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Deterministic quantum nonlinear optics with single atoms and virtual photons
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We show how analogs of a large number of well-known nonlinear-optics phenomena can be realized with
one or more two-level atoms coupled to one or more resonator modes. Through higher-order processes, where
virtual photons are created and annihilated, an effective deterministic coupling between two states of such a
system can be created. In this way, analogs of three-wave mixing, four-wave mixing, higher-harmonic and
-subharmonic generation (i.e., up- and down-conversion), multiphoton absorption, parametric amplification,
Raman and hyper-Raman scattering, the Kerr effect, and other nonlinear processes can be realized. In contrast
to most conventional implementations of nonlinear optics, these analogs can reach unit efficiency, only use a
minimal number of photons (they do not require any strong external drive), and do not require more than two
atomic levels. The strength of the effective coupling in our proposed setups becomes weaker the more intermediate
transition steps are needed. However, given the recent experimental progress in ultrastrong light-matter coupling
and improvement of coherence times for engineered quantum systems, especially in the field of circuit quantum
electrodynamics, we estimate that many of these nonlinear-optics analogs can be realized with currently available
technology.
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I. INTRODUCTION

In nonlinear optics, a medium responds nonlinearly to in-
coming light of high intensity. This nonlinear response can give
rise to a host of effects, including frequency conversion and
amplification, many of which have important technological
applications [1–4]. After the high-intensity light of a laser
made possible the first experimental demonstration of second-
harmonic generation (frequency up-conversion) in 1961 [5],
many more nonlinear-optics effects were demonstrated using
a variety of nonlinear media. The many applications and the
fundamental nature of nonlinear optics have also inspired
investigations of analogous effects in other types of waves.
Prominent examples include nonlinear acoustics [6,7], non-
linear spin waves [8], nonlinear atom optics [9,10], nonlinear
Josephson plasma waves [11], and nonlinear plasmonics [12].
Analogies of this kind can sometimes enable simulations or
demonstrations of phenomena that are hard to realize in other
systems [13–15].

In this article, we will show that analogs of many nonlinear-
optics effects can also be realized by coupling one or more
resonator modes to one or more two-level atoms. This stands
in contrast to many other nonlinear-optics realizations, which
require three or more atomic levels [4,16]. The key to the
analogs we propose lies in the full interaction between a
two-level atom and an electromagnetic mode, which is given
by the quantum Rabi Hamiltonian [17]. This Hamiltonian
includes terms that can change the number of excitations
in the system, enabling higher-order processes via virtual
photons. These photons are created and annihilated in a way
that generates a deterministic coupling between two system
states that otherwise do not have a direct coupling. In this
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way, we can realize analogs of various frequency-conversion
processes, parametric amplification, Raman and hyper-Raman
scattering, multiphoton absorption, the Kerr effect, and other
nonlinear processes.

Just as nonlinear-optics effects usually require very high
light intensity to manifest clearly, the higher-order processes
we consider require a very strong light-matter coupling to
become noticeable. Specifically, the light-matter coupling
must be strong enough to ensure that the effective deterministic
coupling between system states, induced by the higher-order
processes, becomes larger than the relevant decoherence
rates in the system. Ultrastrong coupling (USC, where the
coupling strength starts to become comparable to the resonance
frequencies of the bare system components) between light
and matter has only recently been reached in some solid-state
experiments [18–36]. Among these systems, circuit quantum
electrodynamics (QED) [16,37–39] has provided some of
the clearest examples [19,20,29–32,34–36], including the
largest reported coupling strength [31] and the first quantum
simulations of the USC regime [34,35].

The experimental progress in USC physics has motivated
many theoretical studies of the interesting new effects that
occur in this regime [40–51]. Some previous [52–54] and
concurrent [55,56] works explore processes in the USC regime
where the number of excitations is not conserved, such
as multiphoton Rabi oscillations [53] and a single photon
exciting multiple atoms [54]. Several of these processes can
be interpreted as analogs of nonlinear-optics phenomena.

In this work, we present a unified picture of these types
of processes and their relation to nonlinear optics. We also
provide many more examples which together allow us to make
complete tables with translations between three- and four-
wave mixing in nonlinear optics and analogous processes in
USC systems. It should be noted that these analogs, many
of which can be realized in one universal setup, do not use
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propagating waves, but instead mix excitations in resonators
and atoms of different frequencies. We emphasize that, unlike
many processes in conventional nonlinear optics, our setups
do not require any external drives, but instead realize analogs
of wave mixing with a minimal number of photons and unit
efficiency.

Given the versatility and technological maturity of the
circuit QED setups, we expect them to become the pri-
mary experimental platform for realizing these deterministic
nonlinear-optics analogs with single atoms and virtual pho-
tons. We believe that these deterministic analogs can find
many important applications, including frequency conversion
and the creation of superposition states for use in quantum
information technology. Circuit QED is already one of the most
well-developed platforms for quantum information processing
[57], so adding the full capabilities of nonlinear optics at the
single-photon level to the toolbox of this field could result
in many new exciting possibilities. Indeed, the development
of nonlinear optics with single photons has been the subject
of much theoretical and experimental work recently due to
the wealth of potential applications [58]. We note here that
although our proposal does not use propagating waves, circuit
QED setups with stationary photons that mimic linear-optics
experiments for itinerant photons have already been proposed
[59]. Several of the nonlinear-optics analogs given in the
present work could be incorporated into such an architecture.

This article is organized as follows. In Sec. II, we give a brief
overview of how nonlinear processes in optics usually occur.
We then describe how analogous deterministic processes be-
come possible in the quantum Rabi model. In Secs. III and IV,
we discuss three- and four-wave mixing, respectively, and give
details of the analogous deterministic processes that can be
realized with resonators ultrastrongly coupled to qubits. Other
nonlinear processes, including higher-harmonic generation,
parametric processes, and the Kerr effect, are discussed in
Sec. V. In Sec. VI, we estimate achievable effective coupling
strengths and decoherence rates, showing that our proposals
can be realized with state-of-the-art technology in circuit
QED. We conclude in Sec. VII. Some details are left for the
appendices: Appendix A expands on the classical mechanisms
for some nonlinear-optics phenomena, Appendix B gives a
derivation of the perturbation-theory formula used to calculate
the strength of the effective coupling between initial and
final states in our three- and four-wave-mixing analogs, and
Appendix C contains details about a few four-wave-mixing
processes not treated in the main text.

II. MECHANISMS FOR NONLINEARITY

A. Nonlinear optics

In conventional classical electro-optical processes, the
polarization P of a given medium induced by the applied
electric field E is linearly proportional to its strength, i.e.,
P = ε0χE, where ε0 is the vacuum permittivity and χ ≡ χ (1)

is the linear susceptibility of the medium, which can be
considered a scalar for linear, homogeneous, and isotropic
dielectric media. Usually, the real and imaginary parts of χ

describe, respectively, the refraction and damping of a light
beam going through such medium.

For a strong electric field E and nonlinear media, the above
linear relation for the induced polarization is generalized to

P = ε0(χ (1)E + χ (2)E2 + χ (3)E3 + . . .), (1)

which is considered a core principle of nonlinear optics
[1–4]. In Eq. (1), χ (2) and χ (3) are the second- and third-
order nonlinear susceptibilities, respectively. In general, these
susceptibilities are tensors χ

(1)
kl , χ

(2)
klm, and χ

(3)
klmn. However, for

simplicity, we consider them as scalars, which is usually valid
for isotropic dielectric media.

Various nonlinear optical phenomena (including wave
mixing) can be explained classically by recalling the nonlinear
dependence of the induced polarization and electric-field
strength, as given by Eq. (1). Standard examples include
Pockels and Kerr effects, which are, respectively, linear and
quadratic electro-optical phenomena, in which the induced
polarization (and, thus, also the refractive index) of a medium
is proportional to the amplitude and its square of the applied
constant electric field.

For example, second-harmonic generation in a medium de-
scribed by the second-order susceptibility χ (2) can be described
classically as follows. Assuming that a monochromatic scalar
electric field E(t) = E0 cos(ωt) is applied to the medium, the
second-order induced polarization P (2) of the medium is given
by

P (2) = ε0χ
(2)E2 = ε0χ

(2)E2
0 cos2(ωt)

= ε0χ
(2)E2

0

(
1 + cos(2ωt)

2

)

= 1

2
ε0χ

(2)E2
0 + 1

2
ε0χ

(2)E2
0 cos(2ωt), (2)

where the first term in the last line describes frequency-
independent polarization, while the second term in the last line
describes the polarization oscillating at twice the frequency of
the input field. This doubling of the input frequency can be
interpreted as second-harmonic generation.

In Appendix A, we present a few additional pedagogical
classical explanations, based on Eq. (1), of phenomena arising
due to the χ (2) and χ (3) nonlinearities. In the following sections,
we write down interaction Hamiltonians describing many of
these nonlinear-optics phenomena to better compare them with
our proposed analogous processes. However, it should be kept
in mind that these interaction Hamiltonians only describe
the higher-order interaction mediated by the χ (2) and χ (3)

nonlinearities. The lower-order interaction due to the χ (1) term
remains and limits the efficiency of the higher-order processes.

B. The quantum Rabi model

The Hamiltonian for a single two-level atom (a qubit)
coupled to a single resonator mode can be written as (h̄ = 1
here and in the rest of the article)

Ĥ = ωaâ
†â + ωq

σ̂z

2
+ Ĥint. (3)

In the quantum Rabi model [17], the interaction is given by

Ĥ Rabi
int = g(â + â†)σ̂x = g(â + â†)(σ̂− + σ̂+), (4)
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where g is the coupling strength. Here, and in the following
parts of the paper that discuss deterministic realizations of
nonlinear optics, we use the notation that â, b̂, ĉ, and d̂ are
the annihilation operators of resonator modes with frequencies
ωa , ωb, ωc, and ωd , respectively. In setups with a single qubit,
or with several identical qubits, the qubit transition frequency
is denoted ωq . In setups with qubits having different transition
frequencies, the frequencies are denoted ωq1, ωq2, etc. The
qubit operators σ̂z and σ̂x = σ̂− + σ̂+ are Pauli matrices;
σ̂− and σ̂+ are the qubit lowering and raising operators,
respectively.

In the limit g � ωa,ωq , the terms â†σ̂+ and âσ̂− in H Rabi
int

can be neglected in the rotating-wave approximation (RWA),
leading to the Jaynes-Cummings (JC) model [60]

Ĥ JC
int = g(âσ̂+ + â†σ̂−). (5)

Note that in the JC model, the number of excitations is
conserved. In the quantum Rabi model, the number of
excitations can change, but their parity is conserved. However,
the quantum Rabi model can be generalized to

Ĥ
gen
int = g(â + â†)(σ̂x cos θ + σ̂z sin θ ), (6)

where θ parametrizes the amount of longitudinal and transver-
sal couplings. This generalized quantum Rabi model does not
impose any restrictions on the number of excitations. The
Hamiltonian in Eq. (6) has been realized in experiments with
USC of flux qubits to resonators [19,20,29,31]. In such setups
with flux qubits, the flux-qubit Hamiltonian can be written as

Hq = ε ˆ̃σz + � ˆ̃σx

2
, (7)

where ˆ̃σz,x are Pauli matrices in the qubit basis given by
clockwise- and anticlockwise-circulating persistent currents
±Ip in the qubit loop, ε is an energy scale set by Ip and an
external magnetic flux, and � is the tunneling energy between
the two current states [61]. In this basis, the inductive coupling
to the resonator is given by

Hint = gind(â + â†) ˆ̃σz, (8)

where the coupling strength gind is set by Ip, the zero-point
current fluctuations in the resonator, and the mutual inductance
in the circuit. By rotating to the energy eigenbasis of the qubit,
one arrives at the interaction in Eq. (6) [19,20,29,31,62–64].
The parameter θ can be tuned by changing ε or �.

All these models can be straightforwardly extended to
include additional resonators and qubits. The presence of one
or more qubits provides the necessary nonlinearity to realize
various deterministic analogs of nonlinear-optics processes
that we will discuss in this article. For some of these processes,
such as three-wave mixing (see Sec. III), the number of
excitations changes by one; this requires setups with the
generalized quantum Rabi model and its extensions. For other
processes, e.g., four-wave mixing (see Sec. IV), the number of
excitations changes by an even number or not at all; these
processes can be realized with extensions of the standard
quantum Rabi model or of the JC model, respectively. The
fact that we need to break the parity symmetry of the standard
quantum Rabi model for the three-wave-mixing analogs, but
not for the four-wave-mixing case, is reminiscent of how, in

conventional nonlinear optics, inversion symmetry must be
broken to realize χ (2) processes, but χ (3) processes can occur
without breaking that symmetry [4].

In a majority of the nonlinear-optics analogs considered in
this article, higher-order processes, mediated by the interaction
Hamiltonians in Eqs. (4)–(6) (and their extensions to additional
resonators and qubits), connect an initial state |i〉 with a final
state |f 〉 of the same energy through an effective interaction
Hamiltonian

Ĥ eff
int = geff|f 〉〈i| + H.c., (9)

where geff is the strength of the effective coupling and H.c.
denotes the Hermitian conjugate of the preceding terms. In
many of the intermediate transitions that contribute to this
effective coupling, virtual photons are created and destroyed.
We provide a multitude of examples of this in the following
sections. It is important to note here that the resonance between
|i〉 and |f 〉 can be set up such that all other states |j 〉 which
potentially could be reached through lower-order processes
are far off resonance. In this way, the influence of lower-order
processes can be made negligible, resulting in the higher-order
process given by Eq. (9) reaching unit efficiency.

To calculate the effective coupling strength geff analytically,
three different techniques have been employed in previous
works. In Ref. [65], an effective Hamiltonian with explicit
up- and down-conversion terms was derived through a series
of unitary transformations combined with approximations
that only retained terms of lowest order in gj/|ωn − ωm|,
where gj are the relevant coupling strengths in the setup
and |ωn − ωm| are the energy differences of the relevant
intermediate transitions. In Refs. [52,53,55], the intermediate
virtual transitions were adiabatically eliminated, relying on the
approximation that the population of the intermediate levels
will not change significantly if gj � |ωn − ωm|. In this article,
we follow the approach of Ref. [54], which calculated geff

using standard perturbation theory. Specifically, if the shortest
path between |i〉 and |f 〉 is an nth-order process, the effective
coupling is given to lowest order by

geff =
∑

j1,j2,...,jn−1

Vfjn−1 . . . Vj2j1Vj1i

(Ei − Ej1 )(Ei − Ej2 ) . . . (Ei − Ejn−1 )
,

(10)

where the sum goes over all virtual transitions forming n-step
paths between |i〉 and |f 〉, Ek denotes the energy of state |k〉,
and Vkm = 〈k|Ĥint|m〉. A derivation of this formula is given in
Appendix B.

In general, the perturbation-theory method of Eq. (10)
appears to be the simplest way to calculate geff , especially
for higher-order processes involving many virtual transitions.
The other methods mentioned above can be more cumbersome,
but provide more information such as energy-level shifts and
higher-order corrections to the effective coupling.

III. THREE-WAVE MIXING

In this section, we look at three-wave mixing, starting with
a general description of sum- and difference-frequency gen-
eration and then treating special cases such as up-conversion,
down-conversion, and Raman scattering; see Fig. 1 for an
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FIG. 1. Schematic representations (Feynman-like diagrams) of three-wave-mixing processes. (a) The two general types of three-wave mixing
are sum-frequency generation (SFG, above) and difference-frequency generation (DFG, below). (b) When two of the involved frequencies are
degenerate, we have either second-harmonic generation [SHG, or up-conversion (UC), above] or second-subharmonic generation [SSHG, or
down-conversion (DC), below]. (c) Another special case is spontaneous Raman scattering, where a small part of the total energy is carried by a
phonon (pictured as a wavy arrow), which is either outgoing [Stokes Raman scattering (S), above] or incoming [anti-Stokes Raman scattering
(AS), also known as sideband cooling, below]. (d) In stimulated Raman scattering, the rate is increased due to the presence of n additional
photons of the same frequency as the outgoing one. Stimulated Stokes Raman scattering (SS) is shown above and stimulated anti-Stokes Raman
scattering (SAS) is shown below.

overview. We provide deterministic analogs based on the
generalized quantum Rabi model for each case.

A. General description: Generation of sum-
and difference-frequency fields

1. Nonlinear optics

The creation and annihilation of a photon with sum
frequency ω+ can be described in the Fock representation
as |n1,n2,n+〉 → |n1 − 1,n2 − 1,n+ + 1〉 and |n1,n2,n+〉 →
|n1 + 1,n2 + 1,n+ − 1〉, respectively; see also Fig. 1(a). The
interaction Hamiltonian Ĥ

(+)
int for this sum-frequency genera-

tion can be given by

Ĥ
(+)
int = gâ1â2â

†
+ + g∗â†

1â
†
2â+, (11)

in terms of the annihilation (âj ) and creation (â†
j ) operators for

the input modes (for j = 1,2) and the output sum-frequency
mode (for j = +), and the three-mode complex coupling
constant g.

Analogously, the creation and annihilation of a photon
with difference frequency ω− can be described in the Fock
representation as |n1,n2,n−〉 → |n1 − 1,n2 + 1,n− + 1〉 and
|n1,n2,n−〉 → |n1 + 1,n2 − 1,n− − 1〉; see also Fig. 1(a). The
interaction Hamiltonian Ĥ

(−)
int describing this process can be

given by

Ĥ
(−)
int = gâ1â

†
2â

†
− + g∗â†

1â2â−, (12)

using the same notation as in Eq. (11) except that the subscript
“+”, corresponding to the sum-frequency mode, is replaced
by “−” for the difference-frequency mode.

The energy conservation principle implies that ω+ =
ω1 + ω2 and ω− = ω1 − ω2, and the momentum conservation
principle implies that k+ = k1 + k2 and k− = k1 − k2 for the
wave vectors kj .

Note that in conventional nonlinear optics, the interaction
Hamiltonians given here only describe the interaction that
results from the higher-order χ (2) nonlinearity. The full
interaction Hamiltonian for the system will also contain
lower-order terms, which limit the efficiency of the sum- and
difference-frequency generation described by Eqs. (11) and
(12).

2. Analogous processes

There are several possible setups that can realize analogs
of sum- and difference-frequency generation deterministically.
One such setup would be three resonators coupled to a single
qubit using the generalized Rabi interaction in Eq. (6). If the
resonator frequencies satisfy ωa + ωb ≈ ωc, the two states
|1,1,0,g〉 and |0,0,1,g〉 become resonant. Here, and in all
the following discussions of deterministic processes, kets
list photon excitation numbers, starting from the resonator
with frequency ωa , followed by qubit state(s) (g for ground
state, e for excited state). The transition |1,1,0,g〉 → |0,0,1,g〉
then corresponds to sum-frequency generation [a = 1, b = 2,
c = + makes the connection explicit with Sec. III A 1 and
Fig. 1(a)] and the transition |0,0,1,g〉 → |1,1,0,g〉 corre-
sponds to difference-frequency generation (a = 2, b = −,
c = 1).

The transition |1,1,0,g〉 → |0,0,1,g〉 is enabled by paths
with several intermediate virtual transitions. One example of
such a path is

|1,1,0,g〉 b̂σ̂+−−→ |1,0,0,e〉 ĉ†σ̂−−−→ |1,0,1,g〉 âσ̂z−→ |0,0,1,g〉,
where the terms from Eq. (6) that generate the transitions are
shown above the arrows. Note that the last transition changes
the number of excitations in the system by one, which is
only possible when the interaction is given by the generalized
quantum Rabi Hamiltonian of Eq. (6). The last transition
is also an example of how a virtual photon is annihilated
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in the process. For the transition in the opposite direction
(difference-frequency generation), a virtual photon is created
instead.

By adiabatic elimination, or suitable unitary transforma-
tions combined with perturbation expansion in g over some
frequency, it can be shown that these virtual transitions
combine to give an effective interaction Hamiltonian

Ĥ eff
int = geff|0,0,1,g〉〈1,1,0,g| + H.c., (13)

where the effective coupling geff , in general, becomes weaker
the more intermediate steps are needed. Later in this section,
we will provide examples with detailed diagrams of the virtual
transitions and calculations of the effective coupling.

In contrast to the interaction Hamiltonians for conventional
nonlinear optics given in Sec. III A 1, the effective interaction
given in Eq. (13) does not need to compete with lower-order
processes if the transition energies in the system are chosen
appropriately. For example, given the resonance condition
ωa + ωb ≈ ωc, the intermediate states |1,0,0,e〉 and |1,0,1,g〉,
with energies ωa + ωq and ωa + ωc, respectively, will be far
off resonance as long as ωq is chosen sufficiently far from ωb.
Thus, even though these intermediate states can be reached
via lower-order processes, they will not become populated
and will not limit the efficiency of the analog of three-wave
mixing.

We note that, if at least one of the excitations in the three-
wave mixing can be hosted in a qubit, other setups become
possible. Both a single resonator coupled to two qubits and
two resonators coupled to a single qubit could be used to
implement the processes in Fig. 1(a). In particular, Ref. [54]
analyzed the former case with ωa ≈ ωq1 + ωq2, showing an
effective coupling between |1,g,g〉 and |0,e,e〉. In the latter
case, the effective coupling of interest would be that between
the states |1,1,g〉 and |0,0,e〉 when ωa + ωb ≈ ωq .

B. Degenerate three-wave mixing: Second-harmonic
and second-subharmonic generation

1. Nonlinear optics

Let us assume the degenerate process of three-wave
mixing for which â1 = â2 ≡ â and ω1 = ω2 ≡ ω. The energy
conservation principle implies ω+ = 2ω. The processes of
the creation and annihilation of photons can be written as
|n,n+〉 → |n − 2,n+ + 1〉 and |n,n+〉 → |n + 2,n+ − 1〉; see
also Fig. 1(b). The interaction Hamiltonian reads as

Ĥint = gâ2â
†
+ + g∗â†2â+. (14)

For second-harmonic generation (also referred to as up-
conversion), one can assume that the initial pure state is
|ψ(t0)〉 = ∑∞

n=0 cn|n,0〉. For second-subharmonic generation
(also called down-conversion), one can assume that the initial
pure state is |ψ(t0)〉 = ∑∞

n+=0 cn+|0,n+〉. Here, cn and cn+
denote arbitrary complex superposition amplitudes satisfying
the normalization conditions. It is seen that our description
of second-subharmonic generation can be the same as that
for second-harmonic generation except with a different initial
state.

2. Analogous processes

(a) Two resonators. There are, again, several possible
setups to realize analogs of up- and down-conversion de-
terministically. In Ref. [65], it was shown that an effective
Hamiltonian like that of Eq. (14) can be achieved with two
resonator modes coupled to a qubit with the interaction
given by Eq. (6). However, in that work some additional
assumptions were made, since ultrastrong coupling had not
yet been experimentally demonstrated at the time. With strong
enough coupling, the virtual transitions shown in the upper left
panel of Fig. 2 combine to achieve a robust effective coupling
between the states |1,0,g〉 and |0,2,g〉, which results in both
up- and down-conversion. Note how virtual photons and qubit
excitations are created or annihilated in all transitions marked
with dashed arrows.

To be precise, the full Hamiltonian of the system is here
given by

Ĥ = ωaâ
†â + ωbb̂

†b̂ + ωq

σ̂z

2
+ Ĥint, (15)

Ĥint = [ga(â + â†) + gb(b̂ + b̂†)]

×(σ̂x cos θ + σ̂z sin θ ), (16)

and the effective interaction due to the virtual transitions shown
in Fig. 2 becomes

Ĥ eff
int = geff|1,0,g〉〈0,2,g| + H.c. (17)

The effective coupling geff can be calculated with third-order
perturbation theory. From Eq. (10), we have

geff =
∑
n,m

〈f |Ĥint|n〉〈n|Ĥint|m〉〈m|Ĥint|i〉
(Ei − En)(Ei − Em)

. (18)

Looking at the upper left panel of Fig. 2, we see that there
are 12 paths contributing to the effective coupling between
|i〉 = |0,2,g〉 and |f 〉 = |1,0,g〉. Three of these paths consist
solely of σ̂z-mediated transitions (dashed red arrows in the
figure). Their contribution is

√
2gag

2
b sin3θ

(
1

ωa�ba

− 1

ωb�ba

− 1

2ω2
b

)
, (19)

where we introduced the notation �nm = ωn − ωm. This
contribution sums to zero on resonance (ωa = 2ωb). The
contribution from the remaining 9 paths is (introducing the
notation 	nm = ωn + ωm)

√
2gag

2
b sin θ cos2θ

[
1

(�ab + ωq)	aq

− 1

ωa(�ab + ωq)

− 1

(�ab + ωq)�bq

+ 1

ωb(�ab + ωq)
− 1

�ab	aq

+ 1

�ab�bq

+ 1

(2ωb − ωq)	aq

− 1

ωb(2ωb − ωq)
− 1

2ωb�bq

]
, (20)

which on resonance reduces to

geff = 3
√

2gag
2
bω

2
q sin(2θ ) cos θ

4ω4
b − 5ω2

bω
2
q + ω4

q

. (21)

Since the transition paths in the upper left panel of Fig. 2
go via two intermediate levels, geff becomes on the order
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FIG. 2. Realizations of down- and up-conversion. The upper left panel shows all virtual transitions that contribute to the down-conversion
process (second-subharmonic generation) |1,0,g〉 → |0,2,g〉 to lowest order. Blue solid arrows mark transitions that do not change the number
of excitations [these transitions are mediated by the terms in the JC model, Eq. (5)], blue dashed arrows correspond to transitions that change
the number of excitations by two [these transitions are mediated by the non-JC terms in the quantum Rabi model, Eq. (4)], and red dashed
arrows show transitions that change the number of excitations by one [these transitions are mediated by the additional terms in the generalized
Rabi model, Eq. (6)]. We have set ωa = 2ωb and ωq = 1.5ωb. Similarly, the upper middle panel shows all virtual transitions that contribute to
the down-conversion process |0,e〉 → |2,g〉 to lowest order. Here, we have set ωq = 2ωa . The upper right panel shows all virtual transitions
that contribute to the down-conversion process |1,g,g〉 → |0,e,e〉 to lowest order. In this case, we have set ωa = 2ωq . Note that all intermediate
energy levels in the upper panels are detuned far off resonance from the initial and final states, which means that lower-order processes will not
be part of the effective interaction Hamiltonians given in the text of Sec. III B 2. The lower panel shows the generic level diagram for the process
in nonlinear optics. Dashed horizontal lines denote virtual levels. If the directions of all arrows in the entire figure are reversed, up-conversion
(second-harmonic generation) is shown instead.

of (gj/ω)2 weaker than gj (j = a,b). This expression is
slightly more complicated than that derived in Ref. [65], where
unitary transformations were combined with perturbation
expansions using the additional simplifying assumptions that
gb � |ωq − ωb| � ωa .

A further demonstration of the effective coupling in Eq. (17)
is given in Fig. 3, where we plot some of the energy levels
in the system as a function of ωa for the JC (dashed-dotted
lines), Rabi (dashed lines), and generalized Rabi (solid lines)
interactions. The inset shows a clear avoided crossing between
|1,0,g〉 and |0,2,g〉; the splitting is set by geff . The JC and Rabi
interactions do not give rise to such an avoided crossing since
they cannot change the excitation number by one. However,
all three interactions give rise to an avoided crossing between
|1,0,g〉 and |0,0,e〉 to the left in the figure, since those two
states have the same number of excitations.

(b) Multiphoton Rabi oscillations. An alternative imple-
mentation of up- and down-conversion is multiphoton Rabi

oscillations, illustrated in the upper middle panel of Fig. 2 and
discussed in Ref. [53]. In this case, virtual transitions induce
an effective coupling (and, thus, Rabi oscillations) between
the states |0,e〉 and |2,g〉 for a single resonator coupled to a
single qubit with ωq ≈ 2ωa . The transitions are mediated by
the generalized Rabi Hamiltonian Eq. (6) and give rise to an
effective interaction

Ĥ eff
int = geff|0,e〉〈2,g| + H.c. (22)

The effective coupling is easily calculated with second-order
perturbation theory. With |i〉 = |2,g〉 and |f 〉 = |0,e〉, Eq. (10)
gives

geff =
√

2g2 sin θ cos θ

(
1

�aq

− 1

ωa

)
. (23)

Using that on resonance ωa = ωq/2, this reduces to

geff = −2
√

2 sin(2θ )
g2

ωq

, (24)
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FIG. 3. Energy levels for two resonator modes coupled to a qubit
via the JC [Eq. (5), dashed-dotted lines], quantum Rabi [Eq. (4),
dashed lines], and generalized quantum Rabi [Eq. (6), solid lines]
interactions, as a function of the resonance frequency ωa of the first
resonator mode. The inset shows a zoom-in of the area marked by the
black rectangle in the upper right corner. Parameters: ωq = 1.6ωb,
ga = 0.07ωb, gb = 2ga , and θ = π/6. The numerical simulations
were performed in QuTiP [66,67].

which was also derived in Ref. [53] using adiabatic elimina-
tion. We note that the effective coupling acquires a factor g/ωq

due to the fact that each path between |i〉 and |f 〉 contains one
intermediate level.

(c) Two identical qubits. Yet another option, illustrated in
the upper right panel of Fig. 2 and discussed in Ref. [54], is
to couple a single resonator to two identical qubits such that
the process |1,g,g〉 ↔ |0,e,e〉 is realized. The Hamiltonian for
this setup is

Ĥ = ωaâ
†â +

2∑
j=1

ωq

σ̂
(j )
z

2
+ Ĥint, (25)

Ĥint = g(â + â†)
2∑

j=1

(σ̂ (j )
x cos θ + σ̂ (j )

z sin θ ), (26)

and the effective interaction becomes

Ĥ eff
int = geff|1,g,g〉〈0,e,e| + H.c. (27)

The third-order-perturbation-theory calculations for this pro-
cess following Eq. (10) were already performed in the
appendix of Ref. [54]. Here, we merely restate their
result

geff = −8

3

g3

ω2
q

sin θ cos2θ, (28)

which is valid on resonance, when ωa = 2ωq . Again, we see
that the effective coupling has a factor (g/ω)2, since each path
contributing to the coupling contains two intermediate states.

In conclusion, we note that the multiphoton Rabi oscillation
only requires two intermediate transitions, while the other two
proposals require three. This means that the multiphoton Rabi
oscillation has a larger effective coupling than the other two
setups and is easier to implement.

C. Raman scattering

1. Nonlinear optics

In nonlinear optics, Raman scattering is a special case of
nondegenerate three-wave mixing, mixing photons and optical
phonons of the scattering nonlinear medium. Usually Raman
scattering refers to the scattering of a light beam on optical
phonons, which results in changing the frequency of the light
beam [68]. We note that analogous scattering of photons on
acoustic phonons is referred to as Brillouin scattering.

We consider the following fields: a driving laser (L) mode
of frequency ωL, a Stokes (S) mode of frequency ωS , an
anti-Stokes (A) mode of frequency ωA, and optical vibrational
phonon (V ) modes of frequencies ωVj (j = 1,2, . . . ) as
described by the corresponding creation (â†

k) and annihilation
(âk) operators for k = L,A,S,Vj .

(a) Stokes Raman scattering. Raman scattering with
Stokes frequency ωS < ωL is shortly referred to as Stokes
(Raman) scattering. The process is illustrated in Fig. 1(c) and
the interaction Hamiltonian can be written as

Ĥ
(S)
int =

∑
j

gSj âLâ
†
Sâ

†
Vj + H.c., (29)

or its simpler single-phonon version

Ĥ
(S)
int = gSâLâ

†
Sâ

†
V + H.c. (30)

(b) Anti-Stokes Raman scattering (sideband cooling). One
can also analyze the Raman scattering with anti-Stokes fre-
quency ωA > ωL, referred to as anti-Stokes (Raman) scattering
and illustrated in Fig. 1(c). The interaction Hamiltonian for the
anti-Stokes Raman scattering can be written as

Ĥ
(A)
int =

∑
j

g∗
Aj âLâ

†
AâVj + H.c., (31)

or its simpler single-phonon version

Ĥ
(A)
int = g∗

AâLâ
†
AâV + H.c. (32)

Since a phonon is absorbed in this process, it can also be
referred to as sideband cooling of the phononic mode.

(c) Stimulated Raman scattering. The presence of addi-
tional photons in the S or A modes, as shown in Fig. 1(d), can
increase the rate of Raman scattering. This is called stimulated
Raman scattering. To further distinguish the processes in
Fig. 1(c) from those in Fig. 1(d), the former can be referred to
as spontaneous Raman scattering.

2. Analogous processes

We can achieve close analogs of Raman scattering in our
deterministic setups by letting a qubit play the role of a phonon.
The qubit is coupled to two resonators, one representing the
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FIG. 4. Raman scattering and its deterministic analog. The upper
panel shows all virtual transitions that contribute, to lowest order, to
the process |1,0,g〉 → |0,1,e〉, which corresponds to Stokes Raman
scattering. The lower panel shows the generic level diagram for
the process in nonlinear optics. The same arrow and level styles
as in Fig. 2 are used; we have set ωa = 3ωq and ωb = 2ωq . If the
directions of all arrows in the entire figure are reversed, and the labels
are changed such that S → L and L → A, anti-Stokes scattering is
shown instead. Stimulated Stokes (anti-Stokes) Raman scattering is
given by adding n to the photon number in the second (first) resonator
mode in the upper panel and adding n incoming and outgoing photons
to the S (A) mode in the rest of the figure.

laser mode and the other representing the Stokes or anti-Stokes
mode. The Hamiltonian of the system is given by Eqs. (15)
and (16).

(a) Stokes Raman scattering. Setting ωa = ωb + ωq , and
making the connections a = L, b = S, and q = V , the transi-
tion |1,0,g〉 → |0,1,e〉 emulates Stokes Raman scattering. The
virtual transitions involved are shown in Fig. 4. This process is
further discussed in the concurrent work of Ref. [55] as a means
to achieve single-photon frequency conversion controlled by

the qubit. The effective interaction due to the virtual transitions
when ωq ≈ ωa − ωb becomes

Ĥ eff
int = geff|1,0,g〉〈0,1,e| + H.c. (33)

Second-order perturbation theory using Eq. (10) and Fig. 4
gives

geff = gagb sin θ cos θ

(
1

−ωa

− 1

�qa

+ 1

ωb

− 1

	bq

)
, (34)

which reduces to

geff = gagb

(
1

ωb

− 1

ωa

)
sin(2θ ) (35)

on resonance (ωq = ωa − ωb). This agrees with the result
obtained using adiabatic elimination in Ref. [55].

We also note that it has been shown that a photon scattering
off a qubit ultrastrongly coupled to an open transmission line
can be down-converted in frequency, leaving some of its energy
with the qubit [48]. However, this down-conversion process is
not deterministic.

(b) Anti-Stokes Raman scattering. The same setup as for
Stokes Raman scattering, but considering the reverse transition
|0,1,e〉 → |1,0,g〉, implements anti-Stokes Raman scattering.
In this case, we need to make the identifications a = A, b = L,
and q = V .

(c) Stimulated Raman scattering. We can again consider
the same setup, but instead look at the transitions |1,n,g〉 →
|0,n + 1,e〉 and |n,1,e〉 → |n + 1,0,g〉 to obtain stimulated
Stokes Raman scattering and stimulated anti-Stokes Raman
scattering, respectively. In calculating the effective coupling
geff between the initial and final states, as done above and in
Ref. [55] for the case n = 0, we will, for each possible path
between them, multiply the corresponding transition matrix
elements. As can be seen from Fig. 4, each path contains
exactly one transition that changes the number of excitations
in one of the modes from n to n + 1. This contributes a factor√

n + 1 to the effective coupling, showing that the presence of
the additional photons stimulates the transition.

IV. FOUR-WAVE MIXING

In this section, we treat four-wave mixing, starting as in
Sec. III with a general description and then treating special
cases, such as degenerate four-wave mixing and hyper-Raman
scattering. An overview of these processes is given in Fig. 5.
We again provide deterministic analogs for each case. Since
there are many similarities to the material presented in Sec. III,
the treatment here will be a little more concise. However,
compared to Sec. III there are more processes to cover and
longer paths of virtual transitions to consider in calculating
the effective coupling for those processes.

A. General description

1. Nonlinear optics

Four-wave mixing comes in three types, as illustrated in
Fig. 5(a). Type I, with the interaction Hamiltonian

Ĥint = gâ1â2â
†
3â

†
4 + g∗â†

1â
†
2â3â4, (36)
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FIG. 5. Schematic representations (Feynman-like diagrams) of four-wave-mixing processes. (a) Four-wave mixing can be divided into three
general categories: type I, with two incoming and two outgoing signals (above), type II, with three incoming signals and one outgoing (middle),
and type III, with one incoming signal and three outgoing ones (below). (b) When three of the frequencies are degenerate, we have either
third-harmonic generation (THG, or up-conversion, above) or third-subharmonic generation (TSHG, or down-conversion, below). When two
of the frequencies are degenerate, four processes are possible (not pictured here, but shown in Appendix C). (c) When a phonon is involved, the
process is called hyper-Raman scattering of type I. The only change to Stokes (HIS, above) and anti-Stokes (HIAS, below) Raman scattering
from the three-wave-mixing case [see Fig. 1(c)] is that there are two (degenerate) incoming photons instead of one. (d) With two degenerate
phonons, the process is called hyper-Raman scattering of type II. The two phonons replace the single one in the Stokes (HIIS, above) and
anti-Stokes (HIIAS, below) versions of ordinary Raman scattering from Fig. 1(c).

has two incoming and two outgoing signals. Processes with
three incoming signals and one outgoing are here called
type II, and processes with one incoming signal and three
outgoing ones are here referred to as type III. The interaction
Hamiltonian for both types II and III can be written as

Ĥint = gâ1â2â3â
†
4 + g∗â†

1â
†
2â

†
3â4. (37)

2. Analogous processes

There are, just as for three-wave mixing, several possible
setups that allow deterministic analogs of the four-wave
mixing processes. The clearest analogy is probably four
resonators all coupled to a single qubit. Adjusting the resonator
frequencies to satisfy the condition ωa + ωb ≈ ωc + ωd , the
states |1,1,0,0,g〉 and |0,0,1,1,g〉 become resonant and the
transitions between these states will constitute type-I four-
wave mixing. Similarly, if ωa + ωb + ωc ≈ ωd , the transition
|1,1,1,0,g〉 → |0,1,1,1,g〉 corresponds to type-II mixing and
the reverse process |0,1,1,1,g〉 → |1,0,0,0,g〉 will be type-III
mixing.

If at least one of the excitations in the four-wave mixing can
be hosted in a qubit, additional setups are possible. With three
resonators coupled to a single qubit, |1,1,0,g〉 ↔ |0,0,1,e〉
corresponds to type-I mixing and the processes |1,1,1,g〉 ↔
|0,0,0,e〉 corresponds to type-II (→) and type-III (←) mixing,
respectively. In the same way, with two resonators coupled to
two qubits, |1,1,g,g〉 ↔ |0,0,e,e〉 are analogs of type-I mixing
and the processes |0,1,e,e〉 ↔ |1,0,g,g〉 are some possible
analogs for type-II (→) and type-III (←) mixing, respectively.
Finally, with a single resonator coupled to three qubits,
|1,e,g,g〉 ↔ |0,g,e,e〉 corresponds to type-I mixing and the
processes |0,e,e,e〉 ↔ |1,g,g,g〉 corresponds to type-II (→)
and type-III (←) mixing, respectively. Hosting at least one

excitation in a qubit may be preferable, since such setups, in
general, will require one less intermediate virtual transition
than the setup with four resonators and a qubit. Barring
destructive interference between the various virtual transition
paths, this implies that the effective coupling will be weaker
in the latter setup.

All these processes can occur due to intermediate virtual
transitions as before. However, in contrast to three-wave
mixing, the four-wave mixing analogs do not require the
generalized Rabi interaction Hamiltonian from Eq. (6). The
standard quantum Rabi model in Eq. (4) is sufficient, since the
parity of the number of excitation is conserved in four-wave
mixing. In fact, for type-I processes, which do not change
the number of excitations, the interaction terms from the JC
model in Eq. (5) are sufficient to mediate the required virtual
transitions. However, terms from the full quantum Rabi model
can still give a significant contribution to the effective coupling
between the initial and final states of such processes.

B. Degenerate four-wave mixing: Third-harmonic
and third-subharmonic generation

In this subsection, we limit our analysis to the cases where
three of the signals involved are degenerate. The cases with
two degenerate signals are reviewed briefly in Appendix C.

1. Nonlinear optics

Let us analyze a degenerate case of four-wave mixing
assuming â1 = â2 = â3 ≡ â, â4 ≡ â+, and ω+ = 3ω. The
creation and annihilation of a photon in the Fock basis
can be given as |n,n+〉 → |n − 3,n+ + 1〉 for third-harmonic
generation (up-conversion) and |n,n+〉 → |n + 3,n+ − 1〉 for
third-subharmonic generation (down-conversion); see also
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FIG. 6. Realizations of down- and up-conversion with four-wave mixing. The upper left panel shows all virtual transitions that contribute
to the down-conversion process (third-subharmonic generation) |1,0,g〉 → |0,3,g〉 to lowest order. Similarly, the upper middle panel shows
all virtual transitions that contribute to the down-conversion process |0,e〉 → |3,g〉 to lowest order, and the upper right panel shows all virtual
transitions that contribute to the down-conversion process |1,g,g,g〉 → |0,e,e,e〉 to lowest order. The lower panel show the generic level
diagram for the process in nonlinear optics. The same arrow and level styles as in Fig. 2 are used. In the upper left panel, ωa = 3ωb and
ωq = 2ωb; in the upper middle panel, we have set ωq = 3ωa ; in the upper right panel, ωa = 3ωq . If the directions of all arrows in the entire
figure are reversed, up-conversion (third-harmonic generation) is shown instead.

Fig. 5(b). The interaction Hamiltonian for both processes reads
as

Ĥint = gâ3â
†
+ + g∗â†3â+. (38)

The initial pure state for third-subharmonic generation is
usually chosen as |ψ(t0)〉 = ∑∞

n=0 cn|n,0〉, while that for third-
harmonic generation can read as |ψ(t0)〉 = ∑∞

n+=0 cn+|0,n+〉,
where cn and cn+ are arbitrary complex amplitudes like in
Sec. III B 1.

2. Analogous processes

Also in this case, there are various possible deterministic
setups, extensions of those discussed in Sec. III B 2. The three
most straightforward setups are illustrated in Fig. 6. We note
from the figure that although these setups in general require
one more intermediate step than in the three-wave-mixing case,
the calculations of the effective coupling are simplified by
the fact that we only need to use transitions mediated by the
quantum Rabi Hamiltonian (blue arrows in the figure), and not
the σ̂z terms of the generalized Rabi Hamiltonian (red arrows
in Fig. 2), since the excitation-number parity is conserved.

(a) Two resonators. The first analog, shown in the upper
left panel of Fig. 6, utilizes two resonators, with frequencies

ωa ≈ 3ωb, coupled to a single qubit such that virtual interme-
diate transitions enable the process |1,0,g〉 ↔ |0,3,g〉, which
realizes both up- and down-conversion. The full Hamiltonian
for this system is given by Eq. (15) and

Ĥint = [ga(â + â†) + gb(b̂ + b̂†)]σ̂x . (39)

We can derive, in the same way as before, an effective
Hamiltonian

Ĥ eff
int = geff|1,0,g〉〈0,3,g| + H.c. (40)

The effective coupling requires fourth-order perturbation
theory to calculate. Summing the four contributing paths using
Eq. (10) with |i〉 = |0,3,g〉 and |f 〉 = |1,0,g〉 gives

geff =
√

6gag
3
b

[
− 1

(	aq − 2ωb)�ab	aq

+ 1

(	aq − 2ωb)�ab�bq

− 1

2ωb(	aq − 2ωb)�bq

+ 1

2ωb(3ωb + ωq)�bq

]
. (41)
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Applying the resonance condition ωa = 3ωb simplifies this
result to

geff =
√

6gag
3
b

2ωb

[
1

�bq(3ωb − ωq)
− 1

	bq(3ωb + ωq)

]

= 4
√

6gag
3
bωq

9ω4
b − 10ω2

bω
2
q + ω4

q

, (42)

which scales as (gj/ω)3, j = a,b, as expected for a fourth-
order process.

(b) Multiphoton Rabi oscillations. The second option,
shown in the upper middle panel of Fig. 6, is multiphoton Rabi
oscillations between the states |0,e〉 and |3,g〉 with a single
resonator coupled to a single qubit (ωq ≈ 3ωa), a process
studied in Refs. [52,53]. The Hamiltonian for the system is
given by Eqs. (3) and (4).

The effective interaction Hamiltonian for this process is

Ĥ eff
int = geff|0,e〉〈3,g| + H.c. (43)

The effective coupling for three-photon Rabi oscillations
follows immediately from third-order perturbation theory as
there is only a single path contributing. With |i〉 = |3,g〉 and
|f 〉 = |0,e〉, Eq. (10) gives

geff =
√

6g3

2ωa�aq

= −9
√

6g3

4ω2
q

, (44)

where we used the resonance condition ωq = ωa/3 in the last
step. This result was also derived in Ref. [52] using adiabatic
elimination.

(c) Three identical qubits. A third possibility, shown in
the upper right panel of Fig. 6, is coupling a single res-
onator to three identical qubits (ωa = 3ωq), such that the
process |1,g,g,g〉 ↔ |0,e,e,e〉 is implemented, as discussed
in Ref. [54]. In this case, the Hamiltonian for the system is

Ĥ = ωaâ
†â +

3∑
j=1

ωq

σ̂
(j )
z

2
+ Ĥint, (45)

Ĥint = g(â + â†)
3∑

j=1

σ̂ (j )
x , (46)

and the effective interaction Hamiltonian of interest is

Ĥ eff
int = geff|1,g,g,g〉〈0,e,e,e| + H.c. (47)

The effective coupling can be calculated with third-order
perturbation theory. Following Eq. (10), adding up the con-
tributions from the two paths with |i〉 = |0,e,e,e〉 and |f 〉 =
|1,g,g,g〉, leads to

geff = g3

(
3

�2
qa

+ 6

2ωq�qa

)
= −3g3(ωa − 3ωq)

ωq�2
qa

, (48)

which goes to zero on resonance (ωa = 3ωq); the two paths
interfere destructively then. However, as shown numerically
in the appendix of Ref. [54], a coupling between the states
|1,g,g,g〉 and |0,e,e,e〉 nevertheless exists close to that
resonance. This is partly due to the fact that the energy levels
are shifted from their bare-state values to the dressed states

induced by the ultrastrong interaction and partly due to the
influence of higher-order processes.

Comparing the three analogs given here, we note that the
multiphoton Rabi oscillations and the single photon exciting
three qubits both require one less intermediate step than the
setup with two resonators and one qubit. However, in the three-
qubit case this does not necessarily translate into a stronger
effective coupling due to destructive interference between
the virtual transitions. The possibility of such destructive
interference diminishing the effective coupling needs to be
kept in mind when designing analogs of nonlinear optics
in these setups. We will see one more example of this
phenomenon below.

C. Hyper-Raman scattering, type I: Two-photon processes

1. Nonlinear optics

Hyper-Raman scattering is a generalization of Raman
scattering (see Sec. III C) to include either multiple incoming
photons or multiple phonons. Here, we first analyze hyper-
Raman scattering based on two-photon processes (we refer to
this as type-I hyper-Raman scattering), as described by the
following Hamiltonians for Stokes frequency,

Ĥ
(S)
int = gSâ

2
Lâ

†
Sâ

†
V + H.c., (49)

and anti-Stokes frequency (which could also be called side-
band hypercooling of type I),

Ĥ
(A)
int = g∗

Aâ2
Lâ

†
AâV + H.c. (50)

These processes are sketched in Fig. 5(c). We note that here
ωS > ωL, contrary to the standard Raman scattering case. For
simplicity, we have omitted multiphonon versions analogous
to Eq. (29).

2. Analogous processes

Just as in Sec. III C 2, we consider setups where qubit
excitations play the role of phonons in the deterministic
analogs of hyper-Raman scattering. For the type-I process,
two resonators (one corresponding to the L mode, one
corresponding to the S or A mode) are coupled to a single qubit.
This setup is studied further in our concurrent work Ref. [55] as
a means to implement deterministic up- and down-conversions
controlled by a qubit.

(a) Stokes Hyper-Raman scattering, type I. Setting ωa +
ωq ≈ 2ωb and making the connections a = S, b = L, and q =
V , we see that the process |0,2,g〉 → |1,0,e〉 corresponds to
Stokes hyper-Raman scattering of type I. In the upper panel
of Fig. 7, we show the virtual transitions contributing to this
process. From the full system Hamiltonian, given by Eqs. (15)
and (39) just as for the three-photon frequency conversion in
Sec. IV B 2 a, we can derive the effective Hamiltonian

Ĥ eff
int,HIS = geff|0,2,g〉〈1,0,e| + H.c. (51)

Third-order perturbation theory following Eq. (10) gives

geff =
√

2gag
2
b

(
1

−2ωb�qb

+ 1

�ab�qb

+ 1

�ab	aq

)

=
√

2gag
2
b(ωa − 2ωb)

ωb�
2
ab

, (52)
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FIG. 7. Stokes hyper-Raman scattering of type I and its deter-
ministic analog. The upper panel shows all virtual transitions that
contribute to lowest order to the transition |0,2,g〉 → |1,0,e〉. The
lower panel shows the generic level diagram for the process in non-
linear optics. The connection becomes clear with the identifications
a = S, b = L, and q = V . The same arrow and level styles as in
Fig. 2 are used; we have set ωa = 3ωq and ωb = 2ωq .

where we used the resonance condition ωq = 2ωb − ωa in the
last step.

We note that one of the paths contributing to the coupling
[the second term in Eq. (52)] only requires interactions given
by the JC version of the interaction Hamiltonian,

Ĥint = ga(âσ̂+ + â†σ̂−) + gb(b̂σ̂+ + b̂†σ̂−). (53)

Omitting the other terms from Eq. (52) and setting ωq = 2ωb −
ωa , the result is

geff = −
√

2gag
2
b

�2
ab

. (54)

These effective couplings are also calculated in Ref. [55]
using adiabatic elimination. In that case, the results are a little
more complicated since some higher-order contributions are

FIG. 8. Anti-Stokes hyper-Raman scattering of type I (sideband
hypercooling) and its deterministic analog. The upper panel shows
all virtual transitions that contribute to lowest order to the transition
|0,2,e〉 → |1,0,g〉. The lower panel shows the generic level diagram
for the process in nonlinear optics. The connection becomes clear
with the identifications a = A, b = L, and q = V . The same arrow
and level styles as in Fig. 2 are used; we have set ωa = 5ωq and
ωb = 2ωq .

included, but to lowest order the results coincide with those
given here.

(b) Anti-Stokes Hyper-Raman scattering, type I. If we
instead set ωa ≈ 2ωb + ωq in the same setup as for Stokes
hyper-Raman scattering of type I (and make the connections
a = A, b = L, and q = V ), the transition |0,2,e〉 → |1,0,g〉
corresponds to anti-Stokes hyper-Raman scattering of type I.
The effective interaction Hamiltonian becomes

Ĥ eff
int,HIAS = geff|0,2,e〉〈1,0,g| + H.c. (55)

The virtual transitions contributing to the process |0,2,e〉 →
|1,0,g〉 are shown in Fig. 8. Third-order perturbation theory

063849-12



DETERMINISTIC QUANTUM NONLINEAR OPTICS WITH . . . PHYSICAL REVIEW A 95, 063849 (2017)

following Eq. (10) gives

geff =
√

2gag
2
b

(
1

2ωb	qb

− 1

�ab	qb

+ 1

�ab�aq

)

=
√

2gag
2
b(ωa − 2ωb)

ωb�
2
ab

, (56)

where we used the resonance condition ωq = ωa − 2ωb in the
last step. We note that the expression is the same as the one
obtained for type-I Stokes hyper-Raman scattering in Eq. (52),
despite the resonance condition being different.

This effective coupling is also calculated in Ref. [55] using
adiabatic elimination. Again, in that case, the result is a little
more complicated since some higher-order contributions are
included, but to lowest order it coincides with Eq. (56).

D. Hyper-Raman scattering, type II: Two-phonon processes

1. Nonlinear optics

Hyper-Raman scattering can also be based on two-phonon
processes (we refer to this as type-II hyper-Raman scattering),
as described by the following interaction Hamiltonians with
Stokes frequency,

Ĥ
(S)
int = gSâLâ

†
Sâ

†
V 1â

†
V 2 + H.c., (57)

and with anti-Stokes frequency (which could also be called
sideband hypercooling of type II),

Ĥ
(A)
int = g∗

AâLâ
†
AâV 1âV 2 + H.c. (58)

These processes are sketched in Fig. 5(d).

2. Analogous processes

The closest analog here is a setup with two resonators both
coupled to two identical qubits. The full system Hamiltonian
is given by

Ĥ = ωaâ
†â + ωbb̂

†b̂ +
2∑

j=1

ωq

σ̂
(j )
z

2
+ Ĥint, (59)

Ĥint = [ga(â + â†) + gb(b̂ + b̂†)]
2∑

j=1

σ̂ (j )
x . (60)

If the frequencies satisfy the resonance condition ωa ≈ ωb +
2ωq , the process |1,0,g,g〉 → |0,1,e,e〉, whose virtual transi-
tions are shown in Fig. 9, corresponds to Stokes hyper-Raman
scattering of type II, given that we make the connections
a = L, b = S, and q = V . The reverse process corresponds
to anti-Stokes hyper-Raman scattering of type II, if we instead
identify a = A and b = L.

The virtual transitions give rise to the effective Hamiltonian

Ĥ eff
int = geff|1,0,g,g〉〈0,1,e,e| + H.c., (61)

which describes both processes. Adding up the two paths
in Fig. 9 using second-order perturbation theory following
Eq. (10), we obtain

geff = 2gagb

(
1

�qa

+ 1

	bq

)
= −2gagb(�ba + 2ωq)

�aq	bq

, (62)

FIG. 9. Stokes hyper-Raman scattering of type II and its deter-
ministic analog. The upper panel shows all virtual transitions that
contribute to lowest order to the transition |1,0,g,g〉 → |0,1,e,e〉.
The lower panel shows the generic level diagram for the process in
nonlinear optics. The connection becomes clear with the identifica-
tions a = L, b = S, and q = V . The same arrow and level styles as
in Fig. 2 are used; we have set ωa = 2ωb = 4ωq . If the directions of
all arrows in the entire figure are reversed, and the labels are changed
such that S → L and L → A, anti-Stokes hyper-Raman scattering of
type II is shown instead.

which goes to zero on resonance (ωa = ωb + 2ωq). However,
a finite coupling should result from the fact that bare energy
levels are shifted to dressed ones and higher-order processes
can contribute, analogous to the situation for the single photon
exciting three qubits discussed in Sec. IV B 2 c.

V. OTHER NONLINEAR PROCESSES

While three- and four-wave mixing have been the main
focus of this article, there are several other nonlinear-optics
processes for which analogs can be found. In this section, we
treat a few of these.
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A. Higher-harmonic and -subharmonic generation

A plethora of processes are possible when considering
wave-mixing involving five or more frequencies. To shed light
on the relevant considerations for the deterministic analogs of
these processes, it is sufficient to consider higher-harmonic and
-subharmonic generation as a simple representative example.

1. Nonlinear optics

We consider the degenerate case of m-wave mixing as-
suming â1 = â2 = . . . = âm−1 ≡ â, âm ≡ â+, and ω+ = (m −
1)ω. The creation and annihilation of a photon in the Fock basis
can then be given as |n,n+〉 → |n − m + 1,n+ + 1〉 for (m −
1)th-harmonic generation (up-conversion) and |n,n+〉 → |n +
m − 1,n+ − 1〉 for (m − 1)th-subharmonic generation (down-
conversion). The interaction Hamiltonian for both processes
can be written as

Ĥint = gâm−1â
†
+ + g∗â†(m−1)â+, (63)

generalizing Eq. (14) for three-wave mixing and Eq. (38) for
four-wave mixing.

2. Analogous processes

It is straightforward to extend the three approaches dis-
cussed in Sec. III B 2 for three-wave mixing and in Sec. IV B 2
for four-wave mixing. One can use two resonators, with fre-
quencies ωa = (m − 1)ωb, coupled to a single qubit such that
the process |1,0,g〉 ↔ |0,m − 1,g〉 is enabled by virtual inter-
mediate transitions, realizing both up- and down-conversion.
The other approaches are to use multiphoton Rabi oscillations
between |0,e〉 and |m − 1,g〉 using a single resonator coupled
to a single qubit with ωq = (m − 1)ωa [53]; or to couple a
single resonator to m − 1 identical qubits [ωa = (m − 1)ωq]
such that the process |1,g, . . . ,g〉 ↔ |0,e, . . . ,e〉 is realized
[54].

What these three approaches, and all other analogs of
m-wave mixing, have in common are that they require an
increasing number of intermediate virtual transitions as m

increases. In general, the effective coupling geff , determining
the transition rate, will be proportional to (g/ω)n−1 if n steps of
intermediate virtual transitions are required to go between the
initial and final states. Here, g and ω are the coupling and the
relevant system frequencies, respectively, in the quantum Rabi
model discussed in Sec. II B. Considering this, the fact that the
multiphoton Rabi oscillations require one less intermediate
step than the other two approaches described above (see Secs.
III B 2 and IV B 2) makes them the most suited to implement
an analog of higher-harmonic and -subharmonic generation.

We also note that the standard quantum Rabi model, Eq. (4),
is sufficient to mediate the virtual transitions needed for m-
wave mixing when m is even. If m is odd, the interaction
terms from the generalized quantum Rabi model, Eq. (6), are
necessary to realize the analogs discussed here.

B. Multiphoton absorption

1. Nonlinear optics

Simultaneous absorption of multiple photons in a system
is a nonlinear process, first predicted by Göppert-Mayer [69].
Unlike most of the wave-mixing processes discussed above

(except Raman scattering), this process changes the net energy
of the system.

2. Analogous processes

A clear analogy of multiphoton absorption is provided
by the multiphoton Rabi oscillations [53] already discussed
in the context of harmonic and subharmonic generation
in Secs. III B 2, IV B 2, and V A 2. During a multiphoton
Rabi oscillation, a single qubit absorbs n photons from the
resonator it is coupled to; this is the process |n,g〉 → |0,e〉.
We also note that circuit-QED experiments with flux qubits
have demonstrated multiphoton absorption in a driven qubit-
resonator system [32,63].

C. Parametric processes

1. Nonlinear optics

Many of the processes discussed above can be analyzed
for the case where one of the fields is a strong drive
that can be approximated as classical. As an example,
consider the general three-wave-mixing processes described
by Eqs. (11) and (12) in Sec. III A 1. We denote the frequencies
by ωp ≡ ω1 for the pump (drive) mode, ωs ≡ ω2 for the
signal mode, and ωi ≡ ω± for the idler mode. We then ap-
ply the parametric approximation âp(t) ≈ 〈âp(t)〉 ≈ αp(t) ≡
|αp| exp [−i(ωt + φp)], which is usually valid if 〈n̂p(t)〉 ≈
〈n̂p(t0)〉 
 max{1,〈n̂s(t)〉,〈n̂i(t)〉}, where n̂x is the number of
photons in mode x. For the case ωp = ωs + ωi , Eq. (12) then
becomes

Ĥ (amp) = g∗α∗
pâi âs + gαpâ

†
i â

†
s

= κ[âi âse
i(ωt+φ) + â

†
i â

†
s e

−i(ωt+φ)], (64)

where ω ≡ ωp, the coupling constant g is rescaled as
κ = |gαp|, and φ = φp − arg(g). This equation describes
parametric amplification (down-conversion). For the special
case ωs = ωi , it corresponds to degenerate parametric down-
conversion. Similarly, under the parametric approximation,
with â1 ≡ âp ≈ αp, Eq. (11) describes parametric frequency
conversion.

2. Analogous processes

As discussed in Sec. III B 2 a, Ref. [65] showed that a
setup with two resonator modes coupled to a qubit with the
interaction of Eq. (6) can give an effective interaction of the
form

Ĥ eff
int = ζ (â†2b̂ + â2b̂†)σ̂z, (65)

where

ζ = g2
ag

2
b sin θ sin(2θ )

ωa(ωq − ωb)
. (66)

This interaction results in degenerate parametric down-
conversion and squeezing. Note that the qubit state will affect
the process since the interaction is proportional to σ̂z, which
is absent in Eq. (64). However, if we assume that the qubit
remains in its ground (or excited) state during the system
evolution, we can recover Eq. (64) from Eq. (65). Such qubit
“freezing” can be achieved, e.g., by Zeno-type effects.
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In general, similar effective interaction Hamiltonians
should be possible to derive for all setups considered in this
article where the initial and final states for the system have
the same qubit state. Thus, most parametric processes from
nonlinear optics have deterministic analogs involving virtual
photons.

D. Kerr, cross-Kerr, and Pockels effects

1. Nonlinear optics

The Kerr, cross-Kerr, and Pockels effects differ from the
other nonlinear-optics phenomena discussed so far in that they
do not involve any change in the number of excitations in some
mode. Instead, the frequency of a mode a is modified, either
through self-interaction (Kerr effect) or through interaction
with a second mode b (Pockels effect when the change
is proportional to the amplitude of the field; cross-Kerr
effect when the change is proportional to the square of said
amplitude). These effects can be described by the following
Hamiltonians:

ĤK = χK(â†â)2, (67)

ĤcK = χcKâ†âb̂†b̂, (68)

ĤP = χPâ
†â(b̂ + b̂†), (69)

where χx gives the strength of the nonlinear interaction.

2. Analogous processes

The Kerr effect can be realized with a single qubit coupled
to a resonator with only the JC interaction of Eq. (5). In the
dispersive regime, where g � |ωa − ωq |, a perturbation ex-
pansion in the small parameter g/(ωa − ωq) yields a term [70]

Ĥ
disp
K = χK(â†â)2σ̂z, (70)

where

χK = − g4

(ωa − ωq)3
. (71)

This Hamiltonian reduces to the standard Kerr Hamiltonian,
given in Eq. (67), if we can assume that the qubit remains in one
and the same state during the system evolution, as discussed
above in Sec. V C 2. More general derivations for multiple
resonator modes and a multilevel atom in the dispersive regime
have shown how both Kerr and cross-Kerr effects can be real-
ized [71,72]. In particular, Ref. [72] demonstrates clearly how
an atom coupled to two resonators in the dispersive regime via
a general coupling like Eq. (6) gives rise to the Kerr and cross-
Kerr effects due to fourth-order processes involving virtual
photons in the same way as all other analogs of nonlinear optics
discussed previously in this article. We note that these Kerr and
cross-Kerr terms, just like in Eqs. (65) and (70), involve sums
over the diagonal qubit operators |g〉〈g| and |e〉〈e|.

Based on the above theory, experiments in circuit QED
have recently demonstrated both the single-photon Kerr [73]
and cross-Kerr effects [74]. A large cross-Kerr effect for
propagating photons interacting with a three-level artificial
atom in circuit QED has also been studied theoretically
[75] and experimentally [76]. However, to the best of our

knowledge, no such experimental demonstrations exists for the
Pockels effect and we have been unable to find a mechanism
for engineering it in the setups we consider.

VI. EXPERIMENTAL FEASIBILITY

In this section, we evaluate the experimental feasibility of
our proposed analogs of nonlinear-optics processes. In most of
these analogs, the process consists of transferring population
from an initial state |i〉 to a final state |f 〉. The time scale for
this process is given by the inverse of the effective coupling
strength geff for the interaction that connects the two states [see
Eq. (9)]. For the transfer to be successful, geff must exceed the
relevant decoherence rates in the system: qubit decoherence
(relaxation and dephasing) at a rate γ and resonator losses at a
rate κ . To observe energy-level anticrossings in spectroscopy,
revealing the effective coupling between |i〉 and |f 〉, it is suffi-
cient that geff > κ,γ ; for the transfer to be essentially determin-
istic, i.e., have close to unit efficiency, geff 
 κ,γ is required.
Note that when either |i〉 or |f 〉 contain multiple excitations,
the relevant loss rates that geff should be compared to are the
total loss rates for those states. For example, in the case of nth-
subharmonic generation through multiphoton Rabi oscillations
with |i〉 = |0,e〉 and |f 〉 = |n,g〉, discussed in Sec. V A 2, the
effective coupling must be compared to γ and nκ .

Although USC has been realized in several solid-state sys-
tems, as noted in Sec. I, we limit the discussion here to circuit
QED, where we believe the proposed experiments are easiest
to implement. The experimental demonstrations of USC with
qubits coupled to resonators in circuit QED have all used
flux qubits, coupled either to lumped-element LC oscillators
[19,31,36] or transmission-line resonators [20,29,32]. In such
circuit QED experiments, qubit and resonator frequencies are
usually in the range ωq,ωa ∼ 2π × 1–10 GHz. Recent experi-
mental work on flux qubits has demonstrated γ on the order of
2π × 10 kHz [77,78], and an improvement of the flux qubit de-
sign [79], which comes at the price of reduced anharmonicity,
has been shown to reduce γ even further [80]. Superconducting
transmon qubits, which have lower anharmonicity than flux
qubits, can have γ approaching 2π × 1 kHz [81,82]. For
transmission-line resonators, quality factors Q = ωa/κ on the
order of 106 have been demonstrated [83]. Recently, supercon-
ducting qubits are often coupled to 3D cavities, where the qual-
ity factor can be another two orders of magnitude larger [84].

Taken together, the numbers above indicate that γ,κ ∼
10−6ωa can be reached in state-of-the-art circuit-QED exper-
iments. Regarding the coupling strength, Refs. [19,20,29,32]
have reached g � 0.1ωa and Refs. [31,36] demonstrated g ∼
ωa . Using the lower of these values as a very conservative
estimate, we calculate most of the effective coupling strengths
derived in Secs. III and IV. The results are given in Table I.
We see that even with this conservative estimate for the bare
coupling, and even though processes up to fourth order are
considered, the effective coupling strengths are orders of
magnitude larger than the decoherence rates that have been
demonstrated in experiments. If such low decoherence rates
would be hard to reach, the effective coupling can instead be
much strengthened by a modest increase of the bare coupling.

We note that already one of the first circuit QED ex-
periments to reach the USC regime, Ref. [20], achieved

063849-15



KOCKUM, MIRANOWICZ, MACRÌ, SAVASTA, AND NORI PHYSICAL REVIEW A 95, 063849 (2017)

TABLE I. Conservative estimates of the effective coupling strengths geff for most of the analogs of three- and four-wave mixing processes
given in this article. In each case, we have assumed the bare coupling g to be 10% of the lowest transition frequency in the setup. The effective
coupling is given in units of that transition frequency. We note that the parameter θ can be chosen quite freely in experiments with flux qubits.

Process Parameters Equation Effective coupling |geff |
|1,0,g〉 ↔ |0,2,g〉 ωa = 2ωb, ωq = 1.5ωb, ga/b = 0.1ωb, θ = π/6 Eq. (21) 3 × 10−3ωb

|0,e〉 ↔ |2,g〉 ωq = 2ωa , g = 0.1ωa , θ = π/4 Eq. (24) 1 × 10−2ωa

|1,g,g〉 ↔ |0,e,e〉 ωa = 2ωq , g = 0.1ωq , θ = π/6 Eq. (28) 1 × 10−3ωq

|1,0,g〉 ↔ |0,1,e〉 ωa = 3ωq , ωb = 2ωq , ga/b = 0.1ωq , θ = π/4 Eq. (35) 2 × 10−3ωq

|1,0,g〉 ↔ |0,3,g〉 ωa = 3ωb, ωq = 2ωb, ga/b = 0.1ωb Eq. (42) 1 × 10−4ωb

|0,e〉 ↔ |3,g〉 ωq = 3ωa , g = 0.1ωa Eq. (44) 6 × 10−4ωa

|0,2,g〉 ↔ |1,0,e〉 ωa = 3ωq , ωb = 2ωq , ga/b = 0.1ωq Eq. (52) 7 × 10−4ωq

|0,2,e〉 ↔ |1,0,g〉 ωa = 5ωq , ωb = 2ωq , ga/b = 0.1ωq Eq. (56) 2 × 10−4ωq

sufficiently small decoherence to clearly observe an energy-
level anticrossing due to effective coupling between states
|1,0,g〉 and |0,1,e〉. Furthermore, as noted in Sec. V D 2, the
single-photon Kerr and cross-Kerr effects, even though these
are fourth-order processes, have also been experimentally
demonstrated in circuit QED using transmon qubits and 3D
cavities [73,74]. In the case of the Kerr effect, the Kerr
coefficient was χK = 2π × 325 kHz, much larger than γ,κ ∼
2π × 10–20 kHz [73].

From the estimates in this section, we conclude that most, if
not all, of the nonlinear-optics analogs proposed in this article
can be implemented with existing experimental technology
in circuit QED. It appears that the effective coupling strengths
can be orders of magnitude larger than the system decoherence
rates, ensuring that the relevant processes can reach close to
unit efficiency.

VII. SUMMARY AND OUTLOOK

We have shown how analogs of nonlinear optics can be
realized in systems where one or more qubits are coupled to
one or more resonator modes. These analogous processes are
all based on the light-matter interaction between a qubit and a
photonic mode described by the quantum Rabi Hamiltonian or
some generalized version thereof. This interaction allows the
number of excitations in the system to change, which makes
possible the creation and annihilation of virtual photons and
qubit excitations. In this way, initial and final states of the
nonlinear-optics processes can be connected via a number of
virtual transitions, creating an effective deterministic coupling
between the states. The effective coupling decreases when the
number of intermediate transition steps increases. However,
with the recent experimental demonstrations of USC in a
variety of systems, circuit QED in particular, it should now be
possible to observe many of these nonlinear-optics phenomena
in new settings. When the light-matter coupling becomes
ultrastrong, even the weaker effective coupling can be larger
than the relevant decoherence rates in the system.

For the case of three-wave mixing, we have shown how
analogs can be constructed for sum- and difference-frequency

generation, including the special cases of second-harmonic
generation (up-conversion) and second-subharmonic gener-
ation (down-conversion) as well as Stokes and anti-Stokes
spontaneous and stimulated Raman scattering. A summary of
all the three-wave-mixing processes and their analogs is given
in Table II.

Similarly, for the case of four-wave mixing, we have shown
how analogs can be realized for all types of nondegenerate
and degenerate mixing, including third-harmonic and third-
subharmonic generation as well as all forms of hyper-Raman
scattering. We provide a summary of all the four-wave-mixing
processes and their analogs in Table III. Finally, we have also
shown that analogs working according to the same principle are
available for higher-harmonic and -subharmonic generation,
multiphoton absorption, parametric processes, and the Kerr
and cross-Kerr effects.

It is noteworthy that some of the setups we consider,
especially the relatively simple setups of a single qubit coupled
to one or two resonators, can be used to realize many analogs
of nonlinear-optics phenomena in one universal system. It is
also remarkable that these analogs work at unit efficiency with
a minimal number of photons without any need for external
drives, which is not the case for conventional nonlinear optics.
While some processes that we discuss here have been inves-
tigated in previous and concurrent publications, we have now
provided a unified and clear picture of how and why nonlinear-
optics analogs can be constructed in these setups. One
important difference to conventional nonlinear optics is that we
are able to suppress lower-order processes by making the final
state of such processes far off-resonant with the initial state.

There are many directions for future work following this
article. They include deriving effective Hamiltonians for more
parametric processes based on the setups discussed here and
finding an analog of the Pockels effect. An interesting way to
take the ideas of the current work one step further is to consider
analogs of nonlinear-optics processes where the excitations are
exchanged only between atoms and any resonators in the setups
are only excited virtually, which is treated in a concurrent
publication [56]. We also see a great potential for using the
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processes described here to create various superposition states
with applications in quantum information processing, and
we expect that adding the capabilities of nonlinear optics
at the single-photon level to current quantum technology
will spawn many more important applications. Considering
an experimental implementation, we have shown that most,
if not all, of the processes discussed here can be realized
with currently available technology in circuit QED. Given
that ultrastrong light-matter coupling has been demonstrated
in several other solid-state systems as well, the processes
proposed here could potentially also be implemented in other
setups in the future.
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APPENDIX A: CLASSICAL DESCRIPTION
OF NONLINEAR OPTICAL PHENOMENA

Here we give a few examples showing how mixing of
classical waves can be explained classically by applying the
principal relation of nonlinear optics,

P = ε0(χ (1)E + χ (2)E2 + χ (3)E3 + . . .)

= P(1) + P(2) + P(3) + . . . . (A1)

In this pedagogical introduction to nonlinear optics, based
on Ref. [1], we give the classical explanations of a few
standard wave-mixing processes by applying the lowest-order
required nonlinear polarization P(n) and the corresponding
nonlinear susceptibility χ (n). Our examples include the linear
(Pockels) and quadratic (Kerr) electro-optical phenomena.
Second-harmonic generation in a χ (2) medium was already
treated in Sec. II A.

1. Wave mixing in a χ (2) medium and the Pockels effect

Assume that two monochromatic scalar electric waves,
E1(t) = E10 cos(ω1t) and E2(t) = E20 cos(ω2t), are applied
to a medium described by the second-order frequency-
independent susceptibility χ (2). Then, the induced second-
order polarization P (2) is given by

P (2) = ε0χ
(2)E2 = ε0χ

(2){E10 cos(ω1t) + E20 cos(ω2t)}2

= ε0χ
(2)

{
E2

10 cos2(ω1t) + E2
20 cos2(ω2t)

+ 2E10E20 cos(ω1t) cos(ω2t)
}

= 1

2
ε0χ

(2)
{
E2

10[1 + cos(2ω1t)] + E2
20[1 + cos(2ω2t)]

+ 2E10E20(cos[(ω1 − ω2)t] + cos[(ω1 + ω2)t])
}

= 1

2
ε0χ

(2)
{(

E2
10 + E2

20

) + E2
10 cos(2ω1t)

+E2
20 cos(2ω2t) + 2E10E20 cos[(ω1 − ω2)t]

+ 2E10E20 cos[(ω1 + ω2)t]
}

≡ P
(2)
0 + P

(2)
2ω1

+ P
(2)
2ω2

+ P
(2)
ω1−ω2

+ P
(2)
ω1+ω2

, (A2)

where the induced second-order nonlinear polarization P (2)
ωx

,
oscillating with frequency ωx = 0,2ω1, . . ., is defined by the
corresponding ωx-dependent term in the second-last equation
in Eq. (A2).

We see that this process can be interpreted as mixing of two
waves with frequencies ω1 and ω2. Alternatively, in a general
case, this effect can be interpreted as six-wave mixing if we
include also the four output (mixed) frequencies 2ω1, 2ω2,
|ω1 − ω2|, and ω1 + ω2. In a quantum description, the latter
interpretation is conventionally applied.

In a special case, let us assume that ω2 = 0; then E2 =
E20 = constant, and

P
(2)
ω1−ω2

+ P
(2)
ω1+ω2

= 2P (2)
ω1

= ε0(2χ (2)E20)E1(t). (A3)

We see that the effective first-order-like susceptibility χ
(1)
eff ≡

2χ (2)E20 is proportional to the amplitude of the constant
electric field. This phenomenon is usually referred to as the
(linear) Pockels effect or linear electro-optical effect.

A few comments can be made on the momentum (and
energy) conservation when fields of frequencies ω1 and ω2

are mixed to generate fields with sum (ω+ = ω1 + ω2) and
difference (ω− = |ω1 − ω2|) frequencies. These new fields can
be amplified depending on which momentum condition k+ =
k1 + k2 or k− = k1 − k2 is satisfied for the corresponding
wave vectors kj . Usually only one of these conditions is
satisfied. If both conditions are fulfilled, then the wave mixing
has a local character. For example, if ω1 = ω2 ≡ ω and
k1 = k2 ≡ k, then ω+ = 2ω, ω− = 0, k+ = 2k, and k− = 0.

2. Third-harmonic generation in a χ (3) medium

Assume that a monochromatic electric wave E(t) =
E0 cos(ωt) is applied to a medium described solely by a
third-order susceptibility χ (3). Then we observe

P (3) = ε0χ
(3)E3 = ε0χ

(3)E3
0 cos3(ωt)

= ε0χ
(3)E3

0

[
3 cos(ωt) + cos(3ωt)

4

]

= 3

4
ε0χ

(3)E3
0 cos(ωt) + 1

4
ε0χ

(3)E3
0 cos(3ωt)

= P (3)
ω + P

(3)
3ω , (A4)

where the term P
(3)
3ω describes the induced polarization,

oscillating with triple the frequency of the input field, which
can be interpreted as third-harmonic generation.

3. Wave mixing in a χ (3) medium and the Kerr effect

Assume that two monochromatic electric beams, E1(t) =
E10 cos(ω1t) and E2(t) = E20 cos(ω2t), are applied to a
medium described by a third-order susceptibility χ (3), and that
χ (3) is frequency independent. Then the third-order induced
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polarization P (3) of the medium is given by

P (3) = ε0χ
(3)E3 = ε0χ

(3)[E10 cos(ω1t) + E20 cos(ω2t)]
3

= P (3)
ω1

+ P (3)
ω2

+ P
(3)
3ω1

+ P
(3)
3ω2

+ P
(3)
2ω1−ω2

+P
(3)
2ω1+ω2

+ P
(3)
2ω2−ω1

+ P
(3)
2ω2+ω1

, (A5)

where we do not give (except two terms) an explicit form of
these induced third-order nonlinear polarizations P (3)

ωx
, but only

indicate their frequencies ωx .
Analogously to wave mixing in a χ (2) medium, one can

interpret this process as mixing of two waves with frequencies
ω1 and ω2. Alternatively, this effect, in a general case, can
be interpreted as mixing of eight waves (including the output
waves) with frequencies ω1, ω2, 3ω1, 3ω2, |2ω1 ± ω2|, and
|2ω2 ± ω1|. In a quantum description, the latter convention is
usually applied.

In a special case, we have

P
(3)
2ω2±ω1

= 3
4ε0χ

(3)E2
20E10 cos[(2ω2 ± ω1)t]. (A6)

If we assume that ω2 = 0, we obtain

P
(3)
2ω2±ω1

= 3
4ε0χ

(3)E2
20E10 cos(ω1t) ≡ ε0χ

(1)
eff E1(t). (A7)

Thus, the effective first-order-like susceptibility χ
(1)
eff ≡

3
4χ (3)E2

20 is proportional to the square of the constant electric
field E2(t) = E20. This is a standard classical explanation of
the Kerr effect, which is also referred to as the quadratic
electro-optical effect.

APPENDIX B: PERTURBATION THEORY

In this Appendix, we show how to derive the expression
for the effective coupling given in Eq. (10). In all processes
we considered in Secs. III and IV, there is an initial state |i〉
and a final state |f 〉 connected by the effective coupling in an
effective interaction Hamiltonian

Ĥ eff
int = geff|f 〉〈i| + H.c. (B1)

As stated in Sec. II B, if the shortest path between |i〉 and |f 〉
is an nth-order process, the effective coupling geff is given to
lowest order by

geff =
∑

j1,j2,...,jn−1

Vfjn−1 . . . Vj2j1Vj1i

(Ei − Ej1 )(Ei − Ej2 ) . . . (Ei − Ejn−1 )
,

(B2)
where the sum goes over all virtual transitions forming n-step
paths between |i〉 and |f 〉. The formula in Eq. (B2) can be
derived by considering the Dyson series of the time evolution
operator in the interaction picture,

ÛI (t,t0) = 1 − i

∫ t

t0

dt ′Ĥint(t
′)

+ (−i)2
∫ t

t0

dt ′
∫ t ′

t0

dt ′′Ĥint(t
′)Ĥint(t

′′) + . . . ,

(B3)

when the interaction Hamiltonian Ĥint is time-independent.
Assuming the system starts in the eigenstate |i〉 of the
noninteracting Hamiltonian at time t0, the probability of

the transition |i〉 → |f 〉 is given to lowest (nth) order
by the nth-order term in Eq. (B3), U

(n)
I (t,t0), through

P (|i〉 → |f 〉)

= |〈f |Û (n)
I (t,t0)|i〉|2 = (1 − ei(Ef −Ei ))2

(Ef − Ei)2

×
∣∣∣∣∣∣

∑
j1,j2,...,jn−1

Vfjn−1 . . . Vj2j1Vj1i

(Ei − Ej1 )(Ei − Ej2 ) . . . (Ei − Ejn−1 )

∣∣∣∣∣∣
2

,

(B4)

which in the limit t → ∞ gives the transition rate

W(|i〉→|f 〉) = 2πδ(Ef − Ei)

×
∣∣∣∣∣∣

∑
j1,j2,...,jn−1

Vfjn−1 . . . Vj2j1Vj1i

(Ei − Ej1 )(Ei − Ej2 ) . . . (Ei − Ejn−1 )

∣∣∣∣∣∣
2

.

(B5)

This is just Fermi’s golden rule, showing that the effective
Hamiltonian in Eq. (B1) with the coupling strength geff given
by Eq. (10) gives the correct coupling matrix element between
|i〉 and |f 〉.

APPENDIX C: FOUR-WAVE MIXING WITH TWO
DEGENERATE FREQUENCIES

For completeness, we here show, in Fig. 10, schematic
representations of the four degenerate four-wave-mixing pro-
cesses where two frequencies are degenerate (omitted from
Fig. 5). Analogs for these processes can be constructed in the
same way as for the other four-wave mixing processes treated
in Sec. IV and listed in Table III. The most obvious setup
is three resonators all coupled to a single qubit. In that case,
the process |2,0,0,g〉 ↔ |0,1,1,g〉 corresponds to the type-I
mixing shown in the figure. Similarly, |2,1,0,g〉 ↔ |0,0,1,e〉
realizes analogs of the pictured type-II (→) and type-III (←)
processes, respectively.

FIG. 10. Schematic representations (Feynman-
like diagrams) of the four-wave-mixing
processes with two degenerate frequencies. Going clockwise
from the upper left corner, they are as follows: type-I four-wave
mixing with the frequencies of the two incoming signals degenerate
(2ω1 = ω2 + ω3), type-II four-wave mixing with the frequencies of
two of the incoming signals degenerate (2ω1 + ω2 = ω3), type-III
four-wave mixing with the frequencies of two of the outgoing signals
degenerate (ω1 = 2ω2 + ω3), and type-I four-wave mixing with the
frequencies of the two outgoing signals degenerate (ω1 + ω2 = 2ω3).
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Just as for the nondegenerate mixing processes discussed
in Secs. III A 2 and IV A 2, additional setups become possible
if we allow at least one of the excitations to be hosted
in a qubit. With two resonators coupled to a single qubit,
the two type-I mixing processes shown in Fig. 10 could be
emulated by |2,0,g〉 ↔ |0,1,e〉, which we recognize as the
analog of type-I hyper-Raman scattering already treated in

Sec. IV C 2. The pictured type-II and type-III mixing could
similarly be emulated by, e.g., the process |2,1,g〉 ↔ |0,0,e〉.
In the same way, a setup with a single resonator coupled
to two qubits could realize analogs of the pictured type-I
processes through the transition |2,g,g〉 ↔ |0,e,e〉, and of the
pictured type-II and type-III processes through the transition
|2,e,g〉 ↔ |0,g,e〉.
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[58] D. E. Chang, V. Vuletić, and M. D. Lukin, Quantum nonlinear
optics—photon by photon, Nat. Photonics 8, 685 (2014).

[59] B. Peropadre, G. G. Guerreschi, J. Huh, and A. Aspuru-Guzik,
Proposal for Microwave Boson Sampling, Phys. Rev. Lett. 117,
140505 (2016).

[60] E. T. Jaynes and F. W. Cummings, Comparison of quantum and
semiclassical radiation theories with application to the beam
maser, Proc. IEEE 51, 89 (1963).

[61] T. P. Orlando, J. E. Mooij, L. Tian, C. H. van der Wal, L. S.
Levitov, S. Lloyd, and J. J. Mazo, Superconducting persistent-
current qubit, Phys. Rev. B 60, 15398 (1999).

[62] T. Lindström, C. H. Webster, J. E. Healey, M. S. Colclough, C.
M. Muirhead, and A. Y. Tzalenchuk, Circuit QED with a flux
qubit strongly coupled to a coplanar transmission line resonator,
Supercond. Sci. Technol. 20, 814 (2007).

[63] F. Deppe, M. Mariantoni, E. P. Menzel, A. Marx, S. Saito, K.
Kakuyanagi, H. Tanaka, T. Meno, K. Semba, H. Takayanagi,
E. Solano, and R. Gross, Two-photon probe of the Jaynes-
Cummings model and controlled symmetry breaking in circuit
QED, Nat. Phys. 4, 686 (2008).

[64] J. Bourassa, J. M. Gambetta, A. A. Abdumalikov, O. Astafiev, Y.
Nakamura, and A. Blais, Ultrastrong coupling regime of cavity
QED with phase-biased flux qubits, Phys. Rev. A 80, 032109
(2009).

[65] K. Moon and S. M. Girvin, Theory of Microwave Parametric
Down-Conversion and Squeezing Using Circuit QED, Phys.
Rev. Lett. 95, 140504 (2005).

[66] J. R. Johansson, P. D. Nation, and F. Nori, QuTiP: An open-
source Python framework for the dynamics of open quantum
systems, Comput. Phys. Commun. 183, 1760 (2012).

063849-22

http://arxiv.org/abs/arXiv:1602.01584
https://doi.org/10.1103/PhysRevLett.117.153601
https://doi.org/10.1103/PhysRevLett.117.153601
https://doi.org/10.1103/PhysRevLett.117.153601
https://doi.org/10.1103/PhysRevLett.117.153601
http://arxiv.org/abs/arXiv:1610.10065
http://arxiv.org/abs/arXiv:1611.08404
https://doi.org/10.1103/PhysRevA.95.053824
https://doi.org/10.1103/PhysRevA.95.053824
https://doi.org/10.1103/PhysRevA.95.053824
https://doi.org/10.1103/PhysRevA.95.053824
https://doi.org/10.1038/nature02851
https://doi.org/10.1038/nature02851
https://doi.org/10.1038/nature02851
https://doi.org/10.1038/nature02851
https://doi.org/10.1103/PhysRevA.69.062320
https://doi.org/10.1103/PhysRevA.69.062320
https://doi.org/10.1103/PhysRevA.69.062320
https://doi.org/10.1103/PhysRevA.69.062320
https://doi.org/10.1103/RevModPhys.85.623
https://doi.org/10.1103/RevModPhys.85.623
https://doi.org/10.1103/RevModPhys.85.623
https://doi.org/10.1103/RevModPhys.85.623
https://doi.org/10.1103/PhysRevLett.98.103602
https://doi.org/10.1103/PhysRevLett.98.103602
https://doi.org/10.1103/PhysRevLett.98.103602
https://doi.org/10.1103/PhysRevLett.98.103602
https://doi.org/10.1103/PhysRevA.81.042311
https://doi.org/10.1103/PhysRevA.81.042311
https://doi.org/10.1103/PhysRevA.81.042311
https://doi.org/10.1103/PhysRevA.81.042311
https://doi.org/10.1103/PhysRevA.82.022119
https://doi.org/10.1103/PhysRevA.82.022119
https://doi.org/10.1103/PhysRevA.82.022119
https://doi.org/10.1103/PhysRevA.82.022119
https://doi.org/10.1103/PhysRevLett.105.263603
https://doi.org/10.1103/PhysRevLett.105.263603
https://doi.org/10.1103/PhysRevLett.105.263603
https://doi.org/10.1103/PhysRevLett.105.263603
https://doi.org/10.1103/PhysRevA.84.043832
https://doi.org/10.1103/PhysRevA.84.043832
https://doi.org/10.1103/PhysRevA.84.043832
https://doi.org/10.1103/PhysRevA.84.043832
https://doi.org/10.1103/PhysRevLett.109.193602
https://doi.org/10.1103/PhysRevLett.109.193602
https://doi.org/10.1103/PhysRevLett.109.193602
https://doi.org/10.1103/PhysRevLett.109.193602
https://doi.org/10.1103/PhysRevLett.110.243601
https://doi.org/10.1103/PhysRevLett.110.243601
https://doi.org/10.1103/PhysRevLett.110.243601
https://doi.org/10.1103/PhysRevLett.110.243601
https://doi.org/10.1103/PhysRevLett.112.016401
https://doi.org/10.1103/PhysRevLett.112.016401
https://doi.org/10.1103/PhysRevLett.112.016401
https://doi.org/10.1103/PhysRevLett.112.016401
https://doi.org/10.1103/PhysRevLett.113.263604
https://doi.org/10.1103/PhysRevLett.113.263604
https://doi.org/10.1103/PhysRevLett.113.263604
https://doi.org/10.1103/PhysRevLett.113.263604
https://doi.org/10.1103/PhysRevLett.114.183601
https://doi.org/10.1103/PhysRevLett.114.183601
https://doi.org/10.1103/PhysRevLett.114.183601
https://doi.org/10.1103/PhysRevLett.114.183601
https://doi.org/10.1103/PhysRevLett.116.113601
https://doi.org/10.1103/PhysRevLett.116.113601
https://doi.org/10.1103/PhysRevLett.116.113601
https://doi.org/10.1103/PhysRevLett.116.113601
https://doi.org/10.1088/1367-2630/aa6cd7
https://doi.org/10.1088/1367-2630/aa6cd7
https://doi.org/10.1088/1367-2630/aa6cd7
https://doi.org/10.1088/1367-2630/aa6cd7
https://doi.org/10.1103/PhysRevA.92.023842
https://doi.org/10.1103/PhysRevA.92.023842
https://doi.org/10.1103/PhysRevA.92.023842
https://doi.org/10.1103/PhysRevA.92.023842
https://doi.org/10.1103/PhysRevA.92.063830
https://doi.org/10.1103/PhysRevA.92.063830
https://doi.org/10.1103/PhysRevA.92.063830
https://doi.org/10.1103/PhysRevA.92.063830
https://doi.org/10.1103/PhysRevLett.117.043601
https://doi.org/10.1103/PhysRevLett.117.043601
https://doi.org/10.1103/PhysRevLett.117.043601
https://doi.org/10.1103/PhysRevLett.117.043601
http://arxiv.org/abs/arXiv:1701.07973
http://arxiv.org/abs/arXiv:1702.00660
https://doi.org/10.1126/science.1231930
https://doi.org/10.1126/science.1231930
https://doi.org/10.1126/science.1231930
https://doi.org/10.1126/science.1231930
https://doi.org/10.1038/nphoton.2014.192
https://doi.org/10.1038/nphoton.2014.192
https://doi.org/10.1038/nphoton.2014.192
https://doi.org/10.1038/nphoton.2014.192
https://doi.org/10.1103/PhysRevLett.117.140505
https://doi.org/10.1103/PhysRevLett.117.140505
https://doi.org/10.1103/PhysRevLett.117.140505
https://doi.org/10.1103/PhysRevLett.117.140505
https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1103/PhysRevB.60.15398
https://doi.org/10.1103/PhysRevB.60.15398
https://doi.org/10.1103/PhysRevB.60.15398
https://doi.org/10.1103/PhysRevB.60.15398
https://doi.org/10.1088/0953-2048/20/8/016
https://doi.org/10.1088/0953-2048/20/8/016
https://doi.org/10.1088/0953-2048/20/8/016
https://doi.org/10.1088/0953-2048/20/8/016
https://doi.org/10.1038/nphys1016
https://doi.org/10.1038/nphys1016
https://doi.org/10.1038/nphys1016
https://doi.org/10.1038/nphys1016
https://doi.org/10.1103/PhysRevA.80.032109
https://doi.org/10.1103/PhysRevA.80.032109
https://doi.org/10.1103/PhysRevA.80.032109
https://doi.org/10.1103/PhysRevA.80.032109
https://doi.org/10.1103/PhysRevLett.95.140504
https://doi.org/10.1103/PhysRevLett.95.140504
https://doi.org/10.1103/PhysRevLett.95.140504
https://doi.org/10.1103/PhysRevLett.95.140504
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.02.021


DETERMINISTIC QUANTUM NONLINEAR OPTICS WITH . . . PHYSICAL REVIEW A 95, 063849 (2017)

[67] J. R. Johansson, P. D. Nation, and F. Nori, QuTiP 2: A Python
framework for the dynamics of open quantum systems, Comput.
Phys. Commun. 184, 1234 (2013).

[68] A. Miranowicz and S. Kielich, Quantum-statistical theory of
Raman scattering processes, Adv. Chem. Phys. 85(III), 531
(1994).

[69] M. Göppert-Mayer, Über elementarakte mit zwei quantensprün-
gen, Ann. Phys. 401, 273 (1931).

[70] M. Boissonneault, J. M. Gambetta, and A. Blais, Dispersive
regime of circuit QED: Photon-dependent qubit dephasing and
relaxation rates, Phys. Rev. A 79, 013819 (2009).

[71] S. E. Nigg, H. Paik, B. Vlastakis, G. Kirchmair, S. Shankar, L.
Frunzio, M. H. Devoret, R. J. Schoelkopf, and S. M. Girvin,
Black-Box Superconducting Circuit Quantization, Phys. Rev.
Lett. 108, 240502 (2012).

[72] G. Zhu, D. G. Ferguson, V. E. Manucharyan, and J. Koch, Circuit
QED with fluxonium qubits: Theory of the dispersive regime,
Phys. Rev. B 87, 024510 (2013).

[73] G. Kirchmair, B. Vlastakis, Z. Leghtas, S. E. Nigg, H. Paik,
E. Ginossar, M. Mirrahimi, L. Frunzio, S. M. Girvin, and R. J.
Schoelkopf, Observation of quantum state collapse and revival
due to the single-photon Kerr effect, Nature (London) 495, 205
(2013).

[74] E. T. Holland, B. Vlastakis, R. W. Heeres, M. J. Reagor, U.
Vool, Z. Leghtas, L. Frunzio, G. Kirchmair, M. H. Devoret,
M. Mirrahimi, and R. J. Schoelkopf, Single-Photon-Resolved
Cross-Kerr Interaction for Autonomous Stabilization of Photon-
Number States, Phys. Rev. Lett. 115, 180501 (2015).

[75] B. Fan, A. F. Kockum, J. Combes, G. Johansson, I.-C. Hoi, C. M.
Wilson, P. Delsing, G. J. Milburn, and T. M. Stace, Breakdown
of the Cross-Kerr Scheme for Photon Counting, Phys. Rev. Lett.
110, 053601 (2013).

[76] I.-C. Hoi, A. F. Kockum, T. Palomaki, T. M. Stace, B. Fan,
L. Tornberg, S. R. Sathyamoorthy, G. Johansson, P. Delsing,
and C. M. Wilson, Giant Cross-Kerr Effect for Propagating
Microwaves Induced by an Artificial Atom, Phys. Rev. Lett.
111, 053601 (2013).

[77] M. Stern, G. Catelani, Y. Kubo, C. Grezes, A. Bienfait, D. Vion,
D. Esteve, and P. Bertet, Flux Qubits with Long Coherence
Times for Hybrid Quantum Circuits, Phys. Rev. Lett. 113,
123601 (2014).

[78] J.-L. Orgiazzi, C. Deng, D. Layden, R. Marchildon, F. Ki-
tapli, F. Shen, M. Bal, F. R. Ong, and A. Lupascu, Flux
qubits in a planar circuit quantum electrodynamics architecture:
Quantum control and decoherence, Phys. Rev. B 93, 104518
(2016).

[79] J. Q. You, X. Hu, S. Ashhab, and F. Nori, Low-decoherence flux
qubit, Phys. Rev. B 75, 140515 (2007).

[80] F. Yan, S. Gustavsson, A. Kamal, J. Birenbaum, A. P. Sears,
D. Hover, T. J. Gudmundsen, D. Rosenberg, G. Samach, S.
Weber, J. L. Yoder, T. P. Orlando, J. Clarke, A. J. Kerman, and
W. D. Oliver, The flux qubit revisited to enhance coherence and
reproducibility, Nat. Commun. 7, 12964 (2016).

[81] C. Rigetti, J. M. Gambetta, S. Poletto, B. L. T. Plourde, J. M.
Chow, A. D. Córcoles, J. A. Smolin, S. T. Merkel, J. R. Rozen,
G. A. Keefe, M. B. Rothwell, M. B. Ketchen, and M. Steffen,
Superconducting qubit in a waveguide cavity with a coherence
time approaching 0.1 ms, Phys. Rev. B 86, 100506 (2012).

[82] X. Y. Jin, A. Kamal, A. P. Sears, T. Gudmundsen, D. Hover,
J. Miloshi, R. Slattery, F. Yan, J. Yoder, T. P. Orlando, S.
Gustavsson, and W. D. Oliver, Thermal and Residual Excited-
State Population in a 3D Transmon Qubit, Phys. Rev. Lett. 114,
240501 (2015).

[83] A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L.
Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley,
D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J.
Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, Planar
superconducting resonators with internal quality factors above
one million, Appl. Phys. Lett. 100, 113510 (2012).

[84] M. Reagor, H. Paik, G. Catelani, L. Sun, C. Axline, E. Holland,
I. M. Pop, N. A. Masluk, T. Brecht, L. Frunzio, M. H. Devoret, L.
Glazman, and R. J. Schoelkopf, Reaching 10 ms single photon
lifetimes for superconducting aluminum cavities, Appl. Phys.
Lett. 102, 192604 (2013).

063849-23

https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1002/SERIES2007
https://doi.org/10.1002/SERIES2007
https://doi.org/10.1002/SERIES2007
https://doi.org/10.1002/SERIES2007
https://doi.org/10.1002/andp.19314010303
https://doi.org/10.1002/andp.19314010303
https://doi.org/10.1002/andp.19314010303
https://doi.org/10.1002/andp.19314010303
https://doi.org/10.1103/PhysRevA.79.013819
https://doi.org/10.1103/PhysRevA.79.013819
https://doi.org/10.1103/PhysRevA.79.013819
https://doi.org/10.1103/PhysRevA.79.013819
https://doi.org/10.1103/PhysRevLett.108.240502
https://doi.org/10.1103/PhysRevLett.108.240502
https://doi.org/10.1103/PhysRevLett.108.240502
https://doi.org/10.1103/PhysRevLett.108.240502
https://doi.org/10.1103/PhysRevB.87.024510
https://doi.org/10.1103/PhysRevB.87.024510
https://doi.org/10.1103/PhysRevB.87.024510
https://doi.org/10.1103/PhysRevB.87.024510
https://doi.org/10.1038/nature11902
https://doi.org/10.1038/nature11902
https://doi.org/10.1038/nature11902
https://doi.org/10.1038/nature11902
https://doi.org/10.1103/PhysRevLett.115.180501
https://doi.org/10.1103/PhysRevLett.115.180501
https://doi.org/10.1103/PhysRevLett.115.180501
https://doi.org/10.1103/PhysRevLett.115.180501
https://doi.org/10.1103/PhysRevLett.110.053601
https://doi.org/10.1103/PhysRevLett.110.053601
https://doi.org/10.1103/PhysRevLett.110.053601
https://doi.org/10.1103/PhysRevLett.110.053601
https://doi.org/10.1103/PhysRevLett.111.053601
https://doi.org/10.1103/PhysRevLett.111.053601
https://doi.org/10.1103/PhysRevLett.111.053601
https://doi.org/10.1103/PhysRevLett.111.053601
https://doi.org/10.1103/PhysRevLett.113.123601
https://doi.org/10.1103/PhysRevLett.113.123601
https://doi.org/10.1103/PhysRevLett.113.123601
https://doi.org/10.1103/PhysRevLett.113.123601
https://doi.org/10.1103/PhysRevB.93.104518
https://doi.org/10.1103/PhysRevB.93.104518
https://doi.org/10.1103/PhysRevB.93.104518
https://doi.org/10.1103/PhysRevB.93.104518
https://doi.org/10.1103/PhysRevB.75.140515
https://doi.org/10.1103/PhysRevB.75.140515
https://doi.org/10.1103/PhysRevB.75.140515
https://doi.org/10.1103/PhysRevB.75.140515
https://doi.org/10.1038/ncomms12964
https://doi.org/10.1038/ncomms12964
https://doi.org/10.1038/ncomms12964
https://doi.org/10.1038/ncomms12964
https://doi.org/10.1103/PhysRevB.86.100506
https://doi.org/10.1103/PhysRevB.86.100506
https://doi.org/10.1103/PhysRevB.86.100506
https://doi.org/10.1103/PhysRevB.86.100506
https://doi.org/10.1103/PhysRevLett.114.240501
https://doi.org/10.1103/PhysRevLett.114.240501
https://doi.org/10.1103/PhysRevLett.114.240501
https://doi.org/10.1103/PhysRevLett.114.240501
https://doi.org/10.1063/1.3693409
https://doi.org/10.1063/1.3693409
https://doi.org/10.1063/1.3693409
https://doi.org/10.1063/1.3693409
https://doi.org/10.1063/1.4807015
https://doi.org/10.1063/1.4807015
https://doi.org/10.1063/1.4807015
https://doi.org/10.1063/1.4807015



