from the tree. To our experience, choosing
k ∼ n/4 gives the best performance. In Fig. 1, we plotted
both cases k = 0 and k = n/4, demonstrating that k = n/4 is
indeed superior to k = 0.

For the sake of comparison, we also plotted the line t =
10−23n15 (shown in red). As one can observe, the performance
of the BB algorithm can be well approximated with a power-
law behavior in the range displayed (n � 60). By extrapolating
the curve t = 10−23n15 up to n = 90, we get a running time in
the range of month (carried out on a single core). However, for
higher n and generic matrices M , we expect an exponentially
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growing behavior due to the NP-complete feature of the
problem. Indeed, one can easily construct specific matrices
M for which there is no saving in the running time compared
to the brute-force technique which has exponential scaling
with n. Such a matrix may be built up of (n/2) Clauser-Horne-
Shimony-Holt expressions [11] distributed between n settings
of Alice and Bob (where n is even). In this case, the number of
different ai = ±1 (i = 1,2, . . . ,n) strategies attaining L(M)
in Eq. (5) grows exponentially with n. In such a case, the
number of discarded branches is limited and the performance
of the algorithm eventually goes back to that of a brute-force
search.

On the other hand, let us also stress that the memory
complexity of the algorithm is low. It equals the size of the
input matrix M of the problem, which is O(n2).

III. IMPROVING THE LOWER BOUND
ON KG(4) AND KG(3)

Our task is to come up with a good lower bound to
KG(d), which according to (4) amounts to finding a suitable
arrangement of unit vectors �ai,�bj inRd for i = 1, . . . ,n and an
(n × n)-dimensional matrix M for which the evaluation of the
maximum L(M) in Eq. (1) is feasible on a standard desktop.
Due to the numerical tests in Sec. II B, it is expected that L(M)
can be computed in a reasonable time up to a matrix dimension
n ≈ 90 by running the BB algorithm.

In order to get �ai, i = 1, . . . ,n, we fix icosahedral symmetry
of the set of vectors �ai and form a set of 2n vectors �A2i−1 =
�ai, �A2i = −�ai , for i = 1, . . . ,n. Then we optimize the 2n unit
vectors �Ai in the d-dimensional Euclidean space assuming
icosahedral symmetry such that the optimized configuration
corresponds to a (local) minimum of the energy term,

E =
∑

1�i<j�2n

1

‖ �Ai − �Aj‖
. (7)

The goal of this optimization is to find an arrangement of
vectors �Ai on the (d − 1) sphere, which distributes the sphere
in a relatively even manner. Minimization has been performed
using a heuristic search, the so-called Amoeba method [30].
Given the fixed arrangement of vectors �ai on Alice’s side
coming from the above numerical search, due to symmetry
reasons we pick the same vectors on Bob’s side. That is,
we choose �bi = �ai for all i = 1, . . . ,n. This gives an n × n

correlation matrix C defined by the entries Ci,j = �ai · �bj . Note
that all diagonal entries of this matrix are 1. In the next sections,
we present two different methods to obtain the matrix M given
the matrix C, considerably improving the lower bound values
of KG(d) for d = 3 and d = 4.

A. KG(4) � 1.4731 using a trial-and-error method

We fix n = 92 and generate �ai = �bi in d = 4 by optimizing
the energy (7), from which we get the matrix C with entries,

Ci,j = �ai · �bj . (8)

With this in hand, we have to choose the form of the n × n

matrix M . First we would like to demand that the matrix entries
Mi,j are some function of the entries Ci,j . Hence we define

them as

Mi,j = [f (Ci,j )], (9)

where we choose the form of the periodic function f as

f (q) = 80 sin(πq/2) + 100 sin(3πq/2), (10)

and [x] denotes the nearest integer to x. Rounding has been
introduced in order for the entries of M to be integer. On the
other hand, the constants appearing in the function (10) are
chosen by trial and error such that they would provide good
performance, i.e., large lower bound values for KG(4). The
next section (Sec. III B), which uses the distance method to
lowerbound KG(4), will also shed light on the specific choice
of the function (10).

Using the function in Eq. (10), explicit calculations give
Q(M,4) = ∑

i,j Mi,jCi,j 
 2.6785 × 105 in Eq. (3). On the
other hand, L(M) = 181 818 coming from our BB algorithm,
which took roughly three months to evaluate on a desktop com-
puter. Then the lower bound of KG(4) � Q(M,4)/L(M) 

1.4731 follows from formula (4). A MATHEMATICA file pro-
vides all the details of the matrices involved in the computation
[29]. It is noted that the algorithm has very low memory
requirements. We also recall that the L(M) value does not
depend on a specific ordering of the rows and columns of
M . In this respect, we found that the running time is quite
sensitive to the ordering of the rows, and it is worth trying
different orderings to improve time efficiency. We next present
an improved lower bound to KG(4), which uses the distance
method [16,19] to generate the function f in Eq. (9).

B. KG(4) � 1.4821 using the distance method

Here we give a specific M matrix using the Gilbert’s
distance method [16,19]. In this way, we get further improve-
ment on the lower bound to KG(4) presented in the previous
section.

Let us first briefly describe Gilbert’s distance algorithm.
It estimates the distance between a point P and an arbitrary
convex set S in some finite-dimensional Euclidean space via
calls to an oracle which performs linear optimizations over
S. In our particular case, the point is given by P = vC, that
is, the correlation matrix C in Eq. (8) multiplied by a factor
0 < v � 1. The convex set in our case is the so-called ±1
polytope, which is defined by the convex hull of its vertices
as follows. For a given n, the dimension of the polytope is
n × n, and vertices Dλ are given by matrices with entries
Dλ(i,j ) = aibj , where λ corresponds to a specific assignment
of ai = ±1, i = 1, . . . ,n and bj = ±1, j = 1, . . . ,n. This
amounts to 22n−1 distinct vertices Dλ. Any point inside the
polytope is a convex combination of vertices Dλ with positive
weights p(λ).

The factor v is chosen in such a way that point P = vC

lies (slightly) outside the ±1 polytope. To this end, let us
choose C from Eq. (8) along with v∗ = 1/1.4731 
 0.6788,
where 1.4731 corresponds to the lower bound KG(4) � 1.4731
obtained in the preceding section. By definition, the point v∗C
is outside the ±1 polytope. Then we call the distance algorithm
[16,19] where the inputs to the problem are the point v∗C and
the description of the ±1 polytope. The algorithm outputs
(an estimate to) the distance between the point v∗C and the
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FIG. 2. The functions f (q) and f̃ (q) are displayed in blue and
green dots, respectively. An (irrelevant) multiplicative constant c =
2200 is introduced for better comparison of the two plots. The feasible
q values on the x axis correspond to the relation q = �ai · �bj .

±1 polytope by providing a separating hyperplane with norm
M , which is identified with the n × n matrix M that we are
looking for.

The obtained matrix M (after rounding to integers) is
given in a MATHEMATICA file; see Ref. [29]. Explicit cal-
culations show that Q(M,4) = ∑

i,j Mi,jCi,j 
 6.2223 × 108

in Eq. (3). On the other hand, the BB algorithm evaluates
L(M) = 419 810 256, which took about three months on our
desktop computer. Put together, we get from formula (4) the
improved lower bound KG(4) � Q(M,4)/L(M) 
 1.4821.

In the actual implementation of the distance algorithm, we
projected the problem from the space of n × n matrices to a
smaller subspace such that the entries Mi,j of M are given by
Mi,j = f̃ (Ci,j ). In this way, one can compare the two functions
f and f̃ , where f is given by Eq. (10) and f̃ results from the
distance algorithm in the present section. The two functions
are shown in Fig. 2. According to the figure, the blue dots
(representing f ) readily well approximate the scattered green
dots (representing f̃ ) within the full range of q and can be
considered as a coarse-grained version of it. Using f̃ compared
to f in the definition of matrix M gives us the improved lower
bound KG(4) � 1.4821 compared to KG(4) � 1.4731.

C. KG(3) � 1.4359 using the distance method

We optimized the energy formula (7) by running the
Amoeba method for d = 3 and n = 90, and fixing icosahedral
symmetry. In this way, we obtained the unit vectors �ai ,
i = 1, . . . ,n, on the sphere. Then, similarly to Sec. III B, the
distance algorithm was consulted to compute matrix M . This
matrix M , whose entries are rounded to the closest integers,
is given in a MATHEMATICA file [29]. With this M and C, we
have Q(M,3) = ∑

i,j Mi,jCi,j 
 4.6560 × 108. On the other
hand, L(M) = 324 230 014 due to the BB algorithm, where the
running time was two weeks on our desktop computer. Then

we get from (4) the lower bound KG(3) � Q(M,3)/L(M) 

1.4359. It is noted that this value gives the best upper bound
of v = 1/1.4359 
 0.6964 on the critical visibility of the
two-qubit Werner states improving on recent upper bounds
[31,32].

IV. LINK TO BELL NONLOCALITY

The Grothendieck constant has a direct link to quantum
nonlocality problems [33–35], which we discuss briefly below.
A detailed survey of this connection can be found in Ref. [36].

In a quantum Bell-like experiment, two parties perform
local measurements on a shared entangled state [33]. Let Alice
and Bob share a state ρ inCD ⊗ CD and perform two-outcome
projective measurements described by observables Ax and By ,
which are D-dimensional Hermitian matrices with eigenvalues
{±1}. Here, x,y = 1, . . . ,n label the measurement settings.
Then the correlator, which is the expectation value of the
product of Alice and Bob’s ±1 outcomes, is

cx,y = tr(ρAx ⊗ By) (11)

for given settings x and y. Such correlations associated with
XOR nonlocal games are frequently studied in the computer
science literature [21].

Given a dimension D, one wonders if a set of correlators
{cx,y, x,y = 1, . . . ,n} in Eq. (11) is quantum realizable with
a state ρ ∈ CD ⊗ CD using arbitrary positive operator-valued
measure (POVM) measurements, and also allowing Alice and
Bob to share an arbitrary large amount of randomness. If it
happens not to be the case, we say that the set of correlators
{cx,y} is not D-dimensional quantum realizable. A convenient
tool to address this problem is the use of dimension witnesses
[25]. In what follows, we show that our main result KG(3) <

KG(4) implies a set of correlators {cx,y}, which are not two-
dimensional quantum realizable. This result is based on earlier
works [22,24,37], and the argument is as follows.

Let us consider a matrix M ′ and unit vectors �a′
x ∈ R4 and

�b′
y ∈ R4 in formula (2) which give rise to the exact value

of KG(4). It is noted that though the exact value of KG(4) is
unknown, there must exist some matrix M ′ (of possibly infinite
dimension n) and unit vectors �a′

x,
�b′
y in the four-dimensional

Euclidean space which give rise to KG(4).
Tsirelson [22] has shown that all correlators cx,y equal to dot

products �ax · �by of the unit vectors �ax,�by ∈ R4 are realizable
as observables,

Ax =
4∑

i=1

ax,iγi,

By =
4∑

i=1

by,iγ
t
i , (12)

on a pair of maximally entangled four-dimensional quantum
systems, |ψ4〉 = (1/2)

∑4
i=1 |i〉|i〉. Here, ax,i , by,i are entries

of the four-dimensional unit vectors �ax,�by ∈ R4, respectively,
t denotes the transposition, and γi are chosen as follows:

γ1 = σx ⊗ 1,

γ2 = σy ⊗ 1,
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γ3 = σz ⊗ σx,

γ4 = σz ⊗ σz. (13)

The above γi matrices are traceless, anticommuting, and square
to the identity. Due to these properties, Ax,By are valid
traceless observables: tr(Ax) = tr(By) = 0 and A2

x = B2
y = 1.

On the other hand, one has

cx,y = tr(|ψ4〉〈ψ4|Ax ⊗ By) = tr
(
AxB

t
y

)
/4. (14)

Applying Eq. (12) and noting that tr(γiγ
t
j ) = 4δi,j , where δi,j

denotes the Kronecker delta, we further have

cx,y = tr
(
AxB

T
y

)
/4 =

∑
i

ax,iby,i = �ax · �by. (15)

Replacing �ax and �by with the particular vectors �a′
x,

�b′
y ,

which leads to the exact value of KG(4), we obtain that
the correlators c′

x,y = �a′
x · �b′

y are realizable as observables

A′
x, B

′
y on the state |ψ4〉 = (1/2)

∑4
i=1 |i〉|i〉. We next show

that this set of correlators c′
x,y has no two-dimensional quantum

representation, i.e., it cannot be realized using qubit systems.
The proof exploits the strict relation KG(3) < KG(4), which
we have proven in the preceding sections. To this end, let us
consider the linear function I on the correlators cx,y in Eq. (11)
written as

I =
∑

M ′
x,ycx,y, (16)

where M ′
x,y is defined by the matrix M ′ which attains the

exact value of KG(4) in (2). Let us then denote by I (2) the
maximum of I it can take if the correlators cx,y come from two-
dimensional quantum systems. It appears that I (2) is defined
by

I (2) = max
m∑

x,y=1

M ′
x,y �ax · �by, (17)

where maximization is over all three-dimensional unit vectors
�ax and �by [25,37]. However, by definition (2), I (2) is upper
bounded by KG(3)L(M ′), where the function L is defined by
Eq. (1). Therefore, we have the chain of inequalities

I (2)

L(M ′)
� KG(3) < KG(4) =

∑
x,y M ′

x,yc
′
x,y

L(M ′)
, (18)

where comparing the leftmost and the rightmost terms gives
us the strict relation

I (2) <
∑
x,y

M ′
x,yc

′
x,y . (19)

This tells us that the expression (16) cannot be saturated by
correlations originating from qubit systems. Hence, the above
example shows the existence of a witness-detecting dimension
greater than two in the particular case where the witness
matrix M ′ is associated with the KG(4) value in Eq. (2). A
similar argument in Ref. [25] has shown the existence of a
qutrit witness from the strict relation KG(3) < KG. Here we
showed that it suffices to consider a pair of four-dimensional
quantum systems to certify correlations beyond qubit. Note
also that dimension witnesses including any finite-dimension
D appeared in the literature based on different methods;
see, e.g., Refs. [38–42]. More recent works [43–46] revealed

further intriguing properties of the restricted dimensional
quantum sets.

V. DISCUSSION

We proved that KG(4) is strictly larger than KG(3). To
this end, we used the so-called branch-and-bound algorithm
commonly used in the solution of NP-hard problems. This
allowed us to solve the problem (1) up to matrix sizes 92
on a standard desktop PC. Further, due to the principles of
the branch-and-bound algorithm (i.e., the calculation of the
bounds and the branching in each node is independent), it is
a natural idea to adapt the algorithm to a graphics processing
unit (GPU), grid computing, or field-programmable gate array
(FPGA).

As we have shown, our result is relevant in quantum
nonlocality, as one can construct a dimension witness for
detecting dimension greater than two based on the relation
KG(3) < KG(4). Hence, we provided an application of the
branch-and-bound technique in the context of quantum non-
locality, particularly in XOR nonlocal games. However, we
expect that the presented algorithm in combination with other
powerful methods (such as Gilbert’s distance algorithm) may
find applications beyond XOR nonlocal games as well. Such
possible tasks concern Bell nonlocality with more inputs
[47,48], more outcomes [49], or genuine nonlocality in the
case of multipartite settings [50,51]. Note a recent method [52]
based on the Navascues-Pironio-Acin hierarchy [53], which
tackles these problems in a different way. Combining the two
approaches may also lead to improvement in our bipartite
setting.

It would also be interesting to adapt the branch-and-
bound technique to bound the so-called unsteerability limit in
Einstein-Podolsky-Rosen (EPR) steering inequalities [54,55]
with large number of inputs. Finally, the algorithm is likely
applicable in random access codes [56] or noncontextuality
inequalities as well [57,58] with large number of input-output
alphabets.
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assistance from B. Kőműves is gratefully acknowledged. We
acknowledge financial support from the Hungarian National
Research Fund OTKA (Grant No. K111734).

APPENDIX: DESCRIPTION AND IMPLEMENTATION
DETAILS OF THE Km,n PROGRAMMING ALGORITHM

1. Introduction

Km,n-quadratic programming is a quadratic optimization
problem with binary variables. In the main text, the algorithm
to solve Km,n-quadratic programming is defined (where we
have set m = n). In this appendix, we prove the correctness
of the algorithm. We also provide tips about the efficient
implementation of the algorithm on a desktop computer. An
implementation of this algorithm with application in XOR
nonlocal games is publicly available at [29].
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2. Notation

N set of natural numbers
Z set of integers
An n-ary Cartesian product A × · · · × A

vi ith coordinate of v ∈ An, i = 1,2, . . . ,n

(v1,v2, . . . ,vn) construction of v ∈ An

‖v‖1 Manhattan norm, i.e.,
∑

i |vi |
Mn×m(A) matrices with n rows and m columns over A

Mi ith row of M ∈ Mn×m, i = 1,2, . . . ,n

3. Km,n-Quadratic Programming

Let M be an n × m matrix of integers. The goal of
Km,n-quadratic programming is to efficiently compute the L

function, which is defined as follows:

L : Mn×m(Z) → Z

L(M) := max
ai=±1,bj =±1

n∑
i=1

m∑
j=1

Mijaibj

Basic properties

Theorem.

L(M) = max
ai=±1

∥∥∥∥∥
n∑

i=1

aiMi

∥∥∥∥∥
1

.

Proof.

max
ai=±1

∥∥∥∥∥
n∑

i=1

aiMi

∥∥∥∥∥
1

= max
ai=±1

m∑
j=1

∣∣∣∣∣
n∑

i=1

aiMij

∣∣∣∣∣
= max

ai=±1
max
bj =±1

m∑
j=1

bj

(
n∑

i=1

aiMij

)

= max
ai=±1,bj =±1

n∑
i=1

m∑
j=1

Mijaibj = L(M).

Theorem.
Let M ∈ Mn×m, M = (M1,M2, . . . ,Mn), where Mi is the

ith row of M:

L(M) = max[L(M+),L(M−)],

where M+ = (M1 + M2,M3,M4, . . . ,Mn) and M− = (M1 −
M2,M3,M4, . . . ,Mn).

Proof.

L(M) = max
ai=±1

∥∥∥∥∥
n∑

i=1

aiMi

∥∥∥∥∥
1

= max

(
max

ai=±1,a1=a2

∥∥∥∥∥
n∑

i=1

aiMi

∥∥∥∥∥
1

,

max
ai=±1,a1 �=a2

∥∥∥∥∥
n∑

i=1

aiMi

∥∥∥∥∥
1

)

= max[L(M+),L(M−)].

Theorem.
Let M ∈ Mn×m, M = (M1,M2, . . . ,Mn), where Mi is the

ith row of M:

L(M) � L(MU ) + L(ML),

where MU = (M1,M2, . . . ,Mk) and ML =
(Mk+1,Mk+2, . . . ,Mn).

Proof.

L(M) = max
ai=±1

∥∥∥∥∥
n∑

i=1

aiMi

∥∥∥∥∥
1

� max
ai=±1

(∥∥∥∥∥
k∑

i=1

aiMi

∥∥∥∥∥
1

+
∥∥∥∥∥

n∑
i=k+1

aiMi

∥∥∥∥∥
1

)

= max
ai=±1

∥∥∥∥∥
k∑

i=1

aiMi

∥∥∥∥∥
1

+ max
ai=±1

∥∥∥∥∥
n∑

i=k+1

aiMi

∥∥∥∥∥
1

= L(MU ) + L(ML).

4. Recursive Calculation of L

We define a recursive function f to calculate L. The
function f is not efficient, but it helps to understand the
efficient functions defined later and it is also used in their
correctness proofs.

Let n,m ∈ N.
Let M = (M1,M2, . . . ,Mn) ∈ Mn×m.
M is a fixed parameter of the function f so it is placed in

the subscript as fM .
The recursive function fM is defined as

fM : N × Zm → Z
fM (k,v)

:=
{‖v‖1 if k = n,

max[fM (k + 1,v + Mk+1),fM (k + 1,v − Mk+1)] otherwise.

Theorem.

fM (k,v) = L((v,Mk+1,Mk+2, . . . ,Mn)).

Proof.
By induction on k = n,n − 1,n − 2, . . . :
(i) Base case: k = n.

fM (k,v) = ‖v‖1 = L((v)) = L((v,Mk+1, . . . ,Mn)).

(ii) Inductive step: k < n.

fM (k,v) = max[fM (k + 1,v + Mk+1),fM (k + 1,v − Mk+1)]

= max[L((v + Mk+1,Mk+2, . . . ,Mn)),

L((v − Mk+1,Mk+2, . . . ,Mn))]

= L((v,Mk+1,Mk+2, . . . ,Mn)).

Corollary.

L(M) = fM (1,M1).
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Example.

Let M =
(

2 3 3 0
3 2 −3 −3
3 −3 2 3
0 −3 3 2

)
∈ M4×4.

L(M) = fM (1,(2,3,3,0))

= max[fM (2,(5,5,0, − 3)),fM (2,(−1,1,6,3))]

= max{max[fM (3,(8,2,2,0)),fM (3,(2,8, − 2, − 6))],

max[fM (3,(2, − 2,8,6)),fM (3,(−4,4,4,0))]}
= max(max{max[fM (4,(8, − 1,5,2)),

fM (4,(8,5, − 1, − 2))],

max[fM (4,(2,5,1, − 4)),fM (4,(2,11, − 5, − 8))]},

max{max[fM (4,(2, − 5,11,8)),fM (4,(2,1,5,4))],

max[fM (4,(−4,1,7,2)),fM (4,(−4,7,1, − 2))]})
= max(max{max[‖(8,−1,5,2)‖1,‖(8,5,−1,−2)‖1],

max[‖(2,5,1, − 4)‖1,‖(2,11, − 5, − 8)‖1]},
max{max[‖(2, − 5,11,8)‖1,‖(2,1,5,4)‖1],

max[‖(−4,1,7,2)‖1,‖(−4,7,1, − 2)‖1)]})
= max{max[max(16,16), max(12,26)],

max[max(26,12), max(14,14)]}
= 26.

Note that the total number of fM (k,v) calls is 1 + 2 + 4 +
· · · + 2n−1 = 2n − 1 = 15.

5. Speeding up The Recursion

We define another recursive function, g, to calculate L. g is more efficient than f because it tries to skip whole branches of
recursive calls by comparing the best found maximum so far and the estimated result of the branch.

Let ck � L((Mk+1,Mk+2, . . . ,Mn)) arbitrary constants, where k = 1,2, . . . ,n − 1. We discuss later how to choose ck . Let
cn = 0.

Let c = (c1,c2, . . . ,cn) ∈ Zn.
M and c are fixed parameters of the function g so they are placed in the subscript as gM,c.
gM,c is defined as

gM,c : N × Zm × Z → Z

gM,c(k,v,m) :=
⎧⎨
⎩

m if m � ‖v‖1 + ck,

‖v‖1 otherwise if k = n,

gM,c(k + 1,v − Mk+1,gM,c(k + 1,v + Mk+1,m)) otherwise.

Theorem.

gM,c(k,v,m) = max[fM (k,v),m].

Proof.
By induction on k = n,n − 1,n − 2, . . . :
(i) Base case: k = n.
(a) Case m � ‖v‖1.

gM,c(k,v,m) = m = max(‖v‖1,m) = max[fM (k,v),m].

(b) Case m < ‖v‖1.

gM,c(k,v,m) = ‖v‖1 = max(‖v‖1,m) = max[fM (k,v),m].
(ii) Inductive step: k < n.
(a) Case m � ‖v‖1 + ck .

gM,c(k,v,m) = m

= max(‖v‖1 + ck,m)

= max[L((v,Mk+1, . . . ,Mn)),m]

= max[fM (k,v),m].

(b) Case m < ‖v‖1 + ck .

gM,c(k,v,m) = gM,c(k + 1,v − Mk+1,gM,c(k + 1,v + Mk+1,m))

= max{fM (k + 1,v − Mk+1), max[fM (k + 1,v + Mk+1),m]}
= max{max[fM (k + 1,v − Mk+1),fM (k + 1,v + Mk+1)],m}
= max[fM (k,v),m].
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Corollary.

L(M) = gM,c(1,M1,0).

Choosing ck

The ck constants can be chosen arbitrarily unless they are greater than or equal to L((Mk+1,Mk+2, . . . ,Mn)). Lower ck

constants prevent more gM,c(k,v,m) computations. There is a trade-off between computing the lower bound of ck to speed up
later computations, and using less resources on ck and doing more computation later.

The lower bound of ck can also be computed with gM,c:

L((Mk+1,Mk+2, . . . ,Mn)) = gM,c(k + 1,Mk+1,0).

We have found by experience that it is worthwhile to compute the lower bound of cn,cn−1, . . . ,ci , and set the remaining
ci−1,ci−2, . . . ,c2 constants to ∞, where i is around �n/4�. Note that during the computation of the lower bound of ck , the
cj ,j > k constants are also needed, so one should compute the lower bounds of cn,cn−1, . . . ,ci one after another in this order.

Example.

Let M =
(

2 3 3 0
3 2 −3 −3
3 −3 2 3
0 −3 3 2

)
∈ M4×4.

c4 = 0 by definition.

c3 := L((M4)) choose the lower bound

= gM,c(4,(0, − 3,3,2),0)

= ‖(0, − 3,3,2)‖1 because 0 �� ‖(0, − 3,3,2)‖1 + c4

= 8.

c2 := ∞ avoid computation of L((M3,M4)).

c1 := ∞ avoid computation of L((M2,M3,M4)).

L(a) = gM,c(1,(2,3,3,0),0)

= gM,c[2,(−1,1,6,3),gM,c(2,(5,5,0, − 3),0)]

= gM,c{2,(−1,1,6,3),gM,c[3,(2,8, − 2, − 6),gM,c(3,(8,2,2,0),0)]}
= gM,c(2,(−1,1,6,3),gM,c{3,(2,8, − 2, − 6),gM,c[4,(8,5, − 1, − 2),gM,c(4,(8, − 1,5,2),0)]})
= gM,c{2,(−1,1,6,3),gM,c[3,(2,8, − 2, − 6),gM,c(4,(8,5, − 1, − 2),‖(8, − 1,5,2)‖1)]}
= gM,c{2,(−1,1,6,3),gM,c[3,(2,8, − 2, − 6),gM,c(4,(8,5, − 1, − 2),16)]}
= gM,c[2,(−1,1,6,3),gM,c(3,(2,8, − 2, − 6),16)]

= gM,c{2,(−1,1,6,3),gM,c[4,(2,11, − 5, − 8),gM,c(4,(2,5,1, − 4),16)]}
= gM,c[2,(−1,1,6,3),gM,c(4,(2,11, − 5, − 8),16)]

= gM,c(2,(−1,1,6,3),‖(2,11, − 5, − 8)‖1)

= gM,c(2,(−1,1,6,3),26)

= gM,c[3,(−4,4,4,0),gM,c(3,(2, − 2,8,6),26)]

= gM,c(3,(−4,4,4,0),26) optimization kicks in

= 26. optimization kicks in.

Note that the total number of gM,c(k,v,m) calls is 12.

6. Tail-Recursive Form

It is possible to refactor gM,c into two mutually tail-recursive functions dM,c and uM,c such that each recursive call is a tail call,
i.e., there are no further operations involved after the call is completed [59]. Tail calls can be implemented by goto statements so
they do not need stack operations, which is a requirement on a GPU and also speeds up computation on a CPU.
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The definitions of dM,c and uM,c are

dM,c,uM,c : N × N × Zm × N → N

dM,c(k,b,v,m) :=
⎧⎨
⎩

uM,c(k,b,v,m) if m � ‖v‖1 + ck,

uM,c(k,b,v,‖v‖1) otherwise if k = n,

dM,c(k + 1,2b,v + Mk+1,m) otherwise.

uM,c(k,b,v,m) :=
⎧⎨
⎩

m if k = 1,

dM,c(k,b + 1,v − 2Mk,m) otherwise if b = 2b′,
uM,c(k − 1,b′,v + Mk,m) otherwise if b = 2b′ + 1.

Theorem.
For all k ∈ N,1 � k � n and a2,a3, . . . ,ak = ±1,

dM,c

⎡
⎢⎣k,a2a3 · · · ak,M1 +

k∑
i=2

aiMi, max
b2,b3, . . . ,bn = ±1

b2b3 · · · bk < a2a3 · · · ak

(
M1 +

n∑
i=2

biMi

)⎤
⎥⎦ = L(M),

uM,c

⎡
⎢⎣k,a2a3 · · · ak,M1 +

k∑
i=2

aiMi, max
b2,b3, . . . ,bn = ±1

b2b3 · · · bk � a2a3 · · · ak

(
M1 +

n∑
i=2

biMi

)⎤
⎥⎦ = L(M),

where

x1x2 · · · xi :=
i∑

j=1

1 − xj

2
2i−j ,

and

max
x∈∅

x = 0.

Sketch of the proof.
One has to show that if the parameters of dM,c and uM,c are in the form given in the theorem, then in each possible case, the

next call of dM,c or uM,c has parameters in the form given in the theorem too.
Corollary.

L(M) = dM,c(1,0,M1,0).

Example.

Let M =
(

2 3 3 0
3 2 −3 −3
3 −3 2 3
0 −3 3 2

)
∈ M4×4.

Let c4 = 0,c3 = 8,c2 = ∞,c1 = ∞ as in the previous example.

L(M) = dM,c(1,0,(2,3,3,0),0)

= dM,c(2,0,(5,5,0, − 3),0)

= dM,c(3,0,(8,2,2,0),0)

= dM,c(4,0,(8, − 1,5,2),0) where ‖(8, − 1,5,2)‖1 = 16

= uM,c(4,0,(8, − 1,5,2),16) where 0 = 2 · 0

= dM,c(4,1,(8,5, − 1, − 2),16)

= uM,c(4,1,(8,5, − 1, − 2),16) where 1 = 2 · 0 + 1

= uM,c(3,0,(8,2,2,0),16) where 0 = 2 · 0

= dM,c(3,1,(2,8, − 2, − 6),16)

= dM,c(4,2,(2,5,1, − 4),16)

= uM,c(4,2,(2,5,1, − 4),16) where 2 = 2 · 1
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= dM,c(4,3,(2,11, − 5, − 8),16) where ‖(2,11, − 5, − 8)‖1 = 26

= uM,c(4,3,(2,11, − 5, − 8),26) where 3 = 2 · 1 + 1

= uM,c(3,1,(2,8, − 2, − 6),26) where 1 = 2 · 0 + 1

= uM,c(2,0,(5,5,0, − 3),26) where 0 = 2 · 0

= dM,c(2,1,(−1,1,6,3),26)

= dM,c(3,2,(2, − 2,8,6),26) where 26 � ‖(2, − 2,8,6)‖1 + 8

= uM,c(3,2,(2, − 2,8,6),26) where 2 = 2 · 1

= dM,c(3,3,(−4,4,4,0),26) where 26 � ‖(−4,4,4,0)‖1 + 8

= uM,c(3,3,(−4,4,4,0),26) where 3 = 2 · 1 + 1

= uM,c(2,1,(−1,1,6,3),26) where 1 = 2 · 0 + 1

= uM,c(1,0,(2,3,3,0),26) where k = 1

= 26.
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