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Optimal phase measurements with bright- and vacuum-seeded SU(1,1) interferometers
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The SU(1,1) interferometer can be thought of as a Mach-Zehnder interferometer with its linear beam splitters
replaced with parametric nonlinear optical processes. We consider the cases of bright- and vacuum-seeded
SU(1,1) interferometers using intensity or homodyne detectors. A simplified truncated scheme with only one
nonlinear interaction is introduced, which not only beats conventional intensity detection with a bright seed, but
can saturate the phase-sensitivity bound set by the quantum Fisher information. We also show that the truncated
scheme achieves a sub-shot-noise phase sensitivity in the vacuum-seeded case, despite the phase-sensing optical
beams having no well-defined phase.
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I. INTRODUCTION

Optical phase sensing is a technique used in a wide variety
of applications and measurements ranging from materials
characterization to medical imaging. The sensitivity of a
phase measurement is ultimately limited by the noise. With
improving technology, the sensitivity of phase measurement
devices, such as interferometers, is no longer limited by
technical noise and is instead limited by the fundamental
quantum noise of the interrogating fields.

One way to improve optical phase-shift measurements with
an interferometer is to engineer the quantum noise distribution
of the fields [1]. For example, injection of single-mode
squeezed light into the vacuum port of a classical interferom-
eter has been demonstrated to improve the phase sensitivity
of the interferometer [2]. This will be an important aspect of
the next generation Laser Interferometer Gravitational-Wave
Observatory apparatus [3].

Interferometers utilizing quantum fields, such as squeezed
light, promise an improvement in phase sensitivity over
interferometers using coherent states and linear optics. A
figure of merit for the performance of an interferometer is its
sensitivity relative to the standard quantum limit (SQL). The
SQL is commonly defined as the sensitivity �φ = 1/

√
N̄ for

a Mach-Zehnder interferometer with a bright coherent state
input, where N̄ is the average number of photons used in a
measurement. One type of interferometer that promises an
improvement in phase sensitivity over the SQL is the SU(1,1)
class of interferometers.

The SU(1,1) interferometer can be viewed as a Mach-
Zehnder interferometer with its linear beamsplitters replaced
with nonlinear optical processes (NLOs) that function as
parametric gain elements, as shown in Fig. 1. The NLOs can
generate photons even when unseeded (|ψ〉 = |0〉 in Fig. 1).
It can be shown that an unseeded SU(1,1)-type interferometer,
under ideal conditions and in the large-N̄ limit, has a sensitivity
�φ proportional to 1/N̄ (the Heisenberg limit), thus holding
out the promise of a substantial improvement over the SQL.
The SU(1,1) interferometer was originally conceived by
Yurke et al. [4], but only recently has there been progress
towards constructing an interferometer with various platforms,
such as light [5–7], atoms [8], and light-atom hybrids [9].

This has raised interest in understanding its operation and
phase-sensing ability in more detail. Here we consider the
phase-sensing ability of various modifications to the original
proposal and show that under some conditions one can simplify
the original scheme without reducing the phase sensitivity of
the device.

To analyze the phase sensitivity of an interferometer it
is useful to break the operation into two stages. The first
is the production of a quantum state, a portion of which
passes through the phase object. The second stage is the
measurement of some aspect of this quantum state, from
which the phase shift is inferred. An important development
in our understanding of quantum sensing is the realization
that analysis of the first stage alone, independent of the
second stage, sets limits on the potential phase sensitivity
of the interferometer [10]. These limits on the best phase
sensitivity of an interferometer can be quantified using the
Fisher information.

The Fisher information is a well-established metric for
measuring how much information a statistical random variable
carries about an unknown parameter [11]. We calculate
Fisher information associated with the quantum state FQ

immediately after the phase object, as shown in Fig. 1. We can
also calculate Fisher information associated with the entire
apparatus including detection FC, which is necessarily less
than or equal to FQ. These are conventionally referred to as
the quantum (FQ) and classical (FC) Fisher information [10].

The goal of this work is to find the best detection apparatus
and signal processing such that FC approaches the limit set by
FQ and thus the interferometer achieves a sensitivity limited
only by the quantum state used to sense the phase object. The
two-mode squeezed state produced by the first NLO gives
SU(1,1) interferometers a potential improvement over the
SQL, but the choice of detection apparatus is crucial to realize
that improvement. We will discuss several measurement
configurations, as shown in Fig. 2: conventional SU(1,1)
with optical intensity measurement [Fig. 2(a)], conventional
SU(1,1) with optical homodyne measurement [Fig. 2(b)],
and “truncated” SU(1,1) with optical homodyne measurement
[Fig. 2(c)]. We focus on optical intensity and homodyne
measurements because these are the primary detection tools
available to experimentalists. In some potential physical
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FIG. 1. Schematic of a Mach-Zehnder or SU(1,1) interferometer.
A state |ψ〉 and a vacuum state |0〉 are inputs on either a linear
beam splitter (BS) or a nonlinear optical process. Unseeded denotes
|ψ〉 = |0〉 and bright seeded denotes |ψ〉 = |α〉, a coherent state with
|α|2 � 1. One of the two output beams acquires a phase shift φ with
respect to the other beam and the two beams are recombined in either
a BS or an NLO. The phase shift φ is inferred via measurements
from the detectors on the final output beams. Here FQ and FC refer to
the Fisher information associated with the quantum state and entire
apparatus, respectively (see the text).

realizations of the SU(1,1) interferometer, scattered light from
the intense pump beam can make direct intensity detection of
weak signal beams problematic. Homodyne detection, which
provides strong spectral filtering, can help overcome this
problem.

We organize the paper as follows. In Sec. II we provide
background on sensitivity measurements and Fisher infor-
mation [12]. In Sec. III we discuss the sensitivity for the
conventional SU(1,1) system using optical intensity detection,
which has been discussed elsewhere [6,13–20]. We show that
intensity detection is the optimal detection scheme for the
vacuum-seeded case, but is not optimal in the bright-seeded
case. In Sec. IV we discuss the sensitivity for SU(1,1)-type
interferometers that use optical homodyne detection and
describe a simplified (truncated) scheme that allows one to
measure sensitivities that saturate the limit set by the Fisher

information in the bright-seeded case. In Sec. V we discuss
the sensitivity, using different detection schemes, as a function
of seed power. Finally, in Sec. VI we discuss modifying the
nonlinear gain of the second NLO to improve phase sensitivity
in the case that optical detection efficiency is not ideal.

II. SENSITIVITY AND FISHER INFORMATION

We define the sensitivity �φ as the uncertainty in estimating
a phase shift φ according to

�2φ = �2M̂

(∂φ〈M̂〉)2
, (1)

given a measurement represented by an observable M̂ . The
variance of the measurement is �2M̂ = 〈M̂2〉 − 〈M̂〉2. For
example, a common choice of observable is the number of pho-
tons M̂ = â†â in an optical beam. There is Fisher information
associated with any measurement, which quantifies how much
information about an unknown optical phase shift is contained
in the measurement results. All Fisher information implies a
bound, called the Cramér-Rao bound, on the minimum phase
shift �φ that can be resolved using that information. The
Cramér-Rao bound is equal to the inverse of the square root
of the Fisher information, which implies that �φ � 1/

√
F . It

is conventional to call the Fisher information associated with
a measurement the classical Fisher information FC and its
associated bound the classical Cramér-Rao bound (CCRB).
This is not a fundamental limit however; FC is bounded
by the quantum Fisher information FQ, which describes the
information associated with parameter estimation limited only
by the quantum state. The bound associated with FQ is
the quantum Cramér-Rao bound (QCRB). The FQ can be
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FIG. 2. The three experimental configurations considered in this paper. The thick green line is a strong classical pump beam. (a) Conventional
SU(1,1) interferometer. (b) Conventional SU(1,1) with homodyne detection on the output. (c) Truncated SU(1,1) interferometer. Here LO
indicates a local oscillator and beam splitters represent loss and are labeled by their transmission η.
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viewed as FC optimized over measurement schemes such that
�φ � 1/

√
FC � 1/

√
FQ; however, FQ is independent of the

measurement scheme and can be calculated using the quantum
state alone.

For Gaussian states (those with Gaussian distributions
in phase space) and Gaussian measurements (those with
a Gaussian distribution for their outcomes), FC can be
written as

FC = (∂φ〈M̂〉)2

�2M̂
+ 2[∂φ(�M̂)]2

�2M̂
, (2)

as shown in Ref. [10]. The first term of Eq. (2) describes
the change in mean value of the measurement and the
second term describes the change in the standard deviation
of the distribution. The first term is also identical to the
inverse of �2φ. In this work, we only consider Gaussian
states. Therefore, in the case of Gaussian measurements, like
homodyne detection, Eq. (2) applies. Measurements of photon
number are not Gaussian (they are bounded below by zero),
so Eq. (2) is not applicable.

For Gaussian states, FQ can be calculated with a straight-
forward procedure if the covariance matrix of the quantum
state is known [10,14]. One could include the effect of losses
on the quantum state as part of FQ, but we will maintain FQ as
an idealized limit in a system with no imperfections. Consider
just the portion of the apparatus shown in the yellow box
around NLO 1 of Fig. 2(a). Two modes, a0 and b0, are coupled
in an NLO with an intense classical pump beam. After the
NLO, mode ai acquires a phase shift with respect to mode bi .
We now consider the bright-seeded case where mode a0 is a
coherent state with mean photon number |α|2 � 1 and mode
b0 is a vacuum state. In the ideal lossless case, the quantum
Fisher information associated with the two-mode states ai and
bi is [10]

FNLO
Q = 2 cosh2(r)[(2|α|2 + 1) cosh(2r) − 1], (3)

where r is the squeezing parameter, which is related to the
intensity gain g of the NLO process by g = cosh2(r). In the
limit that |α|2 � 1, mode ai will have mean photon number
g|α|2 and mode bi will have mean photon number g|α|2 −
|α|2. When g > 1, modes ai and bi are quantum correlated
and constitute a two-mode squeezed state. Equation (3), via
the relation �φ � 1/

√
FQ, determines the maximum possible

sensitivity of the interferometer independent of the detection
scheme used to infer the phase shift.

It may seem that the presence of the second NLO in
Fig. 2(a) may alter the fundamental phase sensitivity of the
entire interferometer, but this is not true. The second NLO is
a unitary process, thus FQ calculated for modes ai and bi is
the same as for modes af and bf . Conceptually, the second
NLO neither adds information about the phase shift that came
before it nor can it subtract information since it is a unitary
process. This can be seen in a different way by considering
FQ as an optimization of FC over all positive-operator-valued
measurements (POVMs). All POVMs can be reduced to a
unitary process in a Hilbert space larger than the original
quantum state, followed by a von Neumann measurement
[21]. Since the second NLO is a unitary transformation itself,
we can include it as part of the measurement apparatus, and
we show this in Fig. 2 by including the second NLO as part

φ

LO

FIG. 3. Phase sensor that can be viewed either as an imbalanced
Mach-Zehnder interferometer or as a balanced homodyne detector
with a local oscillator that has a well-defined phase with respect to
the weak beam. The weak beam passing through the optical phase
shift φ contains N̄p photons on average.

of the detection stage. This observation allows us to remove
the second nonlinear interaction, as shown in Fig. 2(c), while
preserving the inherent phase sensitivity of the device. This
truncated SU(1,1) interferometer will be discussed further in
Sec. IV.

Standard quantum limit

Ultimately, the goal of SU(1,1) and other quantum-
enhanced interferometers is to measure phase with a sensitivity
better than the SQL. As shown in Fig. 2, SU(1,1) interferom-
eters have several classical phase references not found in a
conventional Mach-Zehnder interferometer: pump beams driv-
ing the NLOs and possibly local oscillators (LOs) for optical
homodyne detection. In addition, for a bright-seeded SU(1,1)
interferometer, modes ai and bi have different mean photon
numbers, unlike a conventional balanced Mach-Zehnder inter-
ferometer where the two arms have equal photon numbers.
These features open the possibility of different choices of
linear-optical interferometers operating with coherent beams
with which to define the SQL.

A standard definition of the SQL is the sensitivity of
a Mach-Zehnder interferometer �φ = 1/

√
2N̄p , with mean

number 2N̄p photons seeding the interferometer and N̄p

photons in one arm passing through a phase object. However,
consider the sensitivity of the device in Fig. 3, which can
be viewed either as a balanced homodyne detector or an
unbalanced Mach-Zehnder interferometer. If N̄p photons pass
through the phase object, the sensitivity of this device is
�φ = 1/

√
4N̄p . The discrepancy between this sensitivity and

the standard SQL above comes from the device in Fig. 3 having
an LO with an optical power much larger than the weak beam
that acts as an external phase reference [22]. The shot noise of
the nearly classical LO does not affect the phase sensitivity,
so one achieves a factor of

√
2 improvement in sensitivity

compared to a balanced Mach-Zehnder interferometer. This
“enhancement” over the standard definition of SQL is a matter
of definition, rather than a quantum effect.

We will adopt the definition that only the number of
photons passing through the phase object will be counted
when defining the SQL. This is consistent with the idea that
one is, for example, trying to measure the phase shift of a
sample that is subject to optical damage. Given that, we take
the most conservative classical bound possible: the sensitivity
of the device in Fig. 3, (�φ)SQL = 1/

√
4N̄p , with N̄p photons
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passing through the sample. Other authors have defined the
SQL differently [6].

Returning now to Eq. (3), it is instructive to consider the
r = 0 limit for which g = 1 and there is no quantum enhance-
ment. In this case, mode ai is a coherent state with mean photon
number |α|2, mode bi is a vacuum state, and FQ = 4|α|2.
This is simply the Fisher information associated with a single
coherent state modified by a phase shift φ, as shown in
Fig. 3 and discussed above. We can reexpress the SQL defined
above in terms of Fisher information, which we designate as
FSQL

Q = 4N̄p.

We can now compare FNLO
Q and FSQL

Q for the SU(1,1)
interferometer as a function of gain. Only mode ai is
modified by φ and has N̄p = |α|2 cosh2(r) + sinh2(r) photons
on average, so

FSQL,r
Q = 4[|α|2 cosh2(r) + sinh2(r)]. (4)

The SQL depends not only on the seed intensity but also on
the gain of the NLO, because increasing gain increases the
intensity of light in the interferometer. Assuming, as before,
a bright seed (|α|2 � 1), the ratio FNLO

Q /FSQL,r
Q = cosh(2r).

The benefit of the SU(1,1) interferometer improves with
increasing r , and at g = 1 (r = 0), the SU(1,1) interferometer
operates at the SQL as defined above. With this background,
we now turn to an analysis of the different detection schemes
shown in Fig. 2 and compare their sensitivities to the QCRB
set by the FQ given in Eq. (3).

III. SU(1,1) INTERFEROMETER WITH INTENSITY
DETECTION

To begin our analysis, we consider the experiment shown in
Fig. 2(a), which shows an SU(1,1) interferometer with inten-
sity detection. This configuration has been studied previously
for both optical and atomic interferometers [6,16–18,23,24],
so we will just provide basic results for use in comparing to
other configurations.

The first NLO generates two-mode squeezing with the two
input modes a0 and b0 coupled by an intense classical pump
beam. Mode ai acquires a phase φ with respect to the other
mode and the two modes are then coupled in NLO 2 with
an intense classical pump. We will assume, until Sec. VI, that
both NLOs are characterized by the same magnitude squeezing
parameter. The second NLO is a phase-sensitive device whose
output depends on the relative phases of the input beams,
including the classical pump 2φpump − φa − φb, where φa is
the phase of mode ai , φb is the phase of mode bi , and φpump

is the phase of the pump. We choose that the pump phase is
shifted by π/2 after the first NLO such that if φ = 0, the unitary
transformation performed by the second NLO is the inverse of
the first NLO. We represent loss and detector inefficiency with
beam splitters between the NLOs and after the second NLO,
respectively.

A. Bright seed

In the bright-seed configuration, mode a0 is a coherent
state with mean photon number |α|2 � 1 and mode b0 is the
vacuum. If we take as the signal the sum of the two output

FIG. 4. Sensitivity as a function of operating point for bright-
seeded configurations with a gain of 4. Sensitivity is shown for several
experimental configurations: intensity detection (M̂N), gray dash-
dotted line; intensity detection of mode bf only (M̂Nb), orange dashed
line; homodyne detection for the truncated and conventional SU(1,1)
interferometer (M̂Q) with LO phases fixed at θa = θb = π/2, thick
blue solid line; and homodyne detection for the truncated SU(1,1)
interferometer with classical gain correction (M̂λQ) optimized over
the LO phase, black dotted line. The QCRB coincides with the black
dotted line and the SQL the black solid line. The inset shows the same
graph over a larger range.

intensities, then M̂N = â
†
f âf + b̂

†
f b̂f and we find

(�2φ)S
N = csch4(2r)

[
cosh(8r) sec2

(
φ

2

) + csc2
(

φ

2

)] − 8

4|α|2
(5)

in the case of no loss. In this notation, the subscript of �2φ

denotes measurement choice and the superscript denotes bright
seeded (S) or unseeded (U). To perform this calculation, we
use the formalism found in [5,13], which allows us to calculate
âf and b̂f in the Heisenberg picture. Analytic expressions for
these operators allowed us to calculate expectation values for
various measurements, as well as the covariance matrix. We
plot Eq. (5) as a function of φ in Fig. 4. In all bright-seeded
cases, �2φ is proportional to 1/|α|2, so we rescale the vertical
axis by |α|2. Only the gray dash-dotted line is relevant here
and other lines are discussed in later sections. The minimum
of Eq. (5) occurs at a phase shift

φ = 2 cot−1[ 4
√

cosh(8r)], (6)

which gives an optimum �2φ of

(�2φ)S
N

∣∣
min = [2 cosh(4r) + √

cosh(8r) − 1]csch4(2r)

2|α|2 . (7)

The expression in Eq. (7) never saturates the QCRB, which is
shown in Fig. 4 as a black dotted line. Using the relationship
between r and gain, we plot the optimal �2φ as a function of
gain in Fig. 5.

We can write the squeezing parameter r in terms of n̄s , the
mean number of spontaneous photons in both modes ai and
bi when there is no seed, which is n̄s = 2 sinh2(r) = 2g − 2.
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FIG. 5. Sensitivity as a function of gain for bright seeded config-
urations, optimized over φ and LO phases. Sensitivity is shown for
several experimental configurations: intensity detection (M̂N), gray
dash-dotted line; intensity detection of mode bf only (M̂Nb), orange
dashed line; homodyne detection for the truncated and conventional
SU(1,1) interferometer (M̂Q), red solid line; and homodyne detection
for the truncated SU(1,1) interferometer with classical gain correction
(M̂λQ), black dotted line. The QCRB coincides with the black dotted
line and the SQL the black solid line.

Rewriting Eq. (7) in terms of these photons, we have

(�2φ)S
N

∣∣
min = 4n̄s(n̄s + 2) +

√
cosh[8 sinh−1(

√
n̄s/2)] + 1

2|α|2n̄2
s (n̄s + 2)2

(8)

and the scaling of this quantity is 1/|α|2n̄2
s in the large-n̄s

limit. For the SQL, the sensitivity �φ scales as 1/
√

N̄ , but for
the SU(1,1) there are two different scalings: In terms of seed
photon number, the sensitivity scales as 1/

√
N̄ , whereas in

terms of spontaneous photon number, the sensitivity scales as
1/N̄ . The improved scaling property of SU(1,1) interferom-
eters has been lauded as a motivation for their study, but the
scaling improvement only appears in the spontaneous photon
number, rather than all photons. The coherent seed is simply
a multiplicative factor in the sensitivity [13]. Furthermore,
given even modest loss in the apparatus, the scaling quickly
approaches 1/

√
N̄ even for spontaneous photons [18].

An alternative detection scheme to measuring the sum of
the two output intensities is to measure the intensity only of
output bf so that M̂Nb = b̂

†
f b̂f , giving a sensitivity of

(�2φ)S
Nb = cosh(4r)csch2(r)sech2(r) sec2

(
φ

2

) − 8

4|α|2 . (9)

This produces considerably different behavior compared to
Eq. (5) as a function of operating point, as shown in Fig. 4.
When φ → 0, bf becomes the vacuum and the numerator and
denominator of Eq. (1) go to zero at the same rate, giving the
well-defined limit

(�2φ)S
Nb

∣∣
min = csch2(2r)

|α|2 . (10)

The behavior changes qualitatively in the presence of loss and
the sensitivity diverges as φ → 0, causing the orange dashed
curve to turn up similar to the gray dash-dotted one. One can

FIG. 6. Sensitivity as a function of operating point for vacuum-
seeded schemes with a gain of 4. Sensitivity is shown for several
experimental configurations: intensity detection (M̂N), gray dash-
dotted line; homodyne detection of the truncated and conventional
SU(1,1) interferometer (M̂Q2) with LOs set at θa = θb = π/2, blue
solid line; and homodyne detection of the truncated and conventional
SU(1,1) (M̂Q2) optimized over LO phases, blue dashed line. The
QCRB is the black dotted line and the SQL is the black solid line.

see in Figs. 4 and 5 that neither M̂N nor M̂Nb saturates the
QCRB. We show in Sec. IV how to saturate this bound in the
bright-seeded case.

B. Vacuum seed

A different variation on the SU(1,1) with intensity detection
is to let the first NLO be vacuum seeded. If both modes a0 and
b0 are vacuum states we find that for the measurement M̂N,

(�2φ)U
N = coth2(2r) sec2

(
φ

2

)
− 1, (11)

which has a minimum when φ → 0. At this phase, the optimal
sensitivity is

(�2φ)U
N

∣∣
min = csch2(2r). (12)

In this vacuum-seeded case, (�2φ)U
N|min saturates the QCRB,

as shown in Fig. 6, and M̂N is an optimal measurement. Similar
to the measurement M̂Nb with a bright seed in the previous
section, any loss qualitatively changes the behavior of the
sensitivity curve and causes the gray dash-dotted line in Fig. 6
to turn up as φ → 0. We saturate the QCRB in the seeded case
by using a homodyne detection scheme discussed below.

IV. SU(1,1) INTERFEROMETER WITH HOMODYNE
DETECTION

In this section we describe detection schemes using optical
homodyne detectors to measure selected quadratures of the
interferometer’s output modes, as shown in Figs. 2(b) and 2(c).
The scheme in Fig. 2(b) is the conventional SU(1,1) in-
terferometer with homodyne detection [19,25]. We begin,
however, by considering the experiment shown in Fig. 2(c),
which we call the truncated SU(1,1) interferometer. Although
the setup looks like an incomplete interferometer, homodyne
detection is a phase-sensitive measurement by itself. The
device therefore has an associated phase sensitivity given that
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the homodyne LO phases (that determine the phase of the
quadrature measurement) are locked relative to the phase of
the bright seed. In the case of a vacuum seed, the LOs could
be locked to the pump.

A. Bright seed

We take the output of the two homodyne detectors and add
them, which gives

M̂Q = eiθa âf + e−iθa â
†
f + eiθb b̂f + e−iθb b̂

†
f , (13)

where θa and θb are the LO phases for modes af and bf ,
respectively. We take α to be real so that an LO phase of θa =
π/2 or θb = π/2 corresponds to measuring the phase quadra-
ture. Taking θa = π/2 in the case of no loss and |α|2 � 1,
we calculate

(�2φ)S
Q = sec2(φ)[1 − 2 tanh(r) sin(θb − φ) + tanh2(r)]

2|α|2 ,

(14)

which is plotted in Fig. 4. In the presence of loss, unlike
the intensity detection curves discussed earlier, the sensitivity
curve does not diverge as φ → 0. If we optimize over LO
phase θb and φ, the optimum sensitivity value is

(�2φ)S
Q

∣∣
min = [tanh(r) − 1]2

2|α|2 . (15)

This operating point is achieved when θb = π/2, i.e., both
homodyne detectors are set to detect the phase quadrature of
their respective input beams, and the measurement M̂Q is the
phase quadrature sum. We plot Eq. (15) in Fig. 5.

Analysis of the sensitivity of the conventional SU(1,1)
interferometer with homodyne detection, as shown in Fig. 2(b),
shows that it achieves the same phase sensitivity as the
truncated SU(1,1) interferometer in Eq. (15). The optimal
operating point of the conventional interferometer, with respect
to the LO phases and the internal phase shift, is somewhat more
complicated, but the optimal sensitivity is identical.

For conventional and truncated SU(1,1) interferometer
systems using homodyne detection, in the limit that |α|2 � 1,
the second term of Eq. (2) is negligible everywhere and zero
at the optimal point, so the sensitivity in Eq. (15) saturates
the CCRB. For low gain, the CCRB does not quite reach the
QCRB (the red curve lies slightly above the black dashed
curve in Fig. 5). In the limit of high gain, FC asymptotically
approaches FQ, but in the low-gain limit they differ.

A simple change of measurement scheme allows us to
saturate the QCRB for all gains in both the truncated and
conventional SU(1,1) interferometers. We set

M̂λQ = eiθa âf + e−iθa â
†
f + λ(eiθb b̂f + e−iθb b̂

†
f ), (16)

where λ represents a classical gain factor that will multiply
mode bf ’s homodyne detector output before being added to
mode af . One can evaluate the sensitivity for this measurement
scheme, but the expression is lengthy and not given here. If
λ → tanh(2r), the sensitivity for this scheme saturates the
QCRB, which means it is an optimal measurement. For low
gains, when r → 0, λ → 0 and the measurement is almost
entirely due to the detector for mode af . In this limit, the

FIG. 7. Sensitivity as a function of gain for homodyne mea-
surement of the bright seeded truncated or conventional SU(1,1)
interferometer (M̂Q) and no external loss. Gain is linear in the
number of spontaneous photons: n̄s = 2g − 2. The blue circles,
yellow squares, green diamonds, and orange triangles represent
internal transmissions ηai = ηbi = 0.5, 0.75, 0.95, and 1, respectively.
The black lines are guides for the eye, with the dashed line having
scaling 1/g and the solid 1/g2.

intensity of mode bf goes to zero and the situation approaches
that shown in Fig. 3. Therefore, using M̂λQ with a bright seed,
one can still saturate the QCRB without a need for the second
NLO. We plot the sensitivity using M̂λQ in Figs. 4 and 5.

We now consider the effect of losses, starting with those
internal to the interferometer (ηai

and ηbi
in Fig. 2). In Fig. 7 we

show how sensitivity in the seeded case changes as a function
of gain on a log-log plot. The lowest line shows an ideal,
lossless, interferometer that approaches the Heisenberg limit
for large gains. Gain is proportional to spontaneous photon
number, so 1/n̄2

s ∼ 1/g2. We simulate the effect of losses by
inserting beam splitters between NLO 1 and NLO 2, as shown
in Fig. 2. Keeping the losses in each arm the same, we show
not only how sensitivity is changed, but how the scaling of
sensitivity with gain changes. As losses approach 50%, the
sensitivity approaches that of the SQL: 1/n̄s ∼ 1/g for the
range of gain plotted.

B. Vacuum seed

In an SU(1,1) interferometer seeded with vacuum in both
modes, the two output modes from the first NLO have a
phase relationship even if one beam, by itself, has no phase
relationship to any external phase reference. Each mode of the
two-mode state, by itself, has thermal statistics. In a quadrature
picture, the noise distribution of each mode is centered at
the origin and circularly symmetric. Because the expectation
value of any quadrature is zero, performing a measurement
of the joint quadratures of the two output modes (M̂Q) will
not yield a sensitivity. If we calculate the classical Fisher
information for this scenario, we see that the first term in
Eq. (2) (the sensitivity) is zero, but the second term is nonzero.
In principle, there is more information to extract from the
quadrature measurements than what is given by the sensitivity.
We can simply define a new measurement that allows access
to the information contained in the second term of Eq. (2).
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To do this, we set

M̂Q2 = (eiθa âf + e−iθa â
†
f + eiθb b̂f + e−iθb b̂

†
f )2, (17)

which is a measurement of the noise power in a particular joint
quadrature. In this case, we find

(�2φ)U
Q2 = 1

2 csc2(φ − θb)[2 cos(φ − θb)

+ tanh(r) + coth(r)]2. (18)

As

φ − θb → π − tan−1[csch(2r)], (19)

we achieve the optimum value

(�2φ)U
Q2

∣∣
min = 2 csch2(2r) (20)

for both the truncated and conventional schemes. We show the
sensitivity of the vacuum-seeded scheme as a function of φ in
Fig. 6. The optimal phase sensitivity from Eq. (20) can still be
better than the SQL, but is worse than that of the conventional
SU(1,1) interferometer with M̂N. Nevertheless, there may be
practical reasons to use homodyne detection in vacuum-seeded
experiments, for example, to overcome technical issues such
as scattered pump light that reaches optical detectors. We
do not describe any measurement with a λ correction factor
(comparable to M̂λQ) in the vacuum case because the mean
intensities of the two modes ai and bi are the same.

The comparison among vacuum-seeded schemes as a
function of gain is shown in Fig. 8. Similar to the bright-seeded
case, the scaling is badly degraded with loss as shown in Fig. 9.

As described above, if we had instead performed a mea-
surement M̂Q, we would find that the sensitivity is very poor
(in fact, infinite). However, if we calculate FC using M̂Q, the
second term of Eq. (2) is nonzero and it would be equal to
the sensitivity found in Eq. (20). Therefore, for vacuum seeds,
the CCRB using M̂Q is identical to calculating the sensitivity
given measurement M̂Q2.

FIG. 8. Sensitivity as a function of gain for vacuum seeded
configurations, optimized over φ and LO phases. Sensitivity is shown
for several experimental configurations: homodyne detection of the
truncated and conventional SU(1,1) interferometer (M̂Q2), orange
dashed line; intensity detection (M̂N), gray dash-dotted line. The
QCRB coincides with the gray dash-dotted curve and the SQL is
the black solid curve.

FIG. 9. Sensitivity as a function of gain for homodyne mea-
surement of the vacuum seeded truncated or conventional SU(1,1)
interferometer (M̂Q2) and no external loss. Gain is linear in the
number of spontaneous photons: n̄s = 2g − 2. The blue circles,
yellow squares, green diamonds, and orange triangles represent
internal transmissions ηai = ηbi = 0.5, 0.75, 0.95, and 1, respectively.
The black lines are guides for the eye, with the dashed line having
scaling 1/g and the solid 1/g2.

V. SENSITIVITY AS A FUNCTION OF INPUT SEED

In the previous sections we showed that when the input
seed is a vacuum state, the conventional SU(1,1) with
intensity measurement M̂N is optimal. When we have a bright
coherent seed, the optimal detection scheme is the truncated
or conventional SU(1,1) with homodyne measurement M̂λQ.
Clearly, the optimal measurement changes as a function of the
input seed brightness. This is shown in Fig. 10, where can see
that at very low input seed, the intensity measurement (M̂N)
approaches the limit set by the quantum Fisher information.
At large seeds, the homodyne measurement (M̂λQ) approaches

FIG. 10. Sensitivity as a function of mean input seed photon
number with g = 4, optimized over φ and LO phases. Sensitivity is
shown for several experimental configurations: homodyne detection
of the truncated SU(1,1) interferometer with classical gain correction
(M̂λQ), blue dotted line; homodyne detection of the truncated
and conventional SU(1,1) interferometer (M̂Q2), purple circles; and
intensity detection of conventional SU(1,1) (M̂N), orange dashed line.
The QCRB is the black dashed curve and the SQL is the black solid
curve. For small seeds, intensity detection is optimal and for large
seeds homodyne detection is optimal.
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FIG. 11. Sensitivity versus gain of NLO 2 for intensity detection
(M̂N) of the conventional SU(1,1) interferometer, optimized over φ.
NLO 1 has g = 2 and there is no internal loss. The blue circles, yellow
squares, green diamonds, and orange triangles represent external
transmissions of ηae = ηbe = 0.5, 0.75, 0.9, and 0.99, respectively.

the limit set by the quantum Fisher information. The crossover
point at which photon-number measurement and homodyne
measurement switch being the optimal measurement is near
when |α|2 � 1.

VI. COMPENSATING FOR EXTERNAL LOSS WITH GAIN

The experimental setups in Figs. 2(a) and 2(b) assumed
that both NLO 1 and NLO 2 had the same gain. Although
we claim that the second NLO is not fundamentally needed,
the second NLO can be helpful in the case of loss [1,25]. We
distinguish two different types of losses: external losses and
internal losses. Internal losses are shown in Fig. 2 by beam
splitters with transmission ηai and ηbi and external losses are
shown by ηae and ηbe. The distinction between detection losses
and internal losses has been made elsewhere [18]. Here we
analyze gain imbalance when there are significant external
losses.

The second NLO acts as a phase-sensitive amplifier, which
can exhibit noiseless amplification [26,27]. If we have external
losses, it is better to amplify modes ai and bi before the loss,
assuming the amplifier is noiseless. We show the results in
Fig. 11 for the experimental configuration shown in Fig. 2(a),
seeded with the vacuum. Increasing the gain of NLO 2 is
beneficial if there is significant external loss.

This can be seen analytically if we calculate �φ for the
conventional SU(1,1) interferometer with measurement M̂N

and take ηae = ηbe. We will not reproduce the expression here,

TABLE I. Summary of measurement phase sensitivities com-
pared to the QCRB.

M̂ |α|2 � 1 |α|2 = 0

M̂Q saturates QCRB as g → ∞ no phase sensitivity
M̂Q2 suboptimal suboptimal
M̂λQ saturates QCRB no phase sensitivity
M̂N suboptimal saturates QCRB
M̂Nb suboptimal saturates QCRB

but if we take limg2→∞ �φ, where g2 is the gain of NLO
2, the expression is independent of ηae. The expression also
has the same optimal sensitivity as the no-loss case where
ηae = ηbe = 1. Therefore, as the second NLO’s gain is made
arbitrarily large, we overcome any external losses.

VII. CONCLUSION

In this work we have investigated several configurations
of SU(1,1) interferometers and compared their phase-sensing
abilities. We summarize the measurement phase sensitivities
compared to the QCRB in Table I. We have shown that for
unseeded SU(1,1) interferometers, optical intensity detection
is an optimal scheme that saturates the quantum Cramér-
Rao bound. For bright-seeded interferometers, we presented
a measurement scheme using optical homodyne detection
that also saturates the quantum Cramér-Rao bound. This
measurement scheme can be implemented using a simplified
truncated version of an SU(1,1) interferometer, which may be
more easily implemented in an experiment. In the case of an
unseeded interferometer, where the phase-sensing beams have
no well-defined optical phase, we have analyzed a method for
phase measurements with optical homodyne detection. While
not achieving the QCRB, this method can still surpass the
SQL and may be useful experimentally. We have also shown
how one might compensate for external detection losses by
increasing the parametric gain of a second nonlinear optical
process. These results provide guidelines for the optimal
detection schemes that should be used for phase sensing in
quantum-enhanced interferometers.
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