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80-308 Gdańsk, Poland
2Departamento de Física, Federal University of Pernambuco, Recife PE 50670-901, Brazil

3Institute for Nuclear Research, Hungarian Academy of Sciences, P.O. Box 51, H-4001 Debrecen, Hungary
(Received 9 April 2017; published 5 July 2017)

We present an exhaustive numerical analysis of violations of local realism by families of multipartite quantum
states. As an indicator of nonclassicality we employ the probability of violation for randomly sampled observables.
Surprisingly, it rapidly increases with the number of parties or settings and even for relatively small values local
realism is violated for almost all observables. We have observed this effect to be typical in the sense that it emerged
for all investigated states including some with randomly drawn coefficients. We also present the probability of
violation as a witness of genuine multipartite entanglement.
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I. INTRODUCTION

Quantum multiparticle systems do not provide a mere
amplification of the nontrivial effects displayed by two-party
systems. Rather, they bring about completely new phenomena
and applications. On the fundamental level, multipartite
systems, e.g., have been employed to illustrate nonlocality
without Bell inequalities [1] and, more recently, to show that
finite-speed superluminal causal influences would allow for
superluminal signaling between spatially separated parties [2].
In what concerns applications, one-way quantum computing
[3] and multipartite secret sharing [4] are outstanding examples
where complex quantum systems can be employed.

As is the case for multipartite entanglement, the character-
ization of nonclassical features of multiparticle systems is a
hard problem with several open questions [5]. One interesting
possibility to analyze the nonclassicality of complex states is to
study their correlation properties under random measurements.
With this motivation we will be concerned with the following
quantity:

PV (ρ) =
∫

f (�)d�, (1)

where the integration variables correspond to all parameters
that can be varied within a Bell scenario and f = 1 only
for settings that lead to violations in local realism, and
vanishes otherwise. Note that, when properly normalized,
PV can be interpreted as a probability of violation of local
realism.

The probability PV can be used at different context
levels. One can select a particular Bell inequality I and
integrate fI over all possible settings of the corresponding
Bell experiment. This was mainly the approach adopted in
previous theoretical [6,7] and experimental [8] works. This
is also the case of [9], where the quantity defined in Eq. (1)
has been considered as a measure of nonlocality and applied
in the context of the Collins-Gisin-Linden-Massar-Popescu
(CGLMP) inequality [10,11]. This procedure, however, would
face increasing difficulties as the number of parties grows. For
a relatively modest number of qubits, e.g., the corresponding
number of inequivalent Bell inequalities with a fixed (say 2)
number of settings is already very large and, thus, addressing

one inequality at a time would become prohibitive. On a
deeper level we can dispense with the choice of a particular
inequality and directly consider the space of behaviors (space
of joint probabilities), which local polytopes inhabit. In this
case, the integration refers to all possible measurements,
the only context information required being the number of
measurements per party. This is the approach that we will
adopt here, so that we use the probability of violation to
evaluate the degree of nonclassicality of several relevant
states involving up to five qubits and also bipartite states of
qutrits.

This paper is presented in the following way. In the next
section we provide a brief description of the numeric method
to be employed (linear programming). In Sec. III we present
our results in the form of several tables and discuss their main
consequences. In the last section we give our final remarks and
some perspectives.

II. DESCRIPTION OF THE METHOD

In our numerical analysis we consider the most general Bell
experiment with N spatially separated observers performing
measurements on a given state of N qudits with d = 2 (qubits)
and d = 3 (qutrits). Each observer can choose among mi

arbitrary observables {Oi
1,O

i
2, . . . ,O

i
mi

} (i = 1,2, . . . ,N ) de-

fined by orthogonal projections Oi
j = ∑d−1

ri=0 ri |vi
j 〉〈vi

j | linked
by the general unitary transformations |vi

j 〉 = Ui
j |ri〉. The

unitary transformations are parametrized by three angles for
qubits,
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(2)
and eight angles for qutrits:
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A local realistic decription of an experiment is equiv-
alent to the existence of a joint probability distribution
plr(r1

1 , . . . ,r1
m1

, . . . ,rN
1 , . . . ,rN

mN
), where ri

ji
= {0,1, . . . ,d −

1} denotes the result of the measurement of the ith observer’s
Oi

j observable. If the model exists, quantum predictions for
the probabilities are given by the marginal sums:

P
(
r1, . . . ,rN

∣∣O1
k1

, . . . ,ON
kN

)
= Tr

(
ρ|v1

k1

〉〈
v1

k1

∣∣ ⊗ · · · ⊗ ∣∣vN
kN

〉〈
vN

kN
|)

=
d−1∑
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,...,rN
jN

=0

plr
(
r1

1 , . . . ,r1
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, . . . ,rN
1 , . . . ,rN
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)
(4)

where P (r1, . . . ,rN |O1
k1

, . . . ,ON
kN

) denotes the probability of
obtaining the result ri by the ith observer while measuring
observables Oi

ki
and ji �= ki (i = 1, . . . ,N). It can be shown

that for some quantum entangled states the marginal sums
cannot be satisfied, which is an expression of Bell’s theorem.

Our task is to find, for a given state ρ and a set of
observables Oi

ki
(i = 1, . . . ,N ; ki = 1, . . . ,mi), whether the

local realistic model exists, i.e., all of Eq. (4) can be satisfied.
This can be done by means of linear programming (see, e.g.,
[12–14]). It is worth mentioning that the method allows us to
reveal nonclassicality even without direct knowledge of Bell
inequalities for the given experimental situation.

Finally, we check how many sets of settings (in percents)
lead to violation of local realism. We introduce a frequency
pV (ρ) which for a sufficiently large statistics converges to the
probability of violation PV (ρ). We provided sufficient statistics
to not observe changes in results on the third decimal place.

The measurement operators are sampled according to
Haar measure [15]. The angles ψr and χr are taken from
uniform distributions on the intervals: 0 � ψr < 2π and
0 � χr < 2π. To generate φr in interval 0 � φr � π

2 it is
convenient to use an auxiliary random variable ξr distributed
uniformly on 0 � ξr < 1 and φr = arcsin(ξ 1/2

r ) for r ∈ {1,2}
and φ3 = arcsin(ξ 1/4

r ). Of course, all variables are generated
independently for each observer i and measurement setting j .

III. RESULTS AND ANALYSIS

We applied the numerical method to prominent families
of quantum states: (1) the generalized N qubit Greenberger-
Horne-Zeilinger (GHZ) state [1,16]

|GHZ(α)〉N = sin α|0 . . . 0〉N + cos α|1 . . . 1〉N;

For α = π/4, we define |GHZ(α)〉N ≡ |GHZ〉N; (2) the four
qubit singlet state [17,18]

|ψ−
4 〉 = 1√

3
(|0011〉 + |1100〉) − 1√

12
(|0101〉 + |0110〉

+ |1001〉 + |1010〉);
(3) the N qubit Dicke state with e excitations [19]

∣∣De
N

〉 =
(

N

e

)−1/2 ∑
permutations

|0 . . . 0 1 . . . 1︸ ︷︷ ︸
e

0 . . . 0〉N,

where the special case e = 1 is referred to as the N qubit W
state |W 〉N ≡ |D1

N〉 [20]; (4) the four qubit cluster state [21]

|Cluster4〉 = 1
2 (|0000〉 + |0011〉 + |1100〉 − |1111〉);

(5) the generalized N qutrit GHZ state

|GHZd=3(α)〉N

= sin α|0 . . . 0〉 + 1√
2

cos α(|1 . . . 1〉 + |2 . . . 2〉);

(6) the three qutrit singlet state (Aharonov state) [22]

|A−〉3 = 1√
6

(|012〉 + |120〉 + |201〉

− |011〉 − |101〉 − |110〉);
and (7) the three qutrit Dicke states with the sum of excitations
equal to e [23]:∣∣Q1

3

〉 = 1√
3

∑
π

π{|001〉},

∣∣Q2
3

〉 = 1√
15

(
2
∑
π

π{|011〉} +
∑
π

π{|002〉}
)

,

∣∣Q3
3

〉 = 1√
10

(
2|111〉 +

∑
π

π{|012〉}
)

.

We calculated the frequencies pV (ρ) for an increasing
number of different settings per site. All results are presented
in Tables I–III. Some states which appear in the tables are
not listed above. They will be defined in the appropriate
paragraphs. Our results lead to the following observations.

A. Comparison with known results

The probability of violation was previously examined in
several contexts. The only analytical result on tight inequal-
ities was obtained in [6] for the simplest scenario of two
settings and two outcomes, where the probability of violation
of different versions of the Clauser-Horne-Shimony-Holt
(CHSH) inequality [25] has been obtained by the two qubit
Greenberger-Horne-Zeilinger (GHZ) state (the Bell state). In
this case our numerical method gives the same value (no. 1)
as the analytical expression pV (GHZ2) = PCHSH

V (GHZ2) =
2(π − 3) ∼ 0.283183 with accuracy to four decimal places.

For N > 2, the GHZ state has been studied only nu-
merically. In [6] the state was analyzed in the context of
the Weinfurter-Werner-Wolf-Żukowski-Brukner (WWWŻB)
inequality [17,26,27] for N � 6. In [7] the analysis was
extended to N = 15 qubits (the WWWŻB inequality) and
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TABLE I. Frequencies of violation of local realism pV observed
statistically with random measurements on qubit states.

No. N State Settings Stat. pV

1 2 |GHZ2〉 2 × 2 1010 28.318
2 2 |GHZ2〉 3 × 2 109 52.401
3 2 |GHZ2〉 4 × 2 109 68.654
4 2 |GHZ2〉 5 × 2 109 78.947
5 2 |GHZ2〉 6 × 2 109 85.391
6 2 |GHZ2〉 7 × 2 109 89.482
7 2 |GHZ2〉 8 × 2 109 92.150
8 2 |GHZ2〉 9 × 2 108 93.945
9 2 |GHZ2〉 10 × 2 108 95.198

10 2 |GHZ2〉 3 × 3 109 78.219
11 2 |GHZ2〉 4 × 3 109 89.545
12 2 |GHZ2〉 5 × 3 109 94.658
13 2 |GHZ2〉 6 × 3 109 97.085
14 2 |GHZ2〉 7 × 3 109 98.303
15 2 |GHZ2〉 8 × 3 108 98.953

16 2 |GHZ2〉 4 × 4 109 96.169
17 2 |GHZ2〉 5 × 4 108 98.460
18 2 |GHZ2〉 6 × 4 108 99.321
19 2 |GHZ2〉 7 × 4 108 99.672

20 2 |GHZ2〉 5 × 5 108 99.504

21 2 |GHZ2(1◦)〉 2 × 2 1010 0.00000025
22 2 |GHZ2(10◦)〉 2 × 2 109 0.093
23 2 |GHZ2(20◦)〉 2 × 2 109 2.826
24 2 |GHZ2(30◦)〉 2 × 2 109 14.796
25 2 |GHZ2(40◦)〉 2 × 2 109 26.599

26 3 |GHZ2〉 ⊗ |0〉 2 × 2 × 2 109 28.317
27 3 |GHZ2〉 ⊗ |0〉 3 × 2 × 2 109 52.399

28 3 |GHZ3〉 2 × 2 × 2 109 74.688
29 3 |GHZ3〉 3 × 2 × 2 109 90.132
30 3 |GHZ3〉 4 × 2 × 2 109 95.357
31 3 |GHZ3〉 3 × 3 × 2 109 97.245
32 3 |GHZ3〉 4 × 3 × 2 108 98.926
33 3 |GHZ3〉 4 × 4 × 2 108 99.590
34 3 |GHZ3〉 3 × 3 × 3 109 99.542

35 3 |W3〉 1 × 2 × 2 109 15.244
36 3 |W3〉 2 × 2 × 2 109 54.893
37 3 |W3〉 3 × 2 × 2 109 76.788
38 3 |W3〉 4 × 2 × 2 109 87.287
39 3 |W3〉 5 × 2 × 2 109 92.465
40 3 |W3〉 3 × 3 × 2 109 91.366
41 3 |W3〉 3 × 3 × 3 109 97.797

42 3 |ψ3(15◦)〉 2 × 2 × 2 109 4.941
43 3 |ψ3(20◦)〉 2 × 2 × 2 109 10.327
44 3 |ψ3(25◦)〉 2 × 2 × 2 108 18.762
45 3 |ψ3(25.975◦)〉 2 × 2 × 2 109 20.786
46 3 |ψ3(30◦)〉 2 × 2 × 2 109 30.323
47 3 |ψ3(45◦)〉 2 × 2 × 2 109 64.382
48 3 |ψ3(60◦)〉 2 × 2 × 2 109 74.689
49 3 |ψ3(75◦)〉 2 × 2 × 2 109 65.377
50 3 |ψ3(90◦)〉 2 × 2 × 2 109 54.893

51 4 |GHZ2〉 ⊗ |00〉 2 × 2 × 2 × 2 108 28.318
52 4 |GHZ2〉 ⊗ |00〉 3 × 2 × 2 × 2 107 52.407

53 4 |GHZ2〉 ⊗ |GHZ2〉 2 × 2 × 2 × 2 108 48.617
54 4 |GHZ2〉 ⊗ |GHZ2〉 3 × 2 × 2 × 2 107 65.887

TABLE I. (Continued.)

No. N State Settings Stat. pV

55 4 |GHZ3〉 ⊗ |0〉 2 × 2 × 2 × 2 108 74.683
56 4 |GHZ3〉 ⊗ |0〉 3 × 2 × 2 × 2 107 90.134

57 4 |GHZ4〉 2 × 2 × 2 × 2 108 94.240
58 4 |GHZ4〉 3 × 2 × 2 × 2 108 98.352
59 4 |GHZ4〉 4 × 2 × 2 × 2 107 99.339
60 4 |GHZ4〉 3 × 3 × 2 × 2 107 99.624
61 4 |GHZ4〉 4 × 3 × 2 × 2 106 99.867
62 4 |GHZ4〉 4 × 4 × 2 × 2 105 99.937
63 4 |GHZ4〉 3 × 3 × 3 × 2 107 99.934
64 4 |GHZ4〉 4 × 3 × 3 × 2 105 99.981
65 4 |GHZ4〉 4 × 4 × 3 × 2 105 99.989
66 4 |GHZ4〉 4 × 4 × 4 × 2 105 99.993
67 4 |GHZ4〉 3 × 3 × 3 × 3 106 99.995
68 4 |GHZ4〉 4 × 3 × 3 × 3 105 99.999
69 4 |GHZ4〉 4 × 4 × 3 × 3 105 99.999
70 4 |GHZ4〉 4 × 4 × 4 × 3 105 100.00
71 4 |GHZ4〉 4 × 4 × 4 × 4 104 100.00

72 4 |W4〉 2 × 2 × 2 × 2 108 85.920
73 4 |W4〉 3 × 2 × 2 × 2 107 95.129
74 4 |W4〉 4 × 2 × 2 × 2 107 97.969
75 4 |W4〉 5 × 2 × 2 × 2 106 99.013
76 4 |W4〉 3 × 3 × 2 × 2 107 98.757
77 4 |W4〉 3 × 3 × 3 × 2 107 99.767
78 4 |W4〉 3 × 3 × 3 × 3 106 99.966
79 4 |W4〉 4 × 4 × 4 × 2 105 99.999

80 4
∣∣D2

4

〉
2 × 2 × 2 × 2 108 83.577

81 4
∣∣D2

4

〉
3 × 2 × 2 × 2 107 94.065

82 4
∣∣D2

4

〉
4 × 2 × 2 × 2 107 97.315

83 4
∣∣D2

4

〉
3 × 3 × 2 × 2 107 98.428

84 4
∣∣D2

4

〉
3 × 3 × 3 × 2 107 99.716

85 4
∣∣D2

4

〉
3 × 3 × 3 × 3 106 99.964

86 4
∣∣D2

4

〉
4 × 4 × 4 × 2 105 99.996

87 4 |ψ−
4 〉 2 × 2 × 2 × 2 108 74.943

88 4 |ψ−
4 〉 3 × 2 × 2 × 2 107 89.604

89 4 |ψ−
4 〉 4 × 2 × 2 × 2 107 94.918

90 4 |ψ−
4 〉 3 × 3 × 2 × 2 107 96.621

91 4 |ψ−
4 〉 3 × 3 × 3 × 2 107 99.344

92 4 |ψ−
4 〉 3 × 3 × 3 × 3 106 99.908

93 4 |ψ−
4 〉 4 × 4 × 4 × 2 105 99.991

94 4 |Cluster4〉 2 × 2 × 2 × 2 108 97.283
95 4 |Cluster4〉 3 × 2 × 2 × 2 108 99.275
96 4 |Cluster4〉 4 × 2 × 2 × 2 107 99.705
97 4 |Cluster4〉 3 × 3 × 2 × 2 107 99.884
98 4 |Cluster4〉 3 × 3 × 3 × 2 107 99.976
99 4 |Cluster4〉 3 × 3 × 3 × 3 106 99.997
100 4 |Cluster4〉 4 × 4 × 4 × 2 105 99.999

101 4 ρSmolin4 2 × 2 × 2 × 2 108 0.023
102 4 ρSmolin4 3 × 2 × 2 × 2 108 0.068
103 4 ρSmolin4 4 × 2 × 2 × 2 107 0.127
104 4 ρSmolin4 5 × 2 × 2 × 2 107 0.195
105 4 ρSmolin4 3 × 3 × 2 × 2 107 0.197
106 4 ρSmolin4 3 × 3 × 3 × 2 107 0.601
107 4 ρSmolin4 3 × 3 × 3 × 3 107 2.009

108 5 |GHZ5〉 2 × 2 × 2 × 2 × 2 107 99.601
109 5 |GHZ5〉 3 × 2 × 2 × 2 × 2 106 99.900
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TABLE I. (Continued.)

No. N State Settings Stat. pV

110 5 |W5〉 2 × 2 × 2 × 2 × 2 107 98.311

111 5
∣∣D2

5

〉
2 × 2 × 2 × 2 × 2 107 99.254

112 5 1
2

(
ρD2

5
+ ρD3

5

)
2 × 2 × 2 × 2 × 2 107 0.047

113 5 |GHZ〉4|0〉 2 × 2 × 2 × 2 × 2 107 94.240

114 5 |GHZ〉3|00〉 2 × 2 × 2 × 2 × 2 107 74.688

115 5 |GHZ〉2|000〉 2 × 2 × 2 × 2 × 2 107 28.318

116 5 |L5〉 [24] 2 × 2 × 2 × 2 × 2 106 99.782

117 5 |R5〉 [24] 2 × 2 × 2 × 2 × 2 106 99.957

N = 6 (using a similar linear programming method). In all
cases, the results agree with our numerical method.

B. Genuine tripartite entanglement criterion

We note that for any two qubit state and two measurement
settings per party, the probability of violation of local realism
cannot be greater than 2(π − 3), i.e., the two qubit GHZ state
gives the highest probability. The analytical proof is deferred
to the Appendix.

Then it is straightforward to prove that for any biprod-
uct state |ψ12〉 ⊗ |ψ3〉 the two qubit quantum probability
P (r1,r2|Ai,Bj ) is described by a local realistic theory if and

TABLE II. Frequencies of violation of local realism pV observed
statistically with random measurements on random qubit states.

No. N Settings Stat. pV

118 3 2 × 2 × 2 108 12.396
119 3 2 × 2 × 2 108 33.893
120 3 2 × 2 × 2 108 38.959
121 3 2 × 2 × 2 108 45.186
122 3 2 × 2 × 2 108 43.505
123 3 2 × 2 × 2 108 4.812
124 3 2 × 2 × 2 108 59.824
125 3 2 × 2 × 2 108 35.197
126 3 2 × 2 × 2 109 43.602
127 3 2 × 2 × 2 108 43.747

128 4 2 × 2 × 2 × 2 107 95.016
129 4 2 × 2 × 2 × 2 107 93.104
130 4 2 × 2 × 2 × 2 107 95.630
131 4 2 × 2 × 2 × 2 107 90.957
132 4 2 × 2 × 2 × 2 107 92.616

133 5 2 × 2 × 2 × 2 × 2 107 99.862
134 5 2 × 2 × 2 × 2 × 2 107 99.857
135 5 2 × 2 × 2 × 2 × 2 107 99.900
136 5 2 × 2 × 2 × 2 × 2 107 99.889
137 5 2 × 2 × 2 × 2 × 2 107 99.913
138 5 2 × 2 × 2 × 2 × 2 107 99.878
139 5 2 × 2 × 2 × 2 × 2 107 99.884
140 5 2 × 2 × 2 × 2 × 2 107 99.880
141 5 2 × 2 × 2 × 2 × 2 107 99.861
142 5 2 × 2 × 2 × 2 × 2 107 99.878

TABLE III. Frequencies of violation of local realism pV observed
statistically with random measurements on qutrit states.

No. N State Settings Stat. pV

143 2 |GHZd=3(0◦)〉2 2 × 2 109 9.925
144 2 |GHZd=3(5◦)〉2 2 × 2 109 9.801
145 2 |GHZd=3(10◦)〉2 2 × 2 108 10.021
146 2 |GHZd=3(15◦)〉2 2 × 2 107 11.609
147 2 |GHZd=3(20◦)〉2 2 × 2 108 15.057
148 2 |GHZd=3(25◦)〉2 2 × 2 108 19.363
149 2 |GHZd=3(29.24◦)〉2 [asym] 2 × 2 109 22.317
150 2 |GHZd=3(35.26◦)〉2 [sym] 2 × 2 109 24.011
151 2 |GHZd=3(35.26◦)〉2 [sym] 3 × 3 107 78.667
152 2 |GHZd=3(35.26◦)〉2 [sym] 4 × 4 107 98.229
153 2 |GHZd=3(40◦)〉2 2 × 2 108 22.980
154 2 |GHZd=3(45◦)〉2 2 × 2 108 19.763
155 2 |GHZd=3(50◦)〉2 2 × 2 108 15.054
156 2 |GHZd=3(55◦)〉2 2 × 2 108 10.153
157 2 |GHZd=3(60◦)〉2 2 × 2 108 6.329
158 2 |GHZd=3(65◦)〉2 2 × 2 108 3.638
159 2 |GHZd=3(70◦)〉2 2 × 2 108 1.818
160 2 |GHZd=3(75◦)〉2 2 × 2 108 0.714
161 2 |GHZd=3(80◦)〉2 2 × 2 108 0.174
162 2 |GHZd=3(85◦)〉2 2 × 2 108 0.012
163 2 |GHZd=3(90◦)〉2 2 × 2 108 0.000

164 3
∣∣GHZd=3

3 (0◦)
〉

2 × 2 × 2 108 53.360

165 3
∣∣GHZd=3

3 (35.26◦)
〉

2 × 2 × 2 108 82.720

166 3 |A−〉3 2 × 2 × 2 108 72.328

167 3
∣∣Q1

3

〉
2 × 2 × 2 108 31.371

168 3
∣∣Q2

3

〉
2 × 2 × 2 108 48.506

169 3
∣∣Q3

3

〉
2 × 2 × 2 108 48.564

only if P (r1,r2,r3|Ai,Bj ,Ck) is also described. Hence, in the
examined cases of entangled states of NE particles, multiplied
by the product state |0〉⊗N0 , the full (NE + N0)-particle state
has, as expected, exactly the same probability of violation as its
entangled component alone. The above property comes along
with the fact that biseparable states (i.e., convex mixtures of
biproduct states) can only lower the probability of violation
compared to biproduct states. So we can argue that for any three
qubit state (including mixed states) with two measurement
settings per party, if PV (ρ) > 2(π − 3), this certifies that
the three qubit state is genuinely tripartite entangled, that
is, it cannot be written in any of the forms |ψ12〉 ⊗ |0〉,
|ψ13〉 ⊗ |0〉, and |0〉 ⊗ |ψ23〉 and convex combinations of these
states. Indeed, data in Table I indicate that both GHZ3 and
W3 states are genuinely tripartite entangled as the respective
probabilities: 74.688% (no. 28) and 54.893% (no. 36) are much
higher than 28.319%.

One could construct a similar condition for higher number
of parties (N > 3) but in this case one may give only numerical
bounds for the critical probability, because analytical results
are not known in these cases.

We also considered the probability of violation for the state
ψ3(θ ) = cos θ |111〉 + sin θ |W3〉 (nos. 42–50). For all values
of angle θ > 25.975◦ one can prove that the state is genuinely
three-partite entangled [28], whereas our numerical method
reveals the threshold slightly below 30◦. This discrepancy,
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though small, is due to the fact that our criterion is a necessary
but not a sufficient one.

C. Nonadditivity and multiplicative features of PV (ρ)

The question of additivity seems to be better posed in
terms of PV (ρ) than in terms of maximal violations of a
Bell inequality. Consider the example of the state |GHZ2〉 ⊗
|GHZ2〉, for which probability of violation is nonadditive,
since pV (|GHZ2〉 ⊗ |GHZ2〉) ≈ 1.7pV(|GHZ2〉), and is a bit
less than half of pV (|GHZ4〉).

Therefore instead of additivity, we should consider the
multiplicative features of PV (ρ). Concerning pV (|GHZ2〉) and
pV (|GHZ2〉 ⊗ |GHZ2〉), the probabilities that measurement
results admit a local realistic description, PLR = 1 − PV ,
should be multiplied. In this particular case,

PLR(|GHZ2〉) = 1 − PV(|GHZ2〉) = 1 − 2(π − 3),

PLR(|GHZ2〉 ⊗ |GHZ2〉) = PLR(|GHZ2〉)2 = (7 − 2π )2.

(5)

Hence, pV (ρ|GHZ2〉 ⊗ ρ|GHZ2〉) = 1 − (7 − 2π )2 = 0.486176,
which fits our numerical results up to displayed digits (no. 53).

We also examined the product of the two qubit GHZ state
with a state that does not violate any two setting Bell inequality,
namely, the Werner state: ρWerner2 = 1/

√
2|GHZ〉2〈GHZ| +

(1 − 1/
√

2)11/4. In this case the probability of violation
for the resulting state is the same as for |GHZ2〉, which
can be explained by the above multiplicative feature, since
PLR(ρWerner2 ) = 1.

D. Nonmaximal probability of violation for GHZ states of more
than three particles

We observe a surprising feature, which emerges if the
number of qubits is larger than 3. It is well known that the
N qubit GHZ state maximizes many entanglement conditions
and measures [29]. However, already for N = 4 the probability
of violation for the cluster state (no. 94) is greater than for the
GHZ state (no. 57). The situation is even more dramatic for
N = 5, where the probability is greater for any out of ten
randomly sampled pure states (nos. 133–142).

There is a particular entanglement measure which is in
pace with the above observations, namely, the generalized
Schmidt rank (SR) [21], corresponding to the minimal number
of product states required to represent a given state. The SR
of a GHZ state is 2 for any number of qubits, and it has been
shown in [21] that the SR behaves as 2�N/2 for cluster states
of N qubits.

E. All typical states of five or more qubits violate local realism
for almost all settings

Even with only two observables per party it becomes almost
impossible not to detect nonclassicality for states with five
qubits or more. Any of the studied states (nos. 108–117) in-
cluding random five qubit states (nos. 133–142) leads to nearly
100% probability of violation. In fact, the numbers are so close
that one cannot distinguish the states by means of the violation
probability. This amounts to an enhancement of the content of
Gisin’s theorem in the sense that not only all entangled states
seem to be nonclassical but they violate local realism for almost

all experimental situations. That is, given an entangled state it
is very likely that one can prove its nonclassicality on a first
try by choosing random observables (note also related recent
results in [30]). This is to be contrasted with the original
demonstration [31,32], involving two qubits, where the set-
tings have to be carefully selected. Of course, one can always
find some states with a pV (ρ) which is much smaller than 100%
(e.g., nos. 114 and 115), but they are strictly less entangled.

F. pV (ρ) rapidly increases with the number of settings

The probability of violation increases significantly also with
the number of settings per party. For the two qubit GHZ state,
and five measurement settings per site, the corresponding vio-
lation probability is almost equal to 1. This means that almost
all randomly sampled settings lead to a conflict with local
realistic models and to the violation of some Bell inequality.

This rapid growth is more pronounced than it is for
robustness against white-noise admixture. An increase is also
observed in the resistance to noise, but it is usually a much
less evident effect and visible particularly in multipartite cases
[13]. For example, due to the recent work [33], an increase
of 0.58% in the noise resistance of the two qubit maximally
entangled state required 30 settings (see also a previous work
[34]). It is also conjectured that the above improvement in the
noise resistance could not be attained with fewer settings. Note
also that one cannot go beyond the increase of 3.682% in noise
resistance using an infinite number of projective measurements
[35].

The dependence of pV (ρ) as a function of the number of
settings can be approximated by 1 − ae−bx , where a,b are
constant parameters and x can be either the number of settings
referring to one party (with the other number of settings
fixed) [Fig. 1(a)] or a product of the number of possible
measurement settings [Fig. 1(b)]. Of course there are other
possible combinations involving the number of settings.

G. Nonclassicality of bound entangled states

A bound entangled state (BES) is entangled but
undistillable [36]. However, in [37] it was shown that the
four qubit bound entangled Smolin state [38] can maximally
violate a two-setting Bell inequality similar to the standard
CHSH inequality. In accordance with this finding, when
numerically investigating the possibility of a local realistic
description for the Smolin state, even with two settings per
party, we get small but nonzero probability of violation,
pV (ρSmolin4 ) = 0.023% (no. 101). Although this value is three
orders of magnitude smaller than that for other examined
entangled states, it grows very fast (faster than for other
entangled states) with the number of settings (nos. 102–107)
and the growth seems to be exactly exponential.

In general, if we investigate the PV of a positive partial
transpose state [39,40] and find it to be nonvanishing, then
the state must be entangled. Note that this conclusion can be
reached even without the knowledge of which Bell inequality
is to be violated. This may be particularly useful when the state
involves many subsystems.
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FIG. 1. The probability of violation for the two qubit GHZ state
vs (a) the number of measurement settings for the first observer and
(b) a product of the number of settings for both observers.

The three qubit BES ρ2×2×2
BES introduced in [41] also violates

some Bell inequality, but this seems to be statistically very rare
since we had not observed any violation of local realism for two
settings per party. Nevertheless, when the same measurement
is applied to every particle, we observe a nonzero probability
of violation, pV (ρ2×2×2

BES ) = 0.008%.
The last considered example of bound entangled states is

the two qutrit state ρ3×3
BES that was used to disprove the famous

Peres conjecture [42,43]. Despite the fact that this state does
not admit a local realistic model, the violation is proved only
for judiciously specified observables and inequality, which
occur seldom enough, so that we did not find violations in any
of the 1010 randomly chosen settings.

H. Two qutrits: Coincidence of maximal entanglement and
maximal nonclassicality

Entanglement and nonclassicality are distinct resources.
The former corresponds to the purely mathematical concept
of state nonseparability while the latter amounts to its
manifestation in experiments. It is acknowledged that a clear
illustration of this point is the unexpected difference between
maximally entangled states and states that maximally violate
a Bell inequality. In [9] it is suggested that this anomaly may
be an artifact of almost all measures that have been used

0        10        20       30       40        50       60        70       80       90
0

5

10

15

25

20

(deg)

0      2      4       6       8     10

10

9.8

pr
ob

ab
ili

ty
 o

f v
io

la
tio

n 
(%

)

FIG. 2. Probability of violation for the two qutrit generalized
GHZ(α) state vs α.

to quantify nonclassicality. Our numerical results show that,
according to the probability of violation, there is no anomaly
in the nonclassicality of the two qutrit generalized GHZ state.
The maximal probability of violation pV = 24.011% (no. 150)
is attained for the symmetric state GHZd=3

2 (35.26◦) instead
of the asymmetric one: GHZd=3

2 (29.24◦) [pV = 22.317% (no.
149)], which maximally violates the CGLMP inequality [11].
A little surprising is the behavior of the probability of violation
around α = 0, where we observe a small local minimum for
α = 6◦ (see Fig. 2). The minimum remains even if the number
of settings per party is increased to 3. A possible explanation
of this feature could be the fact that there are two relevant
Bell inequalities for the considered case—CHSH and CGLMP
inequalities with different functions representing the violation
probability. The total probability of violation is a combination
of the probabilities for those particular inequalities, which may
result in several extremes.

IV. CLOSING REMARKS

In this paper we employed linear programming as a useful
tool to analyze the nonclassical properties of quantum states.
We checked how many randomly generated sets of observables
allow for violation of local realism. Most of the conclusions
were presented in the previous sections. Here we want to stress
that the overall message of the obtained results is that either
for many particles or many measurement settings we observe a
conflict with local realism for almost any choice of observables
(the probability of violation is greater than 99%) for typical
families of quantum states.

Concerning the nonclassicality of two qutrits, our results
are compatible with those presented in [9], that is, maximally
entangled and maximally nonclassical states coincide. It
is worth mentioning that, in addition, we addressed the
apparently paradoxical result obtained in [44]. It amounts to
the observation that the products of k qubit GHZ states and
(N − k) pure single qubit states are more nonclassical than the
N qubit GHZ state, if we employ the robustness of correlations
against white-noise admixture as a measure of nonclassicality.
Our numerical method shows that the probability of violation
of local realism for such product states (for N = 3,4,5 and
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k = 1, . . . ,N ) is the same as for the k qubit GHZ state and
thus strictly smaller than for the N qubit GHZ state. This
suggests that resistance against noise, although relevant, is not
a good quantifier of nonclassicality.
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APPENDIX: PROOF

The following observation is proven below: The probability
of violation PV for any two qubit state and two binary-outcome
measurements cannot be greater than 2(π − 3).

In order to prove it, first recall that PV = 2(π − 3) for the
|GHZ2〉 state using two binary-outcome settings per party [6].
Let

|GHZ(α)〉2 = sin α|00〉 + cos α|11〉 (A1)

stand for the two qubit pure partially entangled state with
α ∈ {0,π/4} written in the Schmidt bases. Clearly, α = π/4
recovers the two qubit maximally entangled state. Let PV (α)
denote the probability of violation corresponding to the state
|GHZ(α)〉2. Note that mixed two qubit states cannot provide
higher probability of violation, therefore we can restrict our
attention to the probabilities PV (α).

First we prove the following lemma.
Lemma 1. If the CHSH inequality is violated using a state

|GHZ(α)〉2 and some projective measurements, at least the
same violation occurs with the maximally entangled state
|GHZ〉2 using the same measurements.

Proof. Let us write the measurement observables A and B

as

A = axσx + ayσy + azσz,

B = bxσx + byσy + bzσz, (A2)

where σx,y,z denote Pauli matrices, and the coefficients of
Alice measurements ax,ay,az square to 1 (and similarly for
Bob). Then we have the joint correlator

〈AB〉 = azbz + sin 2α(axbx − ayby). (A3)

On the other hand, the CHSH expression reads

CHSH = 〈A1B1〉 + 〈A1B2〉 + 〈A2B1〉 − 〈A2B2〉. (A4)

Using formula (A3), we get

CHSH(α) = Cz + sin(2α)(Cx − Cy), (A5)

where α ∈ {0,π/4} and

Ci = a1ib1i + a1ib2i + a2ib1i − a2ib2i , (A6)

where i can take x, y, and z. Notice that Cz � 2, therefore
a CHSH value greater than 2 in Eq. (A5) implies that
Cx − Cy > 0. This in turn implies that in case of violation
of the CHSH inequality (that is, CHSH > 2), we have
CHSH(π/4) � CHSH(α) for all α ∈ {0,π/4}. �

Given the above lemma, it is not difficult to see that PV (α) �
PV = 2(π − 3) for all α ∈ {0,π/4}. Indeed, notice that the
classically attainable region of the two-setting two-outcome
scenario is completely characterized by eight different versions
of the CHSH expressions (see, e.g., [6]). However, after
suitable relabeling of the inputs and flipping of the outcomes
they all end up in the standard CHSH defined by Eq. (A4).
Hence, violation of any of the versions of the CHSH inequality
using a partially entangled state (A1) along with some
projective measurements entails at least the same violation
of this version using the maximally entangled state and the
same measurements. This implies the relation pV (α) � pV =
2(π − 3) we set out to prove.
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