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Artificial gauge field for a light ray
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An optical ray equation is derived for a trajectory in a medium with directional birefringence. The birefringence
is described as an artificial gauge field for light that gives an effective magnetic field and a Lorentz force on light.
The gauge invariance is also confirmed. This paper opens a door to realize an artificial gauge field for a light ray
in a nonreciprocal medium.
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I. INTRODUCTION

Gauge invariance is one of the fundamental principles
in physics. Intriguing phenomena have been investigated in
an electronic system such as quantum Hall effects [1] and
Aharonov-Bohm effect [2,3]. By analogy between electrons
and light, the gauge theory has given an impact to optics
[4,5]. The geometrical optics is generalized by introducing
an optical wave packet consisting of Bloch functions [6,7].
The Bloch function is regarded as a modulation of a plane
wave. The modified ray equation has some correction terms,
which represent geometrical aspects of the Bloch function in
parameter spaces such as momentum and phase spaces. A
correction term in momentum space predicted the spin Hall
effect of light [8], which was experimentally verified via weak
measurements [9]. Another correction term in phase space
gives rise to the enhanced shift of a wave packet in deformed
crystals [10–13]. All these studies are based on the concept of
Berry’s phase and relate to the gauge theory.

Following the development of these theories, several optical
systems have received considerable attention as a platform
to study artificial gauge fields [14–18]. One example is a
multiferroic material [19,20], in which a light ray bends in its
domain wall as if it was subject to the Lorentz force. However,
the gauge invariance of the effective Lorentz force has not been
shown up to now.

In this paper, we derive a gauge-invariant ray equation
for directionally birefringent media. The derived equation is
analogous to the Newtonian equation of motion for a point
charge under an electromagnetic field. Such gauge fields are
realized in magnetochiral media.

II. GAUGE FIELD FOR A LIGHT RAY

Let us consider a ray trajectory in a directionally birefrin-
gent medium. We assume that the refractive index depends on
position �r(s) and direction d�r/ds ≡ �̇r of the ray: n(�r,�̇r), where
s is the arc length of the ray. An effective Lagrangian Leff(�r,�̇r)
describing the ray is given by

Leff(�r,�̇r) = n(�r,�̇r)|�̇r| + λ(|�̇r| − 1). (1)
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Here, λ is the Lagrange multiplier calculated in the Appendix.
The Euler-Lagrange equation gives the generalized ray equa-
tion to be

d

ds

{
n
d�r
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+
(

1 − d�r
ds

d�r
ds

·
)

∂n

∂ �̇r

}
= �∇n. (2)

The second term on the left-hand side of Eq. (2) represents the
momentum variation due to the directional dependence of the
refractive index.

We introduce a directionally birefringent refractive index
described as

n(�r,�̇r) = n0(�r) + �T (�r) · �̇r, (3)

where n0(�r) is the component independent of propagating
directions. The vector �T (�r) characterizes the directional
birefringence. Substituting Eq. (3) into Eq. (2), we obtain the
following equation:

d

ds

(
n0(�r)

d�r
ds

)
= �∇n0(�r) + d�r

ds
× ( �∇ × �T (�r)). (4)

This equation has almost the same form as the Newtonian
equation of motion for a particle under an electromagnetic
field. The left-hand side corresponds to the acceleration term,
while the first and second terms on the right-hand side,
respectively, correspond to the electric and the magnetic
Lorentz forces. Compared with the particle dynamics, the
vector �T (�r) looks like vector potential, i.e., a gauge field. This
comparison leads to introducing the gauge transformation

�T (�r) → �T (�r) + �∇�(�r), (5)

where �(�r) is an arbitrary function. The effective Lagrangian
is transformed into

Leff(�r,�̇r) → Leff(�r,�̇r) + d�

ds
. (6)

Let us consider the physical meaning of the gauge degree of
freedom. Following the transformation, the refractive index
changes to be

n(�r,�̇r) → n(�r,�̇r) + d�

ds
. (7)

The transformed refractive index gives the same trajectory as
that of the original refractive index, because the term d�/ds

does not affect the trajectory. This indicates that refractive
indices related by Eq. (7) give the same trajectory. The
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TABLE I. Analogy between geometrical optics and classical dynamics. m and q are mass and electric charge of an electron, respectively.
φ and �A are vector and scaler potentials for an electromagnetic field, respectively.

Geometrical optics Classical mechanics

Dynamical parameter Arc length s Time t

Equation of motion d(n0 �̇r)/ds = �∇n0 + �̇r × ( �∇ × �T ) d(m�̇r)/dt = −q �∇φ + q �̇r × ( �∇ × �A)
Electric Lorentz force �∇n0 −q �∇φ

Magnetic Lorentz force �̇r × ( �∇ × �T ) q �̇r × ( �∇ × �A)
Gauge transformation �T → �T + �∇� �A → �A + �∇�

analogy between geometrical optics and classical mechanics
is summarized in Table I.

The theoretical calculation so far has shown an advantage
of our theory that it can explicitly deal with the directional
birefringence (d�r/ds) of a refractive index. As far as we know,
this feature is not found in other theories dealing with an
effective magnetic field for light. Because of the advantage,
the derived ray equation is directly applicable for ray tracing in
a nonreciprocal medium. The direct ray calculation is a useful
tool for designing optical devices with novel functionality such
as nonreciprocal invisibility cloaking [21,22].

III. REALIZATION OF THE GAUGE FIELD

In this section, we consider the directional birefringence
realized in the optical magnetoelectric [23,24] and the magne-
tochiral (MCh) [25,26] media.

We assume that a microwave is incident on a medium with
homogeneous magnetization and isotropic chirality as shown
in Fig. 1. The constitutive relations are given by

�D = ε0ε �E, (8)

�H = μ−1
0

�B − �M, (9)

where �D, �E, �H , �B, and �M are the electric displacement field,
the electric field, the magnetic-field strength, the magnetic

FIG. 1. Schematic of the magnetochiral medium. The helices
indicate not physical components but the isotropic chirality of
the system. The black and yellow arrows indicate the propagation
direction of the incident microwave and an external magnetic field,
respectively.

field, and the magnetization, respectively. The permittivity and
the permeability of the vacuum are ε0 and μ0, respectively. The
permittivity of the magnetic medium is ε. The magnetization
originates from two contributions: �M = �M0 + �MCh. The mag-
netization �M0 is from the spin precession and the other one
�MCh is from the electromagnetic induction. Let us first consider
�M0, which is described as a sum of a linear magnetization and

a magneto-optical (MO) effect:

�M0 = χm
�H − iκ �H × �B0. (10)

Here, χm is the linear magnetic susceptibility, κ is a propor-
tional coefficient characterizing the MO effect, and �B0 is an
external magnetic field. We next consider the magnetization
by the electromagnetic induction due to the circular current
flowing inside the helix of the chiral structure. This response
is proportional to the magnetization current density and
described by �MCh = η �∇ × �M0, where η is a proportional
coefficient characterizing the chirality of the helix. Assuming
that the microwave with the wave vector �k is plane wave and
transverse, �k · �H = 0, we obtain �MCh to be

�MCh = −2iξ

√
ε0

μ0

�E + 2ξ
κ

χm

1

εk0
(�k · �B0) �H. (11)

Here, k0 = ω/c, where ω is the angular frequency of the
microwave and c is the speed of light in a vacuum. The chiral
parameter ξ = k0ηχmε/2 is proportional to η characterizing
the chirality. In Eq. (11), the first term gives rise to the
natural optical activity by the chiral response. The second
term is dependent linearly on the propagation direction and
independent on the polarization states. Namely, this term
gives the nonreciprocal response for unpolarized waves,
representing the MCh effect.

We calculate the refractive index of the MCh medium with
magnetization and chirality. Polarization-independent parts of
the linear magnetization and the MCh effects are, respectively,
represented by the first and second terms on the right-hand side
of Eqs. (10) and (11). Therefore, we obtain the constitutive
equation representing the polarization independent response
to be

�B = μ0( �H + �M)unpol (12)

= μ0

{
�H + χm

�H + 2ξ
κ

χm

1

εk0
(�k · �B0) �H

}
, (13)

where the subscript “unpol” denotes the averaged response by
polarizations. Substituting Eqs. (8) and (13) into Maxwell’s
equations and using the dispersion relation, ω = c|�k|/n, we
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FIG. 2. Schematic of light dispersion by the optical cyclotron
motion. The incident white light is spatially dispersed depending
on the frequency dispersion of n0, which is analogous to the variation
of the cyclotron radius depending on mass of a particle. The inset
shows the frequency dispersion.

obtain the refractive index to be

n = √
εμ + ξ

κ

χm

�B0 · d�r
ds

, (14)

where μ = 1 + χm. In Eq. (14), we took the first order of ξ , and

replaced �̂k = �k/|�k| by d�r/ds. From Eqs. (3) and (14), we find
�T = ξ (κ/χm) �B0. Thus the MO effect (κ �B0/χm) coupled with
the chirality (ξ ) gives the MCh effects, and plays the role of an
artificial gauge field for a light ray. As we have shown in Sec. II,
the rotation of �T is regarded as an effective magnetic field on
a light ray. The effective magnetic field is calculated to be

�BOpt = κ

χm

�∇ξ (�r) × �B0. (15)

This becomes nonzero when the chiral parameter is
inhomogeneous and the chiral axis is perpendicular to
the external magnetic field. To realize this, some artificial
structures are useful such as the gradient index metasurface
with a phase gradient along its surface [27]. The gradient of
the chiral parameter is also realized in a chiral metasurface.

As a simple case, let us consider a ray trajectory in
a uniform effective magnetic field. We assume that n0 is
spatially homogeneous and has a frequency dispersion: n0(ω).
The gauge field is given by the “Landau gauge,” �T (�r) =
(0,BOptx,0). The ray trajectory is a circle with an optical
cyclotron radius:

ROpt
c = n0(ω)|�̇r|

BOpt
= n0(ω)

BOpt
. (16)

This radius varies depending on the frequency dispersion.
Therefore, when a white light ray is incident into a material
subject to the effective magnetic field, it is spatially dispersed
depending on the frequency as shown in Fig. 2.

IV. CONCLUSION

In conclusion, we derived the ray equation for a trajectory in
a medium with directional birefringence. We have discussed
the trajectory in the medium described as n(�r,�̇r) = n0(�r) +
�T (�r) · (d�r/ds), and found that the ray equation is reduced to
almost the same form as the Newtonian equation of motion for
a charged particle under a magnetic field. Using the analogy
between electrons and light, we found the vector �T (�r) plays the
role of vector potential for a light ray. The gauge invariance
is also confirmed. Such a gauge field is realized in a MCh

medium. The present paper paves a way for realizing an
artificial gauge field for a light ray.
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APPENDIX: DERIVATION OF THE EFFECTIVE
LAGRANGIAN

We derive the effective Lagrangian given by Eq. (1)
from the variational principle. The equation of motion for
a light ray is derived from Fermat’s principle. Hence, we
consider the variation of an optical path described as

∫
ndl.

In the ray analysis, we denote a ray parametrized by the arc
length s = ∫

ds, namely, �r(s) = (x(s),y(s),z(s)), in Cartesian
coordinates, where the line element dl is defined as dl =
(d�r · d�r)1/2 = (�̇r · �̇r)1/2ds. This relation imposes a constraint
condition that |�̇r| − 1 = 0 on the length of the ray direction
vector. The variational problem to be solved is described as
δ
∫
Leff(�r,�̇r)ds = 0, where

Leff(�r,�̇r) = n(�r,�̇r)|�̇r| + λ(|�̇r| − 1). (A1)

The second term on the left-hand side of Eq. (A1) gives rise
to a significant correction to the conventional ray equation
when the refractive index has directional birefringence. This
Lagrangian yields the Euler-Lagrange equation written as

d

ds

[
n(�r, �̇r)

d�r
ds

+ ∂n(�r, �̇r)

∂ �̇r + λ
d�r
ds

]
= �∇n(�r, �̇r). (A2)

Let us determine the Lagrange multiplier. Integrating Eq. (A2)
with respect to s, we obtain the following equation:

n(�r, �̇r)
d�r
ds

+ ∂n(�r, �̇r)

∂ �̇r + λ
d�r
ds

= �∇
∫

dsn(�r, �̇r). (A3)

Premultiplying d�r/ds on both sides of Eq. (A3), the Lagrange
multiplier is given by

λ = −d�r
ds

· ∂n(�r, �̇r)

∂ �̇r . (A4)

In a medium with n(�r,�̇r) = n0(�r) + �T (�r) · �̇r , the effective
Lagrangian is calculated to be

Leff(�r,�̇r) = n0(�r)|�̇r| + �T (�r) · �̇r. (A5)
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