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Self-consistent numerical modeling of radiatively damped Lorentz oscillators
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Recent progress towards realizing quantum emitters (QEs) suitable for integration in quantum information
networks stimulates the demand for a self-consistent numerical approach to describe scattering of radiatively
limited QEs in complex dielectric environments. As the QE response has to be characterized without the use of
phenomenological damping parameters, the divergent nature of the pointlike emitter’s in-phase self-field has to
be carefully dealt with to avoid unphysical frequency shifts. Here we provide a solution to this problem and show
two ways to obtain accurate results in the weak excitation limit using finite-difference time-domain algorithms.
One of these approaches lays important groundwork needed for future simulations of nonlinear QE networks. The
solution for dealing with the frequency shift reveals that dynamical contributions to the resonant depolarization
field of arbitrarily small dielectric objects make crucial contributions to the net dipole moment induced by an
external field when radiative scattering is the only source of damping.
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I. INTRODUCTION

Recent interest in using photons to mediate the exchange
of quantum information between quantum emitters (QEs;
impurity states within solids, individual atoms or molecules,
artificial quantum dots, etc.) makes relevant the issue of
how to numerically treat the interaction of a collection of
such quantum emitters in a complex dielectric environment
(εB(r); dielectric, metallic, or hybrid cavity structure typically
coupled in turn to a continuum, such as vacuum) [1–6]. If the
QE’s electronic response is damped primarily by nonradiative
processes such as pure dephasing, then it is justified to use a
relatively straightforward form of the Maxwell-Bloch equa-
tions in which the electronic response is phenomenologically
damped [7,8]. This has allowed researchers to study light-
matter interactions in nonlinear materials without recourse
to rotating-wave or slowly-varying-envelope approximations,
leading to the predictions of new phenomena such as the
dynamic nonlinear skin effect [9] and carrier-wave Rabi
flopping [10]. However, QEs whose response is dictated
by nonradiative dissipative processes are of limited use for
quantum information applications, so to properly deal with
systems damped primarily by radiative decay, the electric field
entering the Maxwell-Bloch analysis has to self-consistently
provide the coherent radiative contribution to the damping of
the QEs [11]. It is the component of the field at the QE that
is 90 degrees out of phase with the QE’s dipole response, the
quadrature field, that generates this “radiation reaction,” and
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this component is typically numerically well-behaved. The
component of the field at the QE that is in phase with the
induced dipole oscillation is also important, since it in general
leads to dielectric-environment-induced shifts of the QE’s
resonant frequency. However, numerically there is a divergent
in-phase contribution to the field at the location of the QE
(the ideal point dipole has an infinite in-phase self-field), and
care must be taken to remove this divergent self-field from the
simulation [11,12].

One approach to solving this problem is to formulate it
in terms of photon Green functions (GFs) and/or a quantum
master equation. In a complex scenario with many QEs in
a non-trivial dielectric environment, the QEs are typically
treated as pointlike two-level systems (TLSs) at different
locations with respect to cavities that support quasinormal
with finite lifetimes due to coupling to the continuum of
electromagnetic modes and outgoing boundary conditions
[13,14]. The actual quasinormal modes and their impact on the
decay rate and natural frequency of each QE almost always
needs to be numerically evaluated by finding the photon GF
at the location of each QE [15]. Finite-difference time-domain
(FDTD) simulators, such as provided by Lumerical Solutions
Inc., offer one way to accurately determine these GFs. For each
QE location ri

0, a “point dipole” located at ri
0 is driven with

fixed amplitude, first in the nonuniform dielectric background
environment specified by εB(r) (that does not include any
of the QEs), and then in a globally uniform version of the
dielectric background medium at ri

0. The real and imaginary
parts of the field at the QE location give the corresponding
nonuniform and uniform background dielectric GFs, and the
real part of the uniform GF is subtracted from the real part
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of the nonuniform GF, yielding a total GF that removes the
divergent real part of the dipole’s self-field. The Purcell factor
for each individual QE is calculated by taking the ratio of the
imaginary parts of the nonuniform and uniform background
dielectric GFs. Self-consistency of the response of the entire
coupled system to some external electromagnetic excitation
then requires careful formulation of the coupling equations,
along with these GFs.

If one is using a numerical solver, it is interesting to ask: Is
there a way to perform just one numerical simulation that self-
consistently couples all QEs and the dielectric environment
when solving for its response to an electromagnetic excitation?
While we have not yet answered this question for arbitrarily
strong excitation fields, we have identified and solved a
number of practical issues in the weak excitation limit that
are essential for future work that will extend this to the high-
excitation regime. This paper describes two different methods
for self-consistently and accurately capturing the damping
associated with radiation reaction, and the resonant frequency
shifts introduced by scattering from the dielectric environment,
without using any phenomenological damping parameters. In
these approaches, the addition of phenomenological radiative
damping terms would be erroneous, as radiative damping
naturally arises through the FDTD method. The accuracy is
demonstrated in a weak excitation limit where, to a good ap-
proximation, the QE behaves as a Lorentz oscillator (LO) with
a renormalized resonant frequency and radiative decay rate.

While we use an FDTD-based numerical approach to
illustrate the scheme, many of the fundamental issues are
generic to any numerical engine that solves the Maxwell
equations on some cubic three-dimensional (3D) mesh. The
task is essentially to define some dielectric object on a
3D mesh that faithfully represents the LO response to the
field produced at that LO by (i) external sources, (ii) all
other polarizable elements in the environment, and (iii) the
quadrature component of the LO’s self-field. The challenge lies
in deriving an effective dielectric function for this object that
accurately and passively removes the effect of the divergent
component of that self-field.

The remainder of the manuscript is organized as follows.
Section II A first identifies the target pointlike LO response
function in general terms appropriate to an arbitrarily complex
dielectric environment. This polarizability, α(ω), is propor-
tional to the ratio of the dipole moment induced in the pointlike
dipole to the external field present at the dipole, omitting all
self-fields, and is parametrized by the LO’s resonant frequency
and dipole transition moment.

In Sec. II B, the QE is modeled as a deep-sub-wavelength
size sphere and its dielectric function is derived. The bulk sus-
ceptibility model used to define the dielectric function includes
various dynamical contributions to the depolarization field. By
dividing the total dipole moment of the sphere by the external
driving field, and then equating this to α(ω) (with the same
proportionality constant), an explicit form of the dielectric
function required to mimic the pointlike dipole is obtained,
which depends on the QE properties and the sphere radius.
This effective, purely real, sphere-radius-dependent dielectric
function that contains no phenomenological damping terms
accurately mimics the pointlike dipole response of an isolated
sphere in vacuum, including radiation reaction effects. This

is demonstrated by evaluating the response of spheres with
sizes ranging from 5 to 30 nm using an exact Mie scattering
calculation. The crucial, and somewhat unintuitive role played
by the dynamical contributions to the depolarization field are
clearly identified. The remainder of Sec. II B demonstrates
how conventional FDTD simulations of the same spheres fail to
provide reliable results, even when the bulk sphere is described
by up to 33,000 Yee cells. It is argued that these results might be
expected based on the insight gained from the Mie calculations.

Section II C describes the most important practical result
of this work, that with only a slight modification, the same
effective dielectric function can be used to define a “dielectric
object” on a single Yee cell, that again faithfully mimics the
desired pointlike dipole response. Some insights regarding this
somewhat surprising result are offered, aided by an alternate
approach to numerically solving the same problem in FDTD.
This alternate approach, which offers a much more flexible
means of extending such simulations to higher excitation
levels, is described in Sec. II D.

Section III offers a simple example application of this
numerical scheme where the resonant frequency shift and
modified spontaneous lifetime of a LO in the vicinity of a
metal half-space is demonstrated.

II. SELF-CONSISTENT DIELECTRIC RESPONSE
FUNCTION OF AN IDEAL LORENTZ OSCILLATOR IN

A COMPLEX DIELECTRIC ENVIRONMENT

A. Target point-dipole response

The overall objective is to define a dielectric object on
a 3D numerical mesh that responds in an electromagnetic
environment exactly as an ideal point-dipole responds. For
a purely radiatively damped pointlike LO located at a position
r0 in a complex isotropic dielectric environment defined by
relative permittivity εB(r), the linear response of the LO dipole
moment p(r0,ω) = |p(r0,ω)|n, to a field ẼB(r0,ω) produced at
the dipole location r0 by some external field incident on εB(r),
is given by p(r0,ω) = ε0α(ω)ẼB(r0,ω), with polarizability

α(ω) = 2ω0μ
2ε−1

0 h̄−1

ω2
0 − ω2 − 2ω0μ2h̄−1(n · G(r0,r0,ω) · n)

, (1)

where ω0 is the LO resonance frequency, and μ is the
off-diagonal dipole transition matrix element for an isotropic
dipole. In this discussion, electric fields marked with a tilde
(e.g., Ẽ) are complex amplitudes, such that the time-dependent
fields are E(t) = Re[Ẽ(r0,ω) exp(−iωt)]. For reference, a
summary of the electric fields discussed here and in the
following sections is provided in Appendix A.

The GF tensor, G(r,r0,ω), solves the wave equation,

∇ × ∇ × G(r,r0,ω) − εB(r,ω)
ω2

c2
G(r,r0,ω)

= ω2

ε0c2
δ(r − r0)1, (2)

where 1 is the identity tensor. The electric field gener-
ated at the location of a fixed-amplitude oscillating point
dipole is then Ẽp(r0,ω) = G(r0,r0,ω) · p(r0,ω). The GF
includes contributions from the self-field of the dipole
due to p(r0,ω), G0(r0,r0,ω) and from the scattered field
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Gscatt(r0,r0,ω). The response function in (1) will not, in
general, have a Lorentzian line shape, but in many practical
circumstances, including the examples treated below, it is
Lorentzian to a good approximation. In some simple geome-
tries the GF can be calculated analytically, but usually it must
be obtained numerically. So long as the dipole is located in
a region where εB has no imaginary part, then analytically,
Re[G0(r0,r0,ω)] is infinite, while Im[G0(r0,r0,ω)] is well
behaved (and is directly proportional to the radiative damping
rate of the dipole if it were in a uniform version of the di-
electric medium at r0). Depending on the numerical approach
taken, Im[G0(r0,r0,ω)] will readily converge for appropriate
parameters used in a meshing scheme, but Re[G0(r0,r0,ω)]
will take on some large (grid-size dependent) value that does
not converge. The real and imaginary parts of Gscatt(r0,r0,ω)
are nondivergent (analytically and numerically), so the total
Im[G(r0,r0,ω)] then is directly proportional to the overall
radiative damping rate that enters the response function α(ω).
The radiative damping rate, � = 2μ2h̄−1n · Im[G(r0,r0,ω)] ·
n, is consistent with that found for a two-level atom using
Fermi’s golden rule [16]. Once the divergent self-field contri-
bution, Re[G0(r0,r0,ω)], is either ignored or subtracted from
the numerically calculated total field, Re[Gscatt(r0,r0,ω)] then
causes a shift in the resonant frequency of the response function
α(ω).

The complete solution of the scattering problem defined
when a specified external field Eext(t) is incident on the region
defined by ε(r) = ε0εr(r), including a QE defined by a resonant
frequency ω0 and a dipole strength μ, located at position r0,
then requires that the field generated by the QE be included
self-consistently. Finite-difference time-domain solvers offer
a powerful means of evaluating scattering problems defined
by an external field incident on a region defined by some
function εr(r), or more generally, εr(r,ω). In most instances, the
electric field that the FDTD solver evaluates is the macroscopic
field Ẽ(r,ω) that is related to the macroscopic polarization
density P(r,ω) as P(r,ω) = ε0χ (r,ω)Ẽ(r,ω), where χ (r,ω) =
εr(r,ω) − 1, which requires that the mesh size on which the
fields and materials are defined must be significantly finer than
the dimensions over which εr(r,ω) varies appreciably. Within
that paradigm, how can the response function of a pointlike
LO be used to define a dielectric object characterized by a
small, localized bulk susceptibility χLO(r,ω), that faithfully
represents the LO behavior in a FDTD simulation that includes
εB(r,ω), such that εr(r,ω) = 1 + χB(r,ω) + χLO(r,ω)?

B. Rendering the LO as a bulk dielectric sphere

Consider a sphere of radius R centered at a point r0, with a
volume V much much smaller than λ3, as small as numerical
limits on the mesh size allow. The sphere resides within some
background dielectric environment εB(r) that varies little over
R near r0. The total field generated inside the sphere Ẽtot(r),
in the presence of an applied field ẼB(r), that consists of some
external field that scatters off of the background dielectric
texture εB(r), can be expressed as

Ẽtot(r) � ẼB(r0) + ẼLO(r) + Ẽscatt(r0), (3)

where ẼLO is the electric field inside the sphere generated by
the incremental polarization density associated with the LO,

PLO(r), and Ẽscatt is the field generated by the incremental
polarization density that is scattered back to the dipole from
texture in εB(r). Here it is assumed that both the externally
generated field and this incremental scattered field vary little
over the extent of the sphere.

As shown below, in order for the sphere’s response to mimic
that of a pointlike dipole, it is crucial to carefully evaluate
ẼLO(r), which is given by

ẼLO(r) =
∫

V

G0(r,r′) · PLO(r′)dr′

= − 1

3ε0εB(r0)
PLO(r) +

∫
Vσ

G0(r,r′) · PLO(r′)dr′,

(4)

where the first integral is over the entire volume of the sphere
V and the second is over volume Vσ , which is the same as
V but excludes an infinitely small region around r = r′. The
uniform medium GF is given by [16]

G0(r,r′) = eikBρ

4πε0εB

([
(kB)2

ρ
+ ikB

ρ2
− 1

ρ3

]
1

−
[

(kB)2

ρ
+ 3ikB

ρ2
− 3

ρ3

]
ρ ⊗ ρ

ρ2

)
, (5)

where ρ = r − r′, ρ = |ρ|, kB = ω
c

√
εB, and ⊗ is the outer

product. If only the leading order real (∼1/ρ3) and imag-
inary (∼kB/ρ2) contributions to G0(r,r′) are retained after
expanding the exponential, one obtains a solution for ẼLO(r)
from Eq. (4) that has constant real and imaginary components
throughout the sphere. The real part consists only of the static
dipole result for a sphere, while the imaginary part corresponds
to the field responsible for radiation damping, such that the
total field is

Ẽtot(r) = Ẽtot(r0) � ẼB(r0) + ẼLO(r0) + Ẽscatt(r0) � ẼB(r0)

− 1

3ε0εB(r0)
PLO(r0) + iω3√εB(r0)

6πε0c3
PLO(r0)V

+ Gscatt(ω) · PLO(r0)V, (6)

for all r inside the sphere. In the above, Ẽscatt has been
expressed in terms of the scattering GF, Gscatt(r0,r0) (final
term on the right-hand side).

The differential polarization density due to the LO is given
by

PLO(r) = ε0χLOẼtot(r), (7)

where χLO = εr(r0) − εB(r0). It follows that

Ẽtot = ẼB

1 + εr−εB
3εB

− (
i

ω3√εB

6πε0c3 + n · Gscatt · n
)
ε0(εr − εB)V

,

(8)

where the common position argument has been suppressed to
simplify notation, including in the dielectric functions, i.e.,
εr(r0) and εB(r0) are written as εr and εB. In order for this
sphere to mimic a purely radiatively damped pointlike dipole
(LO), consider the incremental dipole moment of the sphere
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(with total relative dielectric constant, εr):

pLO = V PLO (9a)

= ẼB

2εB+εr
3ε0εB(εr−εB)V − (

i
ω3√εB

6πε0c3 + n · Gscatt(ω) · n
) (9b)

≡ ε0αẼB. (9c)

The point-dipole response function at point r0 in
the environment defined by εB(r) is, from Eq. (1)
with Im[G0(r0,r0,ω)] = ω3√εB(r0,ω)/(6πε0c

3) and
Re[G0(r0,r0,ω)] removed,

α(ω) = 2ω0μ
2ε−1

0 h̄−1

ω2
0 − ω2 − 2ω0μ2h̄−1

(
i

ω3√εB

6πε0c3 + n · Gscatt(ω) · n
) ,

(10)

so when the macroscopic dielectric sphere’s response is
equated to that of a radiatively damped point dipole, the
following expression involving the dielectric function results:

εr/εB − 1

εr/εB + 2
= 1

3V εB
α0(ω), (11)

where

α0(ω) ≡ 2ω0μ
2ε−1

0 h̄−1

ω2
0 − ω2

(12)

is the bare polarizability for a point LO dipole, where
p(r0,ω) = ε0α0(ω)Ẽtot(r0,ω), so

εr = εB + α0(ω)/V

1 − α0(ω)/(3εBV )
. (13)

It is interesting, given the distinct differences in their deriva-
tions, that in vacuum (εB = 1), this is exactly what one
would obtain using the well-known Lorentz-Lorenz relation
to determine the effective dielectric constant of a collection of
pointlike, radiatively damped dipoles, with a density of 1/V .
The Lorentz-Lorenz relation has previously been considered
in self-consistent implementations of the Maxwell-Bloch
equations as applied to macroscopic media [17–19].

To assess the extent to which this derivation achieves
the goal of accurately mimicking the point-dipole response
function, the fields generated by exciting a uniform sphere
with dielectric function defined by Eq. (13) are calculated using
“exact” Mie scattering formulas as a function of sphere radius
R [20,21]. Figure 1(a) shows the dielectric function in Eq. (13)
as a function of ω for a sphere with ω0 = 3.55 × 1015 rad/s,
μ = 690 D, R = 10 nm, and V = 4πR3/3.1 The spectrum
of the decaying fields generated by the impulsively excited
sphere for several R ranging from 5 to 30 nm are plotted in
Fig. 1(b). While the linewidth is within 3% of that expected
due to radiation reaction for all R, the resonant frequency
diverges from its nominal value as 1/R. The magnitudes
of the peak frequency shifts are plotted in Fig. 1(c), with

1The large dipole moment strength was chosen here in order to
resolve the resonant peak of interest in simulations of a sphere
(discussed at the end of this section) using a practical run-time.
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FIG. 1. (a) Dielectric function for a sphere of LO material
given by Eq. (13), with ω0 = 3.55 × 1015 rad/s, μ = 690 D, � =
1 × 1012 rad/s, R = 10 nm, and V = 4πR3/3. The inset shows
the dielectric function near ω0, marked with a dashed line. (b)
Mie scattering intensity spectra generated by sphere LO materials
described by the dielectric function in (a), but for sphere radii ranging
between 5 and 30 nm, as labeled on the plot. The broadest peaks
in each spectra are the dipole-resonance peaks. (c) Magnitudes of
the resonant frequency shifts normalized by �, versus the sphere
radii in (b). The data connected by solid, dashed, and dash-dotted
lines are calculated for spheres with LO material permittivities given
by Eq. (16), where ζ = 0,1 and

√
12/15, respectively. Triangle and

circles markers indicate negative and positive shifts, respectively.
Note the � normalization applied to the shift is appropriate because
the absolute frequency shifts and the linewidths are derived from the
second and third lines, respectively, of Eq. (6), using a common scale
factor proportional to the assumed dipole transition moment squared
[see Eq. (17)].

triangle markers connected by a solid line. Triangle markers
are used to indicate that the shifts are negative, as seen in
Fig. 1(b). The reason for this problematic shift can be traced
to the inclusion of only the lowest order (∼1/ρ3) term in
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the real part of G0(r,r′). While only the lowest-order term in
the imaginary component of G0(r,r′) is adequate to describe
radiative damping effects via the out-of-phase term in the
sphere’s self-field, it is necessary to include higher-order,
dynamic terms in the in-phase component of G0(r,r′) in order
to remove the 1/R divergence of the resonant frequency shift
illustrated in Fig. 1(c).

When the next-higher-order term (∼k2
B/ρ) in the real part

of G0(r,r′) is included, the integral in Eq. (4) results in a
contribution to ẼLO(r) that varies over the sphere, even if
PLO(r) is approximated as a constant. A relatively simple
expression for ẼLO(r) can be retained if the spatial variation is
neglected, and the higher-order contribution is only evaluated
at r = r0. This leads to an improved expression for Ẽtot(r0)
[cf. Eq. (6)]:

Ẽtot(r) = Ẽtot(r0) � ẼB(r0) + ẼLO(r0) + Ẽscatt(r0) � ẼB(r0)

− 1

3ε0εB(r0)
PLO(r0)[1 − (kBR)2]

+ iω3√εB(r0)

6πε0c3
PLO(r0)V + Gscatt(ω) · PLO(r0)V.

(14)

The dashed line in Fig. 1(c) shows that by including this
higher-order term, the divergent resonant frequency shift is
dramatically reduced while the linewidth remains accurate.
To remove the remaining shift of the resonant frequency, it
is necessary to include the nonuniform nature of the field
within the sphere when evaluating Eq. (4). This is discussed
in Appendix B, but the result is the addition of one more term
in Eq. (14) that also behaves as kB/ρ2, such that when both
kB/ρ2 terms are taken together, the effective result is setting
R → ζR in Eq. (14), where ζ = √

12/15 � 0.8944 [22,23].
When this relationship is used with Eqs. (7) and (9c) to define
the desired bulk dielectric function to assign to the sphere, one
gets

εr/εB − 1

εr/εB + 2
=

[(
1

3V εB
α0(ω)

)−1

+ (kBζR)2

]−1

, (15)

such that

εr = εB + α0(ω)/V

1 − α0(ω)[1 − (kBζR)2]/(3εBV )
, (16)

or approximately (when ω ≈ ω0),

εr � εB + μ2/(ε0h̄V )

ω0 − ω − [1/V − 3(kBζ )2/(4πR)]μ2/(3εBε0h̄)
.

(17)

The dash-dotted line in Fig. 1(c) shows that Eq. (16) achieves
the desired result: when this lossless, radius-dependent dielec-
tric function is used to describe the bulk properties of a deep
subwavelength diameter sphere, the sphere mimics the decay
of a pointlike LO with the associated resonant frequency and
dipole transition matrix element, faithfully capturing the ra-
diation reaction physics self-consistently without introducing
any phenomenological damping parameters.

The second form of εr in Eq. (17) makes clear why, in
this problem, it is necessary to include dynamical effects
when evaluating the depolarization field, even in the limit
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FIG. 2. Finite-difference time-domain simulations of the electric
field intensity spectra generated by the sphere of LO material
(ω0 = 3.55 × 1015 rad/s, μ = 690 D, � = 1 × 1012 rad/s) with a
10-nm radius and permittivity given by Eq. (16) with V = 4πR3/3,
undergoing free decay in vacuum, with mesh sizes 
x labeled on
the plot. The electric field is monitored 27 nm away from the
sphere center. The asterisks mark the dipole-resonance peaks. The
bottom spectrum is for a single-mesh cell LO with 
x = 20 nm and
V = 
x3, with its electric field monitored at the LO position. Each
spectrum is calculated by taking the Fourier transform of the electric
field after the excitation pulse has passed.

of arbitrarily small spheres. The frequency shift of the LO
associated with the divergent component of the self-field con-
tains two terms: [1/V − 3(kBζ )2/(4πR)]μ2/(3εBε0h̄). The
static depolarization contribution diverges as 1/V , but the
lowest-order dynamic contribution also diverges, although
only as 1/R. This typically does not present a problem when
the oscillator damping is dominated by nonradiative processes
that overwhelm the shift.

A sphere with this dielectric response function is defined
and its response simulated in the FDTD solver. The resulting
spectra of the decaying fields generated after impulsive
excitation are shown in Fig. 2 for different mesh sizes. The
sphere has a radius R = 10 nm, ω0 = 3.55 × 1015 rad/s,
μ = 690 D, and V = 4πR3/3. In these simulations, the center
of the sphere coincides with the Ez field location of one
Yee cell. Note first that the relatively broad and resolved
peak near ω0, labeled by markers in all of these spectra,
corresponds to the dipole response of this LO sphere. For
it to accurately and usefully mimic the pointlike LO, ideally
its frequency shift should be zero, its linewidth should be
� = ω3μ2√εB/(3πε0c

3h̄) = 1 × 1012 rad/s, and there should
be no other nearby resonant peaks. This mode’s normalized
shift and linewidth are plotted in Fig. 3. Although the shift
appears to be converging to some value at small mesh sizes,
the linewidth is still ill-behaved at the mesh sizes used in this
study, and there are numerous spurious modes within a few
linewidths of the main resonance, even at mesh sizes below
2 nm. We believe that these spurious resonances are numerical
artifacts associated with the negative, undamped dielectric
response function [shown in Fig. 1(a)] and the discrete cubic
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FIG. 3. FDTD simulation results for an LO material sphere freely
decaying in vacuum with R = 10 nm, ω0 = 3.55 × 1015 rad/s, μ =
690 D, and permittivity given by Eq. (16) with ζ = √

12/15, for
different mesh sizes 
x. The simulated (a) frequency shift 
ωsim

and (b) decay rate �sim are both normalized to �. The volume V in
Eq. (16) is set to 4πR3/3. The smallest five mesh sizes (rightmost
data points in each plot) correspond to the resonant peaks marked by
the asterisks in the upper five spectra in Fig. 2.

meshing. True higher-order resonance modes of ideal spheres
with this response function exist [based on Mie scattering
spectra shown in Fig. 1(b)] but they appear at frequencies
well outside the spectral window shown in Fig. 2 for the
R = 10-nm sphere. Given the important role that spherical
symmetry plays in ensuring that the lowest-order real term
in G0(r,r′) results in a size-independent contribution to the
internal field of the sphere, − 1

3ε0εB(r0) PLO(r), it is perhaps not
surprising that it seems practically impossible to use FDTD in
its nominal formulation to mimic a pointlike LO using a finite
size sphere with reasonable computational resources.

C. Single mesh cell implementation of a “bulk”
LO dielectric response function

Given that the issues associated with implementing a LO as
a finite size sphere arise due to its meshing over many points,
one possible remedy is to implement the LO on a single grid
point. Remarkably, we find that if only a single grid point of
one mesh cell is defined with the dielectric function [Eq. (16)]
obtained from the Mie scattering simulations (something
that makes no obvious sense in the FDTD formulation), the
calculated decay spectrum is free of spurious modes and its
linewidth is within a percent of the correct value. (See the
bottom curve in Fig. 2.) Here the LO material is modified to
cover only one field component of the Yee cell, as illustrated in
Fig. 4(a), and the sphere volume V in Eq. (16) is set to match
the Yee-cell volume (V = 
x3,R = [3/(4π )]1/3
x).

This observation suggests it may be practical to implement
pointlike LO objects in nanophotonic FDTD simulations.
The background dielectric texture in such simulations will
in general dictate the mesh size required for the macroscopic
scattered fields EB to converge, and hence the volume of the
single-cell LO materials one might want to include in the full
scattering problem. Figure 4(b) shows the resonant frequency
(open downward triangles) and linewidth (open circles) for a
pointlike LO in vacuum (ω0 = 3.55 × 1015 rad/s, μ = 30.8

0 0.04 0.08

10 -2

10 0

10 2

0

1

2

500 20 15
PPW

FIG. 4. (a) Layout used for three-dimensional FDTD simulations
with background dielectric permittivity εB (white), plotted in the
x−y plane (left) and x−z plane (right). The edges of the Yee cells
are indicated by the light-gray grid lines. The oscillator material
(circle) is placed on a Yee-cell Ez field location, which is offset by
half a mesh step in ẑ from the Yee-cell corner. The field at the Ez

location is directly monitored by a detector (red cross). A total-field
scattered-field (TFSF) source generates plane waves polarized in ẑ
(double arrow in right schematic) traveling in the direction indicated
by the black arrow, and only allows scattered fields to exist outside
of it. The right schematic shows a gold half-space that spans the
x−y plane that is introduced in some inhomogeneous environment
simulations. (b) FDTD simulation results for the free decay of a
single Yee-cell LO material with V = 
x3 (open empty markers)
and LO plugin material (closed colored markers) in vacuum with
resonance frequency ω0 = 3.55 × 1015 rad/s and dipole strength μ =
30.8 D (� = 2 × 109 rad/s from Fermi’s golden rule). The simulation
layout in (a) is implemented, without the gold half-space. On the
left axis, the downward and upward triangles plot the magnitude of
the simulated frequency shift relative to ω0, 
ωsim, normalized by
�, for LOs with ζ = √

12/15 and ζ = 1.15, respectively. They are
plotted as a function of β(
x) (bottom axis), which is the mesh size
expressed as a fraction of the wavelength in εB and as a function
of parts-per-wavelength (PPW), 1/β(
x) (top axis). The simulated
decay rates normalized by � are also plotted (circles, right axis), for
the original LO material and the plugin material, using ζ = √

12/15.

D, � = 2 × 109 rad/s, V = 
x3,R = [3/(4π )]1/3
x) as a
function of the mesh cell dimension, again using the dielectric
function from Eq. (16) with the sphere volume V in the
LO material set to match the Yee-cell volume (V = 
x3).
While the linewidth always remains within 5% of its nominal
value, the resonant frequency is still systematically shifted
from the correct value, with the magnitude of the shift
increasing with decreasing cell size. For optical frequencies,
this error in resonant frequency is greater than a linewidth even
for mesh sizes as large as ∼40 nm, and it is greater than 24
linewidths for mesh sizes less than 2 nm.

The residual shift of the single cell LO is reduced below
a linewidth, to numerical noise, when ζ = 1.15 is applied to
the dielectric function in Eq. (16) instead of ζ = √

12/15,
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as shown by the open upward triangles in Fig. 4(b), and
the linewidth is maintained within 5% of its nominal value
(not shown). From the above derivation of the effective LO
dielectric function for the bulk sphere, the physical origin of
this ζ factor must be associated with subtleties in how the
FDTD solver evaluates what is effectively the average field
over the single Yee cell where the LO is defined [24].

D. Alternate formulation of single-mesh cell dipole in FDTD

In the single Yee-cell LO implementation, the LO material
effectively acts like a reactive point-dipole source, where the
self-field generated at the LO location is dependent on its
dipole moment. To deal with the residual shift associated
with the average self-field over the Yee cell more directly,
while at the same time shedding light on why this single-cell
LO material works as well as it does, we use Lumerical’s
user-defined-material plugin tool, which allows one to create
a material with a customized dipole moment response written
in C++ code. In this “hands-on” approach, the plugin code
is called at each time step to calculate the electric field
based on the inputs fed to the code and the polarization
density calculated within it. The plugin tool is most often
used to model the nonlinear response of materials by defining
macroscopic nonlinear susceptibilities in regions of space that
are subdivided into many Yee cells [25,26].

As demonstrated below, if the polarization density of a
“plugin material” is defined on a single cell, and derived based
on a pointlike LO equation of motion, the FDTD algorithm
faithfully evaluates the correct microscopic fields generated
by the pointlike dipole, at cells located a few mesh points
from the cell containing the plugin material. This is not so
surprising, given the fact that, as noted in the Introduction,
the imaginary part of the Green’s function at points within
some macroscopic dielectric environment can be obtained by
using a “soft-point-dipole” source in FDTD, which allows all
incident fields to pass through the source without scattering.
For all intents and purposes, the “soft-point-dipole” source
used in the evaluation of Green’s functions in FDTD is a user-
defined plugin that generates a fixed, nonresponsive oscillating
polarization density within a single cell, independent of any
fields at that location.

A pointlike LO plugin material is defined within a single
Yee cell at one of the three locations where the electric fields
are evaluated. The polarization density is taken to be P(t) =
p(t)/
x3, where p(t) is the dipole moment, and the response
is calculated in the C++ code using the following equation of
motion:

p̈(t) + ω2
0p(t) = 2ω0μ

2

h̄
Etot(t). (18)

In the above equation, Etot(t) is the total electric field at the os-
cillator generated by the FDTD engine, which includes applied
fields from external sources Eext(t), the self-field generated by
the oscillator ELO(t), and scattered field Escatt(t). The equation
of motion is reformulated in terms of the polarization density
and the electric field at discrete time steps, and the dipole
moment update is numerically estimated in the plugin code
using values stored at previous time steps. In simulations
with this plugin material, the divergent self-field contribution

associated with ELO(t) can be subtracted “by hand” from the
Etot(t) field supplied by the FDTD solver. Based on the analysis
and results above, an obvious choice for estimating the field
that has to be subtracted would be the inverse Fourier transform
of the second term on the right-hand side of Eq. (14). Assuming
the ω2 term can be well-approximated by ω2

0, the time-domain
expression for the divergent field to be subtracted within the
plugin from the total field provided to the plugin by the FDTD
engine is then

Ediv
LO(t) = −[1 + f (
x)]p(t)/[3ε0εB(r0)
x3], (19)

where

f (
x) = −[3/(4π )]2/3(ζω0
x
√

εB/c)2. (20)

When this LO plugin is simulated in vacuum with the
divergent self-field taken as above with ζ = √

12/15, using
the same dipole parameters (ω0 = 3.55 × 1015 rad/s, μ =
30.8 D) and simulation parameters, as discussed above for the
original Lorentz material, the resulting resonant frequency and
linewidth are plotted in Fig. 4(b) as closed downward triangles
and circles, respectively. They are essentially the same as what
is obtained using the Lorentz-Lorenz dielectric function to
define a single-cell LO material.

The residual shifts for the LO plugin are also reduced to
below a linewidth when ζ = 1.15, as shown in Fig. 4(b) (closed
upward triangles), and linewidths are maintained within 5%
of the nominal value (not shown). The ζ factor was originally
associated with subtle details of the nonuniform depolarization
field within the sphere. In this single-cell FDTD approach,
there is no direct connection to this macroscopic interpretation,
but the fact that the exact same, nontrivial function of the cube
volume agrees so well with the spherical result indicates that
the FDTD algorithm effectively generates a response closely
associated with the average self-field over the cube-shaped
Yee-cell volume. A future manuscript will detail a “proof” of
this fact using an “analytic” solution of the FDTD algorithm
that assumes the field calculated several mesh points away
from the single cell containing the LO polarization are the
exact dipole fields and works backwards to evaluate what the
algorithm generates for the field at the impurity cell itself. For
the present purposes it suffices to summarize the results of this
ζ optimization problem for the single Yee-cell implementation.

The optimization procedure involves fitting the Fourier
transform of the divergent field expression in Eq. (19),

Ẽdiv
LO(ω) = −[1 + f (
x)]̃p(ω)/[3ε0εB(r0)
x3], (21)

to the continuous-wave (CW) self-field generated by a soft
point source simulated with FDTD methods, to extract an
estimate of the unknown parameter ζ in f (
x). The simulation
layout is almost the same as in Fig. 4(a), except the Lorentz
material is replaced by the point source polarized in ẑ and
the total-field scattered-field source is removed. The soft
point source has dipole moment ps(t) = p0f (t), with f (t) =
sin[−ω0(t − t0)] exp[−(t − t0)2/(2σ 2)]. The normalized CW
field amplitude ẼCW(r0,ω)/p0 is extracted by taking the fast
Fourier transform (FFT) of the monitored electric field Es(t)
and dividing it by the FFT of ps(t). Figure 5 plots the
normalized FDTD results Re[ẼCW(r0,β)/p0]
x3 (points) and
the best-fit model function Ẽdiv

LO(β)/̃p(ω0)
x3 (solid lines),
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FIG. 5. The real part of normalized harmonic self-field found
by FDTD simulations multiplied by the mesh cell volume

x3, ẼCW(r0,β)/p0
x3, is plotted for simulations with εB = 1
(circles) and εB = 1.96 (diamonds) as a function of β(
x). The real
part of the normalized harmonic self-field predicted with our model
Ẽdiv

LO(β)/̃p(ω0)
x3, with the best-fit values ζ1 = 1.149 3 ± 0.000 3
(black line) and ζ2 = 1.152 1 ± 0.000 6 (light line), is plotted for
calculations with εB = 1 and εB = 1.96 (refractive index n = 1.4),
respectively.

where β = ω0
√

εB
x/(2πc) is the mesh size expressed as a
fraction of the wavelength in εB. The data is fit over 0.004 <

β < 0.1, a typical range to work within for FDTD simulations,
and the resulting fit parameters are ζ1 = 1.149 3 ± 0.000 3
and ζ2 = 1.152 1 ± 0.000 6 for simulations with εB = 1 (cir-
cles/black) and εB = 1.96 (diamonds/light), respectively. A
ζ = 1.15 provides a good fit for simulations with background
permittivities tested up to εB = 16.

Despite the high accuracy of the model, a small net in-phase
self-field contribution remains after subtraction, resulting in
small frequency shifts in LO simulations. In general, the
remaining frequency shift of a Lorentz oscillator in a ho-
mogeneous dielectric medium is approximately −�/(8π2β3)
times the relative error between Re[ẼCW(r0,β)/p0] and
Ẽdiv

LO(β)/̃p(ω0). The relative error is plotted in Fig. 6(a). The
robustness of this model is reflected in both the excellent
agreement with FDTD results and the small variation in the fit
results for ζ , despite the fact that different simulation settings
(like simulation volume, ω0 and 
x) were sampled in each
data set. For comparison, the relative error between the real
part of the field amplitude averaged over one mesh cell and
Re[ẼCW(r0,β)/p0] is plotted as the red dashed line in Fig. 6(a).
The average field here is found by calculating the average of
a point-dipole self-field over the cube volume, which, as it
turns out, is well approximated by Eqs. (21) and (20) with
ζ = 1 [27]. The relative error of our model (ζ � 1.15) is
between 40 to 200 times smaller than that from using the
average over one mesh cell (ζ = 1), over 0.004 < β < 0.08.
The shaded region in Fig. 6(a) shows where the magnitude
of the relative error is less than 8π2β3, which is where
the resulting frequency shifts are approximately less than a
linewidth. Shifts larger than a linewidth become particularly
problematic in simulations of interactions between different
emitters. This region is highly restrictive for small mesh sizes,
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FIG. 6. (a) Relative error magnitude between our model,
Ẽdiv

LO(β)/̃p(ω0)
x3, and the FDTD results, Re[ẼCW(r0,β)/p0], for the
simulations in Fig. 5, plotted as a function of β = ω0

√
εB
x/(2πc).

Best-fit values ζ1 = 1.149 3 and ζ2 = 1.149 8, applied to f (
x)
[Eq. (20)] for simulations with εB = 1 (circles, solid black line)
and εB = 1.96 (diamonds, solid colored line), respectively. The
red dashed line shows the relative error between the real part
of the field amplitude averaged over one mesh cell (ζ = 1) and
Re[ẼCW(r0,β)/p0] for vacuum simulations (εB = 1.96 results are
not shown, as they are approximately the same). The shaded region
indicates where the relative error causes frequency shifts of less than
a linewidth in LO simulations. (b) Relative error magnitude between
the predicted imaginary contribution, (kB)3/(6πε0εB), and the FDTD
results, Im[ẼCW(r0,β)/p0], for simulations with εB = 1 (circles, solid
black line) and εB = 1.96 (diamonds, solid colored line).

where the absolute in-phase self-field is very large. Our model
is sufficiently accurate to maintain frequency shifts less than
a linewidth over 0.002 < β < 0.1. This remains true when
ζ = 1.15 is applied to the model function, instead of the best-fit
values, for simulations with background permittivities tested
up to εB = 16. For example, with λ0 = 531 nm, μ = 30.8 D
(yielding � = 2 × 109 rad/s), and a mesh size of 2 nm, the
oscillator frequency is shifted by 0.31�, due to the relative
error of −1.5 × 10−6 in the in-phase self-field calculation. In
contrast, the model involving the integration over one mesh cell
(ζ = 1) results in shifts larger than a linewidth for β < 0.06.
For example, with this ζ = 1 relative error of 6.67 × 10−5, the
shift of the LO frequency is 15.8�.

The imaginary part of the GF at the point dipole is
finite analytically and well behaved numerically, and does
not require special modeling. The relative error between the
predicted function for (kB)3/(6πε0εB) and the FDTD results
is plotted in Fig. 6(b). For 0.005 < β < 0.1, the relative
error remains below 4%, which is sufficiently low for a wide
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FIG. 7. The electric field intensity spectrum of a Lorentz oscil-
lator (LO) in free decay, located 9 nm off the surface of a gold
half-space is plotted (shaded region). The LO is simulated with
FDTD methods using a plugin material with resonance frequency
ω0 = 2.51 × 1015 rad/s (λ0 = 750 nm) and dipole strength μ = 51.9
D (� = 2 × 109 rad/s) and 
x = 2 nm, that applies Ediv

LO(t) to correct
for the divergent self-field contribution. The simulated spectrum is fit
by a Lorentzian line shape (dotted line).

range of applications, including simulations of the spontaneous
emission rate, which is proportional to Im[ẼCW(r0,β)/p0].
For large β (>0.1), Im[ẼCW(r0,β)/p0] increases from the
model value and demonstrates known convergence limitations
of the second-order FDTD algorithm. At small β (<0.005),
Im[ẼCW(r0,β)/p0] also deviates from the theoretical value.
In this range, Re[ẼCW(r0,β)/p0] 
 Im[ẼCW(r0,β)/p0]; thus
it is possible that Im[ẼCW(r0,β)/p0] is inaccurately extracted
due to the numerical precision of this calculation.

III. EXAMPLE APPLICATION

We now demonstrate how the LO plugin with the higher-
order self-field correction included can be used to accurately
capture the influence of macroscopic dielectric texture on the
pointlike dipole dynamics. A LO located 9 nm off the surface of
a gold half-space, polarized perpendicular to the surface (in ẑ),
is simulated with λ0 = 750 nm (ω0 = 2.51 × 1015 rad/s) and
μ = 51.9 D, such that � = 2 × 109 rad/s. The gold half-space
lies outside of the total-field scattered-field (TFSF) source that
excites the LO with a weak pulse, as illustrated in Fig. 4(a).
A uniform mesh with 
x = 2 nm is applied within a 40 nm
× 40 nm × 40 nm box surrounding the LO, and the mesh
size is increased nonuniformly outside of the box. A time
step of 
t = 1.5 × 10−3 fs is applied. The gold half-space
is described by a Drude model εgold = 1 − ω2

p/(ω2 − iωγ ),
where ωp = 1.26 × 1016 rad/s and γ = 1.41 × 1014 rad/s.
The decay spectrum is plotted in Fig. 7 and has a Lorentzian
line shape, with a decay rate of 7.25� and total frequency shift
of −495�. These are both consistent with the results calculated
analytically[16]. The enhanced decay rate indicates that the
local density of states is strongly modified at the oscillator. The
frequency shift is dominated by scattering-induced effects, and
the remaining shift due to the in-phase self-field is negligible,
owing to the small relative error of our model function.
With only the first-order (mesh-size-independent) self-field
contribution applied in the model, the frequency shift due to
the inaccurate in-phase self-field field is −95�, such that the
total shift is −590�.

For large scattering shifts, it is more appropriate to use a
modified version of the improved plugin, in which the in-phase
part of the self-field is calculated as a time derivative, rather
than assuming the second time derivative is proportional to
ω2

0. However, for most practical problems, where the scattering
shift is a small fraction of ω0, the two approaches work equally
well.

The self-consistent resonant scattering of a set of pointlike
QEs in the weak excitation limit can therefore be obtained
in FDTD by exciting with an external field a scattering
region defined by εr(r,ω) = εB(r,ω) + ∑

i χLO(ri ,ω), where
χLO(ri ,ω) contributions are either defined using the original
Lorentz material or the plugin material, but only if the
higher-order correction factor to the dipole’s in-phase self-field
is used [Eq. (19) for the plugin, and Eq. (16) for the single-cell
LO material). This requires that there is only one LO per Yee
cell and that all LOs are either located in nonlossy background
materials, or a real cavity model is applied where εB at
the emitter is real, which is then inside the lossy material
[24,28,29]. While this “single-cell LO material” approach
is the fastest and easiest, the plugin approach can work for
any FDTD Maxwell-medium approach, so the problem we
highlight and solve is not restricted to a particular type of
FDTD solver.

IV. SUMMARY

A pedagogical approach was taken to first understand what
dielectric function εr(ω) is required for a finite-size sphere to
mimic the response of a point LO. Resonant frequency shifts
that appear in Mie scattering spectra provide insight into the
physical nature of the average in-phase self-field generated by
the sphere polarization density. The response of the LO sphere
is defined by relating the total induced dipole moment to the
applied field as

pLO(ω) = ε0χLO

∫
V

ẼLO(ω,r)dr = ε0χLOELO(ω)V

� ε0α(ω)EB(ω), (22)

where ELO(ω) and EB(ω) are the average ELO(r,ω) inside the
sphere and the applied field at the sphere, respectively, and

α(ω) � ε−1
0

1
ε0V (εr−εB) − n · [Re[gLO] + Gs(r0,r0)] · n

, (23)

where Gs(r0,r0) = i Im[G0(r0,r0)] + Gscatt(r0,r0), and
Re[ELO(ω)] = Re[gLO(ω)] · pLO(ω) defines Re[gLO(ω)]. The
α(ω) in Eqs. (10) and (23) are equated to find εr(ω) for the
sphere.

The unwanted frequency shifts are reduced to a fraction of
the resonant linewidth by determining an accurate expression
for the sphere-size-dependent Re[ELO(ω)] to account for
nonuniformities in the polarization density inside the sphere,
given EB(ω). In determining this average field response func-
tion, two levels of corrections, beyond the uniform polarization
density approximation, turn out to be crucial. They both go as
R2 and thus introduce an R2 dependence to the total induced
dipole moment of the sphere, which leads to a 1/R contribution
to the polarization density within the sphere. This explains
the counterintuitive result that the nonuniform polarization
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TABLE I. Key self-field corrections for various LO implementations.

Implementation Field approximation Material definition Results

Constant field, Unwanted frequency shifts:
lowest -order approximation, 
ω ≈ 6–10�,
Re[ELO] � − 1

3ε0εBV
pLO εr = εB + α0(ω)/V

1−α0(ω)/(3εBV ) in Fig. 1(c)

Constant field, Unwanted frequency shifts:
Mie theory, higher -order correction, 
ω ≈ 0.5–2.6�,
sphere Re[ELO] � − 1

3ε0εBV
pLO[1 − (kBR)2] εr = εB + α0(ω)/V

1−α0(ω)[1−(kBR)2]/(3εBV )
in Fig. 1(c)

Nonuniform field, Sublinewidth frequency shifts:
Re[ELO] � − 1

3ε0εBV
pLO[1 − (ζkBR)2], 
ω ∼ 0.02−0.09�

ζ = √
12/15 εr = εB + α0(ω)/V

1−α0(ω)[1−(ζkBR)2]/(3εBV )
in Fig. 1(c)

Very small mesh sizes required for
converged frequency shift. Decay

FDTD, rates fail to converge, likely due
meshed sphere ζ = √

12/15 εr = εB + α0(ω)/V

1−α0(ω)[1−(ζkBR)2]/(3εBV )
spurious modes present due to meshing.

FDTD, single-cell ζ = √
12/15, Unwanted frequency shifts:

Lorentz materiala V = 
x3 � 4πR3/3 εr = εB + α0(ω)/V

1−α0(ω)[1−(ζkBR)2]/(3εBV )

ω ≈ 1–26�, � in Fig. 4(b)

Same as above but with Sublinewidth frequency shifts:
ζ = 1.15b Same as above 
ω ≈ 0.008–0.4�, � in Fig. 4(b)

FDTD, single-cell ζ = √
12/15, V = 
x3 � 4πR3/3, p̈(t) + ω2

0p(t) Unwanted frequency shifts:

plugin materialc Ediv
LO(t) � − p(t)

3ε0εBV
[1 − (ζkBR)2] = 2ω0μ2

h̄
[Etot(t) − Ediv

LO(t)] 
ω ≈ 1–26�, in Fig. 4(b)
Sublinewidth frequency shifts:

Same as above but with, Same as above 
ω ≈ 0.009–0.16�, in Fig. 4(b)
ζ = 1.15b

a Easy to implement. Works in linear regime only.
bThe divergent self-field generated by a point “soft source” at the dipole location is well described by simply setting ζ = 1.15.
c General approach, can be extended to nonlinear regime. Requires additional technical knowledge of how to implement a custom material
response (plugin). Gives effectively the same results as the single-cell Lorentz material when the same ζ is applied.

density correction terms become increasingly important for
determining the resonant frequency shift as the sphere size
decreases, because this shift is proportional to the polarization
density. A summary of the εr(ω) resulting from various choices
of Re[ELO(ω)] is given in Table I, where the frequency shifts
are calculated from Mie theory.

The insight gained from this pedagogical study is extended
to two practical implementations of pointlike LOs in FDTD,
where the LO material is defined on a single mesh cell.
At several mesh steps away, the field generated by the LO
replicates the microscopic field generated by a point dipole,
whereas at the LO location, the field is effectively an average
over the mesh cell. The average field is modeled with the
same function as the corrected Re[ELO(ω)] found for the
Lorentz sphere, however, with a slightly different prefactor.
The single-cell FDTD results are also summarized in Table I
for Lorentz materials and plugin materials implemented with
the LO sphere prefactor and the cubic cell prefactor. While the
Lorentz material approach is limited to the weak excitation
limit, a material plugin approach shows promise for more
general modeling of QEs in arbitrary environments.
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APPENDIX A: SUMMARY OF ELECTRIC
FIELD NOTATION

The electric fields discussed above are summarized in
Table II. The electric fields are marked with tildes (e.g., Ẽ)
when the complex amplitude of the field is in use. The complex
amplitude and time-dependent field are related through E(t) =
Re[Ẽ(r0,ω) exp(−iωt)]. The same electric field notation is
applied for both point and sphere LOs.

APPENDIX B: MIE SHIFT

The ζ = √
12/15 scaling factor required to minimize the

shift in resonant frequency can be explained in two ways. Most
directly, if the analytic result for the Mie sphere polarizability
from Refs. [22] and [23] is evaluated on resonance (where
εr � −2εB), one gets

α = 1 + 1
10 (kBR)2

− 4
15 (kBR)2 − i

ω3√εB

6πc3

, (B1)
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TABLE II. Summary of electric field notation.

Field Description

Eext(r) External electric field at position r
EB(r) Field generated at r due to external electric field Eext(r) incident on εB(r)
EB Average EB(r) inside a sphere LO
ELO(r0) Electric self-field generated by the polarization density of an LO at its center, located at r0

ELO Average ELO(r) inside a sphere LO
Ediv

LO(r0) Contribution to ELO(r0) that is divergent for small mesh volumes
Escatt(r0) Electric field due to scattering of ELO off textured εB(r) back to r0

Etot(r0) Total electric field present at r0,Etot(r0) = ELO(r0) + Escatt(r0) + EB(r0)
Es(r0) Electric field monitored at the soft-point-dipole source in pulsed-excitation FDTD simulations
ECW(r0) Continuous-wave electric field generated by soft-dipole-point source in FDTD calculated by taking the FFT

of Es(r0,t) divided by the FFT of the soft source’s dipole moment

whereas using the formulation in Sec. II B, the corresponding
expression is

α = 1

− 1
3 (ζkBR)2 − i

ω3√εB

6πc3

. (B2)

For these to be consistent to lowest order in powers of
kBR, ζ 2/3 = 4/15, or ζ = √

12/15.
The deviation of ζ from unity, the value estimated in

Sec. II B by ignoring the nonuniformity of the polarization

density within the sphere, is subtle but crucial for estimating
the average polarization density accurately enough to remove
unphysical frequency shifts in the net response. This is
ultimately because the contribution of this nonuniform
polarization density to the net dipole moment of the object
scales as the radius squared and so makes a divergent
contribution to the average polarization density when dividing
by the volume: it is the polarization density that is responsible
for the frequency shift.
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