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Collective multiphoton blockade in cavity quantum electrodynamics
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We present a study of collective multiphoton blockade in coherently driven atoms in a single-mode cavity.
Considering two atoms strongly coupled to an optical cavity, we show that the two-photon blockade with
two-photon antibunching, and the three-photon blockade with three-photon antibunching can be observed
simultaneously. The three-photon blockade probes both dressed states in the two-photon and three-photon
spaces. The two-photon and three-photon blockades strongly depend on the location of the two atoms in the
strong-coupling regime. The asymmetry in the atom-cavity coupling constants opens pathways for multiphoton
blockade which is also shown to be sensitive to the atomic decay and pumping strengths. The work presented here
predicts many quantum statistical features due to the collective behavior of atoms and can be useful to generate
nonclassical photon pairs.
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I. INTRODUCTION

The well-known dressed state spectrum of an atom coupled
strongly to a high-quality cavity has many features which
have been the hallmarks of cavity quantum electrodynamics
[1–3]. The first doublet in dressed states which leads to the
vacuum Rabi splitting has been the subject of innumerable
investigations [3–9]. An important property of the dressed
state spectrum is its anharmonicity, especially for low-lying
states. Thus the next doublet is to be studied to show evidence
of an anharmonic spectrum. This can be done by studying
two-photon transitions in the regime of strong atom-cavity
coupling [10,11]. Birnbaum et al. reported the photon blockade
effect in the absorption of a second photon when the photon
was tuned to one of the states of the lowest doublet [12]. As a
result, an incident photon stream with Poissonian distribution
can be converted into a sub-Poissonian, antibunching photon
stream. To date, many works have shown that the two-
photon blockade phenomenon is indeed feasible for many
configurations [13], such as artificial atoms on a chip [14,15]
and superconducting circuits [16,17]. In the strong-coupling
regime, other high-lying doublets in the dressed state spectrum
predict many new features of quantum nonlinear optics, which
can still be explored by studying multiphoton processes [10]
or by studying the dynamical behavior in strongly pumped
systems [3,18,19]. Photon blockade in a cavity containing a
high-Kerr medium has been discussed [20–22].

Recent experiments on two atoms trapped at well-
characterized positions have unraveled many new aspects
of the collective behavior in a high-quality cavity [23,24].
Interesting results include the saturation of resonance fluores-
cence for constructive interference, bunching photon emission
for destructive interference, and suppression of superradiant
behavior due to strong backreaction of the cavity [24]. If
the atoms feel asymmetric coupling to the cavity field while
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these are driven symmetrically then one can obtain very large
second-order photon-photon correlation g(2), which has been
related to the predominance of two-photon processes [23].
Since cavities allow the possibility of a wide range of parame-
ters, the two-atom system can, in a different parameter domain,
exhibit hyper-radiance which is enhanced radiation beyond
superradiance [25]. These features can be understood by using
the possible transitions among the dressed states which depend
on the two coupling constants of the cavity mode with the
atoms. When the coupling constants are different, then new
channels open up leading to new physical effects. For example,
if the two coupling constants differ in phase by π , then the
two-atom system permits a two-photon resonant process which
is also one-photon resonant. Thus it is worthwhile to examine
the nature not only of second-order photon-photon correlation
but also of third-order photon-photon correlation g(3). The
anharmonicity of the dressed state spectrum enables us to
study many features of the photon blockade for a system of
two atoms.

In this work we present some interesting results for the
multiphoton blockade in a collective system. Specifically, we
present new results when the external field is tuned to either
one-photon resonance or two-photon resonance. We note that
a recent experiment with a single atom in a high-quality
cavity reports higher-order photon blockade [26], i.e., when
the absorption of a third photon is forbidden if the two-photon
absorption is resonant. However, we find many interesting
features of multiphoton blockade associated with the collective
behavior of two atoms that a single atom does not possess. We
show that in the case of in-phase radiation, sub-Poissonian
statistics of third-order photon-photon correlation can be ob-
served as a signature of three-photon blockade. We also show
that the quantum statistical properties changes significantly
if the atoms feels different coupling strength to the cavity.
For example, in the case of a π/2 phase shift, two-photon
blockade can be significantly improved, while three-photon
blockade with two-photon bunching can be realized in the
case of out-of-phase radiation.
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FIG. 1. (a) Schematic diagram of a single-mode cavity (wavelength λc) coupled with two two-level atoms driven by a pump field of
frequency ωL. The Rabi frequency of the pump field is labeled η. The spontaneous emission rate of the excited state for both atoms is 2γ and
the cavity decay rate is 2κ . Panels (b)–(d) represent the dressed state structure for the same coupling strength but with φz = 0, π/2, and π ,
respectively. Here, only few two-photon transitions are shown in panel (c).

II. MODEL AND DRESSED STATE PICTURE
OF MULTIATOM BLOCKADE

To realize multiphoton blockade, we now consider a scheme
consisting of two two-level atoms in a single-mode cavity [see
Fig. 1(a)].

The dynamical behavior of the system shown in Fig. 1(a)
can also be treated according to the Jaynes–Cummings model
and by using the master equation

d

dt
ρ = −i[H0 + HI + HL,ρ] + Lγ ρ + Lκρ, (1)

where ρ is the density matrix operator of this atom-cavity
system. In a frame rotating with the frequency of the external
field, the Hamiltonian of the atoms and the cavity field can be
expressed as H0 = h̄
A(S1

+S1
− + S2

+S2
−) + h̄
c(a†a) where


A = ωA − ωL and 
c = ωc − ωL are the detunings with
respect to the pump field frequency ωL. Here, ωA is the atomic
transition frequency and ωc = 2π/λc is the cavity frequency
with λc being the wavelength of the cavity mode. Si

+ (Si
−)

is the atomic raising (lowering) operator of the ith (i = 1,2)
atom, and a† (a) is the photon creation (annihilation) operator.
HI = h̄

∑
i=1,2 gi(a†Si

− + aSi
+) is the interaction Hamiltonian

between atoms and cavity, and the position-dependent atom-
cavity coupling strength is given by gi = g cos (2πzi/λc) with
zi being the position of the ith atom. HL = h̄η

∑
i=1,2(Si

− +
Si

+) represents the interaction Hamiltonian between atoms and
the coherent pumping field with Rabi frequency η. The Liou-
villian Lκρ = κ(2aρa† − a†aρ − ρa†a) is associated with the
cavity decay at rate κ , whereas Lγ ρ = γ

∑
i=1,2(2Si

−ρSi
+ −

Si
+Si

−ρ − ρSi
+Si

−) arises from the spontaneous decay of the
excited state of each atom at rate γ . As in Ref. [25], it is
convenient to show the physical mechanism of the system
by using the collective states |gg〉, |±〉 = (|eg〉 ± |ge〉)/√2
and |ee〉 as basis to rewrite the Hamiltonian. At this end,
the Hamiltonian can be expressed in terms of the collective
operators D

†
± = (S1

+ ± S2
+)/

√
2, yielding HL = √

2h̄η(D†
+ +

D+) and HI = H+ + H− with H± = h̄g±(aD
†
± + a†D±)/

√
2

and g± = g(1 ± cos φz). Here, φz = 2π
z/λc is the phase
shift between the radiation of two atoms with 
z = z2 − z1

being the distance between two atoms.
First, we consider the simplest condition of in-phase

radiation of two atoms by taking φz = 0 and g1 = g2 = g (i.e.,
the two atoms have the same coupling strength). In this case
the state |−〉 is uncoupled from the interaction with cavity.
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FIG. 2. The plots of field correlation function g(2)(0) (red solid
curve), g(3)(0) (green dotted curve), and the mean photon number
〈a†a〉 (blue dashed curve) as a function of the normalized detuning

/κ in the case of φz = 0. The black dash-dotted line indicates
g(2)(0) = g(3)(0) = 1 for Poissonian statistics, and the pink dashed
lines indicate the frequencies of the one-photon excitation in panel
(a) and the two-photon excitation in panel (b). Here, we choose η/κ =
0.1 and 1 for panels (a) and (b), respectively. The coupling constant
g/κ = 10 and the decay rate γ /κ = 1 are taken in both panels.

In the absence of the coherent pump field, it is easy to obtain a
set of eigenstates �

(1)
± =

√
2

2 | + ,0〉 ±
√

2
2 |gg,1〉 in one-photon

space with eigenvalues λ
(1)
± = h̄ωc ± √

2gh̄. Similarly, in
two-photon space, we can also obtain a set of eigenstates
�

(2)
0 = −

√
3

3 |gg,2〉 +
√

6
3 |ee,0〉 with eigenvalue λ

(2)
0 = 2h̄ωc,

and �
(2)
± =

√
3

3 |gg,2〉 +
√

6
6 |ee,0〉 ±

√
2

2 | + ,1〉 with eigenval-

ues λ
(2)
± = 2h̄ωc ± √

6gh̄ [shown in Fig. 1(b)]. The inclusion
of the pumping field would dress these eigenstates. If the pump
is weak then we can treat it as causing one- or two-photon
transitions. The study of such transitions provides useful
information.

III. NUMERICAL RESULTS FOR MULTIPHOTON
BLOCKADE

Numerically solving Eq. (1) and assuming ωc = ωA

(i.e., 
A = 
c ≡ 
), we plot the mean photon num-
ber (blue dashed curve), the field correlation function
g(2)(0) = 〈a†a†aa〉/(〈a†a〉)2 (red solid curve), and g(3)(0) =
〈a†a†a†aaa〉/(〈a†a〉)3 (green dotted curve) versus the normal-
ized detuning 
/κ in Fig. 2. When the atoms are driven by
a weak pump field (e.g., η/κ = 0.1), we show in Fig. 2(a)
that an excitation doublet can be observed at 
 = ±√

2g

corresponding to the one-photon excitation (indicated by the
pink dashed lines), leading to the transitions �(0) = |gg,0〉 →
�

(1)
± shown in Fig. 1(b). Because the pump field is detuned

for the transitions �
(1)
± → �

(2)
± , the two-photon transition is

off-resonance and thus weak leading to photon blockade.
Therefore, the corresponding two-photon correlation function

FIG. 3. Plots of the average photon number (blue dashed curve),
the field correlation function g(2)(0) (red solid curves), and g(3)(0)
(green dotted curves) versus the normalized detuning 
/κ with
φz = 0, g/κ = 10, and η/κ = 1. The black dash-dotted line indicates
g(2)(0) = g(3)(0) = 1 for Poissonian statistics and the pink dashed
line indicates the frequency for two-photon excitation. Here, we take
γ = κ/3 for panel (a) and γ = 3κ for panel (b).

g(2)(0) ≈ 0.05 < 1 is the evidence of the two-photon blockade.
At these frequencies we can also find that three-photon
correlation function g(3)(0) is extremely small. If one increases
the pump field, we find that the one-photon and two-photon
excitations (�(0) → �

(1)
± → �

(2)
± ) are both important, result-

ing in four peaks in the excitation spectrum at 
 = ±√
2g

and 
 = ±√
6g/2, respectively [see Fig. 2(b)]. Here, we take

η/κ = 1 and the pink dashed lines indicate the frequencies
for the two-photon excitations. It is clear to see that the field
correlation functions at 
 = ±√

2g satisfy g(2)(0) ≈ 0.3 < 1
due to the two-photon blockade. The g(3)(0) remains much
smaller than unity because the three-photon transition is highly
detuned. More interestingly, we find that at 
 = ±√

6g/2 the
three-photon correlation function g(3)(0) = 0.19 accompanied
with simultaneous two-photon correlation g(2)(0) (≈1.04) of
nearly unity. Thus at the two-photon excitation condition the
third photon is not absorbed, leading to three-photon blockade.
Here, we must point out that, in the case of in-phase radiations
of two atoms, the frequency regime to realize the three-photon
blockade [i.e., g(2)(0) > 1 and g(3)(0) < 1] is very narrow, so
that it is not a good candidate for experiments.

The numerical calculations show that the blockade is
sensitive to the atomic decay rate γ as compared with κ .
This is illustrated in Fig. 3. For a small atomic decay rate,
e.g., γ = κ/3, the two-photon transition can be excited much
more easily than in the case of γ = κ , so that the mean
photon number at 
 = ±√

6g/2 becomes much larger than
that at 
 = ±√

2g and the three-photon blockade can also
be observed with g(2)(0) ≈ 0.8 [see Fig. 3(a)] [27]. However,
in the case of large decay rate, i.e., γ = 3κ , the two-photon
transition can hardly be excited since the atom rapidly decays
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FIG. 4. Plots of the average photon number (blue dashed curve),
the field correlation function g(2)(0) (red solid curves), and g(3)(0)
(green dotted curves) versus the normalized detuning 
/κ . The phase
shift is chosen as (a), (b) φz = π/2 and (c), (d) π , respectively. The
pump field is (a) η/κ = 0.1, (b), (c) 1.0, and (d) 2.0.

to the ground state after one-photon transition takes place.
Therefore, the mean photon number decreases slightly and
the peaks associated with the one-photon and two-photon
excitations merge together [shown in Fig. 3(b)]. As a result, the
width of the peak becomes large. It is worth pointing out that
at 
 = ±√

6g/2 we can obtain g(2)(0) ≈ 1.25, g(3)(0) ≈ 0.4,
and we can find g(2)(0) ≈ 0.32, g(3)(0) ≈ 0.02 at 
 = ±√

2g,
indicating that we can realize two-photon and three-photon
blockade simultaneously.

In the following, we study the case of two atoms for φz �= 0
so that g1 �= g2. In this case additional pathways open up as
the asymmetric state |−〉 = (|eg〉 − |ge〉)/√2 also participates
in the transitions. To understand the physical mechanism,
one can use a set of collective states to describe the atomic
transitions. Defining α = (1 + cos φz)/(1 + cos2 φz)1/2 and
β = (−1 + cos φz)/(1 + cos2 φz)1/2, we can find three
eigenstates in one-photon space, i.e., �

(1)
0 =

√
2

2 α| − ,

0〉 +
√

2
2 β| + ,0〉 with eigenvalue λ

(1)
0 = h̄ωc and �

(1)
± =

∓
√

2
2 |gg,1〉 − 1

2β| − ,0〉 + 1
2α| + ,0〉 with eigenvalues λ

(1)
± =

h̄ωc ± h̄g0(1 + cos2 φz)1/2, respectively. In two-photon space,
we can obtain four eigenstates, labeled as �

(2)
0 =

−
√

3
3 |gg,2〉 +

√
6

3 |ee,0〉 and �
(2)
0 =

√
2

2 α| − ,1〉 +
√

2
2 β| + ,1〉

with the same eigenvalue λ
(2)
0 = 2h̄ωc and �

(2)
± =

√
3

3 |gg,2〉 ∓
1
2β| − ,1〉 ± 1

2α| + ,1〉 +
√

6
6 |ee,0〉 with eigenvalues λ

(2)
± =

2h̄ωc ± h̄g[3(1 + cos2 φz)]1/2, respectively. As shown in
Figs. 1(b)–1(d), one can easily obtain the transition strength by
calculating the dipole matrix element of operator

√
2η(D†

+ +
D+). These dressed states along with some of the important
transitions are shown in Figs. 1(c) and 1(d).

In Fig. 4, we plot the mean photon number 〈a†a〉 and field
correlation functions g(2)(0) and g(3)(0) versus the normalized
detuning 
/κ with different pump field and phase shift. We
show that the properties of the quantum statistics of the
system changes significantly with the collective behavior of
two atoms. First, we consider the case of π/2 phase shift

with pump field η = 0.1κ [Fig. 4(a)] and η = κ [Fig. 4(b)],
we find that the one-photon excitations are dominant although
the eigenstate become much more complicated, as shown in
Fig. 1(c). Now the one-photon excitations occur at 
 = ±g.
Comparing the results of in-phase radiation (see Fig. 2), it is
obvious that the two-photon blockade phenomenon is even
more pronounced. We find that g(2)(0) ≈ 0.01 in Fig. 4(a)
and g(2)(0) ≈ 0.03 in Fig. 4(b), which is nearly ten times
less than that of the in-phase condition for a strong pump
field. This characteristic can be explained by calculating
the dipole matrix elements associated with the one-photon
and two-photon excitations. In the π/2 case, the two-photon
transition strength is much smaller than that in the in-phase
condition, so that the second-order photon-photon correlation
drops significantly. For the out-phase case (i.e., φz = π ), the
two-photon excitation becomes important because �(0) →
�

(1)
± transitions are not allowed [see Fig. 1(d)]. As a result, we

can observe a single peak at the δ = 0 and simultaneously both
field correlation functions g(2)(0) and g(3)(0) are larger than
unity because the two-photon and the three-photon pathways
are fully resonant [see Figs. 4(c) and 4(d)]. If we increase
the strength of the pump to η = 2κ [Fig. 4(d)], then the
two-photon excitations �(0) → �

(2)
± become strong enough to

be observed. In the excitation spectrum shown in Fig. 4(c) there
exist three peaks associated with the one-photon excitations
(
 = 0) and two-photon excitations (
 = ±√

6g/2). At 
 =
0, we find g(2)(0) ≈ 2.15 and g(3)(0) ≈ 3.45 since the two-
photon and three-photon pathways are fully resonant. At 
 =
±√

6g/2, we find g(2)(0) ≈ 36.55 and g(3)(0) ≈ 1.89 so that
the three-photon blockade is not well developed for very weak
pump. Increasing the pump field, the three-photon blockade
occurs with two-photon bunching, as shown in Fig. 4(d).
The corresponding field correlation functions are given by
g(2)(0) ≈ 3.54 and g(3)(0) ≈ 0.18. The very large values of
g(2)(0) and g(3)(0) occur in the region where photon numbers
are very small. These large values are not very meaningful
because the measurements of quantum statistics in regions of
very small photon numbers are difficult. We have thus seen
that the collective two-atom system can lead to a wide variety
of multiphoton blockade.

We conclude this paper by comparing results with the
single-atom case (see Fig. 5). In Fig. 5(a), we take η/2π =
1.6 MHz and other system parameters are given by κ/2π =
2.0 MHz, γ /2π = 3.0 MHz, and g/2π = 20 MHz according
to Ref. [26]. Obviously, the two-photon blockade phenomenon
can be observed at 
 = ±g since the two-photon excitations
are nonresonant, which has been widely studied in the literature
[12,14,15]. The small peaks at 
 = ±√

2g/2 correspond to
the two-photon excitation process if the pump field frequency
satisfies ωL = ωc ± √

2g/2. We find that the photon-photon
correlation satisfy g(2)(0) ≈ 1.8 and g(3)(0) ≈ 0.8 at 
/2π =
±15 MHz (near two-photon excitation). Thus the allowed
two-photon transition leads to g(2)(0) > 1; however, the three-
photon blockade occurs which has been recently reported [26].
In Fig. 5(b), we show the numerical results of a two-atom
system with π phase shift. The system parameters are the same
as those used in Fig. 5(a), but we take η/2π = 6 MHz. We
find that the photon-photon correlation satisfies g(2)(0) ≈ 2.0
and g(3)(0) ≈ 0.2 at 
 = ±√

6g/2 (two-photon excitation).
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FIG. 5. Plots of field correlation function g(2)(0) (red solid curve),
g(3)(0) (green dotted curve), and mean photon number (blue dashed
curve) as a function of normalized detuning 
/κ for (a) one-atom
system and (b) two atoms system with π phase shift. The black dash-
dotted line indicates g(2)(0) = g(3)(0) = 1 for Poissonian statistics and
the gray area indicates the frequency regime to realize three-photon
blockade. Here, we choose (a) η/2π = 1.6 MHz and (b) 6 MHz. Other
system parameters are given by κ/2π = 2.0 MHz, γ /2π = 3.0 MHz,
and g/2π = 20 MHz according to Ref. [26].

Comparing these two plots, we find some advantages for the
system with two out-of-phase atoms: (i) The frequency regime
to realize three-photon blockade in a two-atom system is much
wider than that in a one-atom system. (ii) The three-photon
blockade phenomenon can be significantly improved in the
two-atom system since the one-photon excitations are not
allowed in the out-of-phase case.

IV. CONCLUSIONS

In conclusion, we have shown that a collective system of
two two-level atoms in a high-quality cavity can display a much
richer variety of photon blockade phenomena. This arises from
the dressed state structure of the system of interacting cavity
field and atoms. The dressed state structure and allowed transi-
tions depend on the two coupling constants of the atoms to the
cavity field. We found that, in the case of in-phase radiations
of two atoms, the three-photon blockade can be observed with
two-photon bunching if the excitation frequency is tuned to
the two-photon transition. The collective behavior depends
on the relative phase, i.e., the location of atoms can change
significantly the properties of quantum statistics of the system.
In the case of a π/2 phase shift the two-photon blockade can
become quite prominent even under conditions of a weak pump
field, if the coupling constants g1 and g2 are out of phase. In
addition, the two-photon blockade phenomenon disappears,
but the three-photon blockade phenomenon is significantly im-
proved. Thus the photon blockade effects in two-atom systems
can be quite different from the case of single-atom systems.
The two-atom system displays very pronounced three-photon
blockade which should be observable in experiments of the
type reported recently. The three-photon blockade should be
useful for generating nonclassical photon pairs.
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