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Almost all four-particle pure states are determined by their two-body marginals
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We show that generic pure states (states drawn according to the Haar measure) of four particles of equal
internal dimension are uniquely determined among all other pure states by their two-body marginals. In fact,
certain subsets of three of the two-body marginals suffice for the characterization. We also discuss generalizations
of the statement to pure states of more particles, showing that these are almost always determined among pure
states by three of their (n − 2)-body marginals. Finally, we present special families of symmetric pure four-particle
states that share the same two-body marginals and are therefore undetermined. These are four-qubit Dicke states
in superposition with generalized GHZ states.
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Introduction. The question of what can be learned about
a multiparticle system by looking at some particles only is
central for many problems in physics. In quantum mechanics,
this problem can be formulated in a mathematical fashion
as follows: Given a quantum state ρ on n particles, which
properties of this state can be inferred from knowledge of
the k-particle reduced states only? This question is naturally
connected to the phenomenon of entanglement. Indeed, con-
sidering pure states of two particles, product states are always
determined by their marginals, whereas entangled states can
exhibit reduced states that admit multiple compatible joint
states. Consequently, entangled states may contain information
in correlations among many parties that is lost when just having
access to the reductions. In fact, many works have considered
the problem of how entanglement or other global properties
relate to properties of the reduced states [1–4]. On a more
fundamental level, one may ask the question whether for a
given set of reduced states the original global state is the only
state having this set of reduced states [5–8].

This question is also of practical interest: If a quantum state
happens to be the unique ground state of a Hamiltonian, it may
be obtained by engineering this Hamiltonian and then cooling
down the system. In practice, typical Hamiltonians are limited
to having interactions between two or three particles only. The
question of whether the ground state of such a Hamiltonian is
unique is then directly related to the question of whether the
state one wants to prepare is uniquely determined by its two-
or three-body marginals [9,10].

The question of uniqueness was analyzed in detail by
Linden and co-workers, who showed that almost all pure
three-qubit states are determined among all mixed states by
their two-body marginals [11]. Later, Diósi showed that two of
the three two-body marginals suffice to characterize uniquely
a pure three-particle state among all other pure states [12].
Jones and Linden finally proved that generic states of n qudits
are uniquely determined by certain sets of reduced states of
just more than half of the parties, whereas the reduced states
of fewer than half of the parties are not sufficient [13]. Thus,
higher-order correlations of most pure quantum states are not
independent of the lower-order correlations.

In this Rapid Communication, we investigate the case
of four-particle states having equal internal dimension. We
show that generic pure states of four particles are uniquely
determined among all pure states by certain sets of their two-

body marginals, see Fig. 1. To that end, we begin by defining
what we mean by generic states and distinguish the different
kinds of uniqueness, namely, uniqueness among pure and
uniqueness among all states. We then prove our main result,
first for the case of qubits and subsequently for the general case
of qudits. The theorem is then generalized to generic n-particle
states, which can be shown to be determined in a similar way
by certain sets of three of their (n − 2)-body marginals. Finally,
we list some specific examples for the exceptional case of states
of four particles that are not determined by their two-body
marginals.

Random states and uniqueness. We begin with some basic
definitions. Given an n-particle quantum state ρ of partiesP =
{P1, . . . ,Pn}, its k-body marginal of parties S = {Pi1 , . . . ,Pik }
is defined as

ρS := TrS̄ (ρ), (1)

where the trace is a partial trace over parties S̄ = P \ S.
When stating the question of uniqueness, i.e., whether a given
state is uniquely determined by some of its marginals, it is
important to specify the set of states considered. Usually, two
different sets are taken into account, namely, the set of pure
states and the set of all states, leading to two different kinds
of uniqueness, namely, that of uniqueness among pure states
(UDP) and uniqueness among all states (UDA). We adopt here
the definition of Ref. [14] and extend it by specifying which
marginals are involved.
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FIG. 1. Illustration of two different sets of two-body marginals:
(a) the set of all six two-body marginals; (b) a set of three two-body
marginals that is shown to suffice to uniquely determine generic pure
states.
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Definition 1. A state |ψ〉 is called
(i) k-uniquely determined among pure states (k-UDP),

if there exists no other pure state having the same k-body
marginals as |ψ〉.

(ii) k-uniquely determined among all states (k-UDA), if
there exists no other state (mixed or pure) having the same
k-body marginals as |ψ〉.

Using this language, the results of Ref. [11] show that
almost all three-qubit pure states are 2-UDA, that is, given
a random pure state |ψ〉, it is uniquely determined by its
marginals ρAB, ρAC, and ρBC. Reference [12] states that
knowledge of just two of the three two-body marginals suffices
to fix the state among all pure states (UDP). Later, these
results were generalized to states of certain higher internal
dimensions; for a more general overview, see, for example,
Ref. [14]. Note that while UDA implies UDP, the converse in
general does not need to be true and there are examples of
four-qubit states which are 2-UDP but not 2-UDA [15]. Other
cases of UDP versus UDA are discussed in Ref. [14].

Note that in some cases, a subset of all k-body marginals
already suffices to show uniqueness, as in the case of almost all
three-qubit states discussed above [12]. In this Rapid Commu-
nication, we will show that in the case of four particles, specific
sets consisting of three of the six two-body marginals suffice
to determine any generic pure states among all pure states.

Generic states are understood to be states drawn ran-
domly according to the Haar measure. Here, we adopt a
special procedure to obtain such random states in a Schmidt
decomposed form. To that end, consider a four-particle
pure state |ψ〉 ∈ HA ⊗ HB ⊗ HC ⊗ HD , where dimHA =
dimHB = . . . = d. Using the Schmidt decomposition along
the bipartition (AB|CD), the state can be written as

|ψ〉 =
d2∑
i=1

√
λi |i〉AB ⊗ |i〉CD , (2)

where
∑

i λi = 1. If the state has full Schmidt rank, i.e., λi �= 0
for all i, then the sets |i〉AB and |i〉CD form orthonormal bases
in the composite Hilbert spaces HA ⊗ HB and HC ⊗ HD ,
respectively.

Definition 2. A generic four-particle pure state is a state
|ψ〉 ∈ HA ⊗ HB ⊗ HC ⊗ HD drawn randomly according to
the Haar measure. Writing such state as in Eq. (2), the Schmidt
bases and the set of Schmidt coefficients are independent from
each other. The distribution of the Schmidt coefficients is given
by [16,17]

P (λ1, . . . ,λ4)dλ1 . . . dλd2 = Nδ

⎛
⎝1 −

d2∑
i=1

λi

⎞
⎠ ∏

1�i<j�d2

× (λi − λj )2dλ1 . . . dλd2 , (3)

and the Schmidt bases are distributed according to the Haar
measure of unitary operators on the smaller Hilbert spaces.

The mutual independence of the two Schmidt bases and the
coefficients can be seen from the fact that in the Haar measure,
for the probability distribution p(|ψ〉) to obtain state |ψ〉 holds
p(|ψ〉) = p(1AB ⊗ UCD |ψ〉) = p(UAB ⊗ 1CD |ψ〉).

Generic states as defined above exhibit two other important
properties: They have full Schmidt rank and pairwise distinct

Schmidt coefficients. We would like to add that while the
definition above makes use of the Haar measure, we do not
explicitly require it. Any measure with the same independence
properties between the two Schmidt bases and Schmidt
coefficients would work as well, as long as the sets of
states having nonfull Schmidt rank or degenerate Schmidt
coefficients are also of measure zero.

The case of qubits. To begin with, we investigate the
qubit case, where d = 2. Let |ψ〉 = ∑4

i=1

√
λi |i〉AB ⊗ |i〉CD

be a generic state in the sense defined above. The two-body
marginal of parties A and B is given by

ρAB = TrCD(|ψ〉〈ψ |) =
4∑

i=1

λi |i〉〈i|AB , (4)

and similarly for CD. This is the starting point for the proof
of the following theorem.

Theorem 1. Almost all four-qubit pure states are uniquely
determined among pure states by the three two-body marginals
ρAB, ρCD, and ρBD. In particular, this implies that they are
2-UDP.

Proof. Let |ψ〉 be a generic state in the Schmidt decomposed
form in Eq. (2). We arrange the Schmidt bases such that the
Schmidt coefficients are in decreasing order, i.e., λi � λi+1.
Suppose that there is another pure state |φ〉 which exhibits the
same two-body marginals ρAB and ρCD as |ψ〉. As the λi are
pairwise distinct and in decreasing order, the Schmidt bases of
|φ〉 and |ψ〉 have to coincide up to a phase. Thus, |φ〉 must be
of the form

|φ〉 =
4∑

i=1

eiϕi

√
λi |i〉AB ⊗ |i〉CD . (5)

Therefore, the only degrees of freedom left of |φ〉 are the four
phases ϕi .

We now demand that the marginals of parties B and D also
coincide, i.e., TrAC(|ψ〉〈ψ |) = TrAC(|φ〉〈φ|) (but any other
marginal would be fine, too):

ρBD =
4∑

i,j=1

√
λiλj TrAC(|i〉〈j |AB ⊗ |i〉〈j |CD)

!=
4∑

i,j=1

ei(ϕi−ϕj )
√

λiλj TrAC(|i〉〈j |AB ⊗ |i〉〈j |CD). (6)

The sum runs over operators on the space of parties B and D.
For every pair i,j , this operator is given by

Oij = TrAC(|i〉〈j |AB ⊗ |i〉〈j |CD). (7)

The 16 operators Oij span a subspace in the 16-dimensional
space of operators on HB ⊗ HD . As we will see later, this
subspace is only 13 dimensional, thus the operators must be
linearly dependent. Therefore, we cannot simply compare both
sides of Eq. (6) term by term to conclude that ϕi = ϕj . Instead,
let us interpret the 16 operators Oij as vectors in the 16-
dimensional operator space. Thus, we are looking for solutions
of the equation

4∑
i,j=1

(1 − ei(ϕi−ϕj ))
√

λiλjOij ≡
4∑

i,j=1

γijOij = 04×4, (8)
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where

γij := (1 − ei(ϕi−ϕj ))
√

λiλj . (9)

These are 16 equations, one for every entry of the resulting 4 ×
4 matrix. We can treat Eq. (8) as a system of linear equations
for the γij and look for solutions that can be written in the
specific form in Eq. (9). It implies that

γii = 0, (10)

γij = γ̄j i . (11)

Therefore, there are effectively six undetermined complex-
valued variables γij for 1 � i < j � 4.

Let us now investigate the linear system in Eq. (8) in more
detail. Note that every Oij can be written as a product,

Oij = TrA(|i〉〈j |AB) ⊗ TrC(|i〉〈j |CD) ≡ Qij ⊗ Rij , (12)

where Qij = TrA(|i〉〈j |AB), Rij = TrC(|i〉〈j |CD). The matri-
ces Qij and Rij inherit some properties from the underlying
orthonormal bases:

Tr(Qij ) = δij , Q
†
ij = Qji, (13)

and similarly for Rij .
Using these properties together with Eqs. (10) and (11),

Eq. (8) can be written as∑
i<j

γijQij ⊗ Rij + γ̄ijQ
†
ij ⊗ R

†
ij

!= 0. (14)

For i �= j , Tr(Qij ) = Tr(Rij ) = 0 and we can write Qij and
Rij explicitly as

Qij =
(

q11
ij q12

ij

q21
ij −q11

ij

)
, (15)

Rij =
(

r11
ij r12

ij

r21
ij −r11

ij

)
. (16)

Thus,

0 =
∑
i<j

γijQij ⊗ Rij + γ̄ijQ
†
ij ⊗ R

†
ij

=
∑
i<j

(
γij q

11
ij Rij +γ̄ij q̄

11
ij R

†
ij γij q

12
ij Rij +γ̄ij q̄

21
ij R

†
ij

γij q
21
ij Rij +γ̄ij q̄

12
ij R

†
ij −(γij q

11
ij Rij +γ̄ij q̄

11
ij R

†
ij )

)

=
(

A B

B† −A

)
. (17)

Now we treat each submatrix A and B individually. Demand-
ing A = 0 yields∑

i<j

γij q
11
ij Rij = −

∑
i<j

γ̄ij q̄
11
ij R

†
ij , (18)

thus
∑

i<j γij q
11
ij Rij must be skew Hermitian. As Rij has zero

trace, we extract the following set of equations:

Re

⎛
⎝∑

i<j

γij q
11
ij r11

ij

⎞
⎠ = 0, (19)

∑
i<j

γij q
11
ij r12

ij +
∑
i<j

γ̄ij q̄
11
ij r̄21

ij = 0. (20)

On the other hand, demanding B = 0 yields

∑
i<j

γij q
12
ij r11

ij +
∑
i<j

γ̄ij q̄
21
ij r̄11

ij = 0, (21)

∑
i<j

γij q
12
ij r12

ij +
∑
i<j

γ̄ij q̄
21
ij r̄21

ij = 0, (22)

∑
i<j

γij q
12
ij r21

ij +
∑
i<j

γ̄ij q̄
21
ij r̄12

ij = 0. (23)

Treating real and imaginary part separately, these are 3 + 6 =
9 real equations for the six complex values γij .

Before continuing with the proof, we have to ensure that
these equations are linearly independent. This can be checked
by expanding the Schmidt bases |i〉AB and |i〉CD in terms of
the computational basis, i.e.,

|i〉AB =
1∑

a,b=0

μi
ab |ab〉 , (24)

|i〉CD =
1∑

c,d=0

νi
cd |cd〉 , (25)

where the only dependence among the |i〉AB’s is

〈i|j 〉AB =
∑
a,b

μi
abμ̄

j

ab = δij , (26)

similarly for the |i〉CD’s. Expressing the numbers qij in terms
of the coefficients μ,

qbb′
ij =

∑
a

μi
abμ̄

j

ab′ , (27)

shows that the only dependence among the qij is q11
ij = −q22

ij ,
which has already been taken into account. Thus, the numbers
q11

ij , q12
ij , and q21

ij do not fulfill any additional constraints. The
same is true for the rij . As the orthonormal bases have been
chosen independently and randomly, the qij and rij are also
independent from each other.

Returning to the proof, there is a three-dimensional (real)
solution space for the γij due to Eqs. (19) to (23) if we do
not impose the constraints (9) yet. As γij = 0 for all i,j is
certainly a solution, we can parametrize this solution space by

γij =
3∑

a=1

xav
a
ij , (28)

where the xa are the three real-valued parameters.
Luckily, we have additional constraints at hand as the γij

are not independent. Let us define the normalized variables

cij := (λiλj )−
1
2 γij . Then,

cij cjk = (1 − ei(ϕi−ϕj ))(1 − ei(ϕj −ϕk ))

= 1 − ei(ϕi−ϕj ) − ei(ϕj −ϕk ) + ei(ϕi−ϕk )

= cij + cjk − cik, (29)

for all i,j,k. This also implies (setting i = k)

|cij |2 = cij + c̄ij . (30)
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Substituting for cij , the solution (28) yields, for all i < j ,

3∑
a,b=1

xaxbv
a
ij v̄

b
ij = √

λiλj

3∑
a=1

xa

(
va

ij + v̄a
ij

)
. (31)

There are six equations for the three variables xa . Taking the
four equations for i = 1, j = 1, . . . ,4, yields four indepen-
dent equations as each equation makes use of a different,
independent Schmidt coefficient λi . Additionally, any of the
equations can be solved for any of the xa and the Schmidt
coefficients λi have not been used to obtain the solutions in
Eq. (28). Therefore, only the trivial solution xa = 0 exists,
thus

cij = γij = 0. (32)

Consequently, all phases ϕi = ϕ must be equal. Thus |φ〉 =
eiϕ |ψ〉, which corresponds to the same physical state. �

The same result is also true for other configurations of
known marginals that result from relabeling the particles.

The case of higher-dimensional systems. The proof can
seamlessly be extended to the case of qudits having higher
internal dimension d.

Theorem 2. Almost all four-qudit pure states of internal
dimension d are uniquely determined among pure states by
the three two-body marginals of particles ρAB, ρCD, and ρBD.
In particular, this implies that they are 2-UDP.

Proof. The proof follows exactly the same steps as in the
qubit case. The bases of the subspaces A,B and C,D are then
d2 dimensional; thus i and j run from 1 to d2 and there are d2

free phases [(d2 − 1) if ignoring a global phase]. There are then
d2(d2−1)

2 different complex-valued γij with i < j . Equation (17)
consists in this case of d × d submatrices:

∑
i<j

⎛
⎜⎜⎝

γij q
11
ij Rij + γ̄ij q̄

11
ij R

†
ij . . . γij q

1d
ij Rij + γ̄ij q̄

d1
ij Rij

...
. . .

...

γij q
d1
ij Rij + γ̄ij q̄

1d
ij R

†
ij . . .

⎞
⎟⎟⎠ = 0. (33)

Again, the lower-left submatrices are the adjoints of the upper-
right ones; thus it suffices to set the upper-right ones to zero.
All submatrices on the diagonal must be skew Hermitian, and
the last diagonal matrix can be expressed by the other diagonal
entries due to tracelessness:

(i) Every off-diagonal submatrix such as γij q
12
ij Rij +

γ̄ij q̄
21
ij R

†
ij yields 2(d2 − 1) real equations, as Rij is a traceless

d × d matrix, thus rdd
ij = −r11

ij − . . . − r
d−1,d−1
ij . There are

d(d−1)
2 off-diagonal submatrices on the upper right, thus they

yield (d2 − 1)d(d − 1) real equations.
(ii) Every diagonal submatrix is skew Hermitian, which

exhibits d + 2 d(d−1)
2 = d2 real equations, and traceless, which

removes one of the diagonal equations, leaving d2 − 1 equa-
tions. There are d − 1 diagonal submatrices, yielding a total
of (d − 1)(d2 − 1) real equations.

Thus, there is a total of (d − 1)(d2 − 1) + d(d − 1)(d2 −
1) = (d2 − 1)2 (real) equations. Consequently, the d2(d2−1)

2

complex-valued γij are reduced to 2 d2(d2−1)
2 − (d2 − 1)2 =

d2 − 1 real parameters, which matches again the number of
free phases in the ansatz.

From the compatibility equations (29), we can choose those
with i = 1, j = 1 . . . d2 to obtain a set of d2 independent
quadratic equations, as there are by assumption d2 independent
Schmidt coefficients. Therefore, the only solution is γij = 0
as in the qubit case, implying that |φ〉 = eiϕ |ψ〉. �

States of n particles. Even though the above theorem is
limited to states of four particles, the result sheds some light
on states of more parties.

Corollary 1. For n � 4, almost all n-qudit pure states of
parties A,B,C,D,E1, . . . ,En−4 of internal dimension d are
uniquely determined among pure states by the three (n − 2)-
body marginals of particles ρABE1..., ρCDE1..., and ρBDE1.... In
particular, this implies that they are (n − 2)-UDP.

Proof. We denote by E all the parties E1, . . . ,En−4.
Consider a generic pure n-particle state |ψ〉 with known
(n − 2)-body marginals ρABE, ρACE, and ρCDE. From these,
one can obtain the (n − 4)-particle marginal ρE. This allows
us to decompose a generic state into

|ψ〉 =
min(d4,dn−4)∑

i=1

√
λi |ψi〉 ⊗ |i〉E , (34)

where the Schmidt basis |i〉E and Schmidt coefficients λi are
determined by ρE and the Schmidt vectors |ψi〉 on ABCD have
yet to be determined. On the one hand, knowing the (n − 2)-
body marginal ρABE allows us to determine all expectation
values of the form

〈ψ |OA ⊗ OB ⊗ |i〉〈i|E |ψ〉 = Tr(OA ⊗ OB ⊗ |i〉〈i|E ρABE)

(35)

for all i, where OA and OB are some local observables of parties
A and B, respectively. On the other hand, this is equivalent
to knowing all expectation values 〈ψi |OA ⊗ OB|ψi〉 of the
pure four-particle constituent |ψi〉, yielding its reduced state
ρ

(i)
AB. The same can be done for parties AC and parties CD.

According to Theorem 2, this determines the states |ψi〉
uniquely up to a phase. Thus, the joint state on ABCDE

has to have the form

|ψ ′〉 =
min(d4,dn−4)∑

i=1

eiϕi

√
λi |ψi〉 ⊗ |i〉E . (36)

However, from this family, only the choice ϕi = ϕj for all i,j

is compatible with the known reduced state ρABE: The reduced
state

ρ ′
ABE =

∑
i,j

ei(ϕi−ϕj )
√

λiλj TrCD(|ψi〉〈ψj |) ⊗ |i〉〈j |E (37)
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can be compared term by term with the known marginal, as the
|i〉E are orthogonal. Therefore, |ψ ′〉 = eiϕ |ψ〉 and the state is
determined again. �

It must be stressed that the main statement of this corollary
is the fact that three n − 2 marginals can already suffice. The
fact that pure states are (n − 2)-UDP is not surprising, as
usually already less knowledge is sufficient to make a pure
state UDA; see Ref. [13] for a discussion.

States that are not UDP. As the proof above is valid for
generic states only, it is natural to ask whether there are special
four-particle states that are not UDP. This is indeed the case.
In the following, we give an incomplete list of undetermined
four-particle qubit states. Note that if any two states |ψ〉 and |φ〉
share the same two-body marginals, then also all local unitary
equivalent states |ψ〉′ = UA ⊗ UB ⊗ UC ⊗ UD |ψ〉 and |φ〉′ =
UA ⊗ UB ⊗ UC ⊗ UD |φ〉 share the same marginals. Thus, we
restrict ourselves to states |ψ〉 = ∑

αijkl |ijkl〉 of the standard
form introduced in Ref. [18], where

α0000,α0001,α0010,α0100,α1000 ∈ R,

α0111,α1011,α1101,α1110 = 0, (38)

and all other coefficients being complex. In the following list,
the states are always assumed to be normalized. To shorten the
notation, we make use of the W state,

|W4〉 = 1
2 (|0001〉 + |0010〉 + |0100〉 + |1000〉),

and of the Dicke state,

∣∣D4
2

〉 = 1√
6

(|0011〉 + |0101〉 + |1001〉

+ |0110〉 + |1010〉 + |1100〉).

Due to the standard form, we have in the following a,b ∈ R,
while r,s ∈ C. The claimed properties of the states can be
directly computed.

(a) For fixed a,b, and s, the family

|ψ〉 = a |0000〉 + b |W4〉 + seiϕ |1111〉 (39)

shares the same two-body marginals for all values of ϕ.
(b) For the same state with a = 0,b = 2√

6
, and s = 1√

3
,

|φ〉 = 1
2 |0000〉 + 1√

2
eiϕ

∣∣D4
2

〉 − 1
2e2iϕ |1111〉 (40)

shares the same marginals for all values of ϕ.
(c) For every state

|ψ〉 = a |0000〉 + r
∣∣D4

2

〉 + s |1111〉 , (41)

the state

|φ〉 = a |0000〉 + reiϕr
∣∣D4

2

〉 + seiϕs |1111〉 (42)

shares the same marginals if rseiϕs = areiϕr (1 − eiϕr ) +
rseiϕr , which is feasible for, e.g., a = 0.

A B

DC
(a)

A B

DC
(b)

FIG. 2. Illustration of the two other possible sets of three two-
body marginals: (a) a set of marginals, which clearly does not
determine the global state, as ρD is not fixed; (b) a set of marginals
to which our proof does not apply. Nevertheless, we have numerical
evidence that these marginals still determine the state uniquely for
qubits.

All of our examples are superpositions of Dicke states and
generalized GHZ states. By a local unitary operation, these
examples also include the Dicke state with three excitations.
The examples prove that Theorem 1 does not hold for all
four-particle states, but only for generic states.

Discussion. We have shown that generic four-qudit pure
states are uniquely determined among pure states by three
of their six different marginals of two parties. Interestingly,
from this it follows that pure states of an arbitrary number
of qudits are determined by certain subsets of their marginals
having size n − 2. The proof required two marginals of distinct
systems to be equal, for instance ρAB and ρCD, in order to fix
the Schmidt decomposition of the compatible state. However,
there are two other sets of three two-body marginals, illustrated
in Fig. 2. The first one, namely, knowledge of ρAB, ρAC, and
ρBC, is certainly not sufficient to fix the state, as we do not
have any knowledge of particle D in this case: Every product
state ρABC ⊗ ρD with arbitrary state ρD is compatible. The
situation for the second configuration, namely, knowledge
of the three marginals ρAB, ρAC, and ρAD, is not that clear.
In a numerical survey testing random four-qubit states, we
could not find pairs of different pure states which coincide
on these marginals. Thus, we conjecture that any marginal
configuration involving all four parties determines generic
states. In any case, knowledge of any set of four two-body
marginals fixes the state, as there are always two marginals of
distinct particle pairs present in these sets.

The question remains which pure four-qubit states are also
uniquely determined among all mixed states by their two-body
marginals. The results from Ref. [13] suggest that generic
states are not UDA, and Ref. [10] shows that for the case of
four qutrits and knowledge of all marginals, as well as for
four qubits and the special marginal configuration of Fig. 1(b),
generic states are not UDA. On the other hand, in the same
reference, a numerical procedure indicated that for generic
pure four-qubit states, the compatible mixed states (having the
same marginals) are never of full rank. Clarifying this situation
is an interesting problem for further research.
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