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Surface-admittance equivalence principle for nonradiating and cloaking problems
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In this paper, we address nonradiating and cloaking problems exploiting the surface equivalence principle, by
imposing at any arbitrary boundary the control of the admittance discontinuity between the overall object (with or
without cloak) and the background. After a rigorous demonstration, we apply this model to a nonradiating problem,
appealing for anapole modes and metamolecules modeling, and to a cloaking problem, appealing for non-Foster
metasurface design. A straightforward analytical condition is obtained for controlling the scattering of a dielectric
object over a surface boundary of interest. Previous quasistatic results are confirmed and a general closed-form
solution beyond the subwavelength regime is provided. In addition, this formulation can be extended to other
wave phenomena once the proper admittance function is defined (thermal, acoustics, elastomechanics, etc.).
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I. INTRODUCTION

In search of a method for calculating the radiated power
from infinitely thin scattering structures, Schelkunoff was led
in 1936 to certain equivalence theorems in order to find the
causal relation between arbitrary radiating fields and sources
located at a surface boundary [1]. In 1938, he also highlighted
the concept of impedance for radiating problems as a powerful
tool that “brings out a certain underlying unity in what
otherwise appear diverse physical phenomena” [2, p. 17]. In
1973, Devaney and Wolf established necessary and sufficient
conditions for localized sources with special arbitrary fields,
mainly nonradiating outside their domain of definition, ac-
cording to a set of theorems they rigorously derived [3] and
further developed in the design of invisible scatterers [4,5]. In
recent years, such nonradiating sources, difficult to be excited
naturally in a bare particle, have been impressed artificially
through the insertion of a properly designed cloak [6–9],
attached or detached to the original scatterer (uncloaked).

In this framework, exploiting the surface equivalence
principle, we impose the design of nonradiating sources in
volumetric domains as projected at an arbitrary surface bound-
ary, enclosing the bare particle (nonradiating problem) or the
uncloaked object with its coating layer (cloaking problem).
Recently, the surface equivalence principle has been applied
to the synthesis of planar devices with reflectionless sheets [10]
and to cloak conformal structures with antenna elements [11].

Instead of reasoning on the sources as discontinuities of
tangential fields at a thin surface [1], we show that all the useful
information relevant to the volumetric interactions between
the object (without or with the surrounding cloak) and the
background can be recast in terms of fields ratio over a
surface of choice, directly providing admittance functions:

*giuseppe.labate@polito.it

This concept is valid at any frequency regime and without
any approximation as highlighted by Schelkunoff [2].

For cloaking problems, several approaches exist in the
literature for the design of the coating layer according to
the size and/or constitutive parameters of the object to be
hidden, such as plasmonic cloaking (PC) [6], transformation
optics (TO) [7,8], and mantle cloaking (MC) [9,12,13].
The TO technique is based on a spatial transformation of
fields, preserving their free-propagating characteristic outside
a certain region (exact zero scattering), while compressing
wave propagation in the annular cloaking medium, through
its anisotropic layout, rerouting the energy flow [7,8]. In such
a way, a hole for the fields is created, with the possibility of
hiding whatever object inside the cloak once defined its size,
regardless the constitutive parameters of the object itself.

The PC and MC approaches are based on the scattering
cancellation method [6,9], where, by taking into account the
scattering from the uncloaked object, the outgoing scattered
fields are turned off to zero or to very low values by a bulk
plasmonic or volumetric metamaterial coating (PC) [6] or,
in the case of the MC approach [9], by a thin metasurface,
mathemathically modeled as an impedance sheet Zs .

The use of such surface impedance cloaks turns out to be
useful if also related to what Schelkunoff reported in his paper
on the impedance concept [2], about “the idea of extending the
V/I relation (voltage-current ratio) from circuits to radiation
fields” (p. 18).

In order to establish a complete nonradiating and cloaking
condition valid at any frequency regime, we exploit the sur-
face equivalence principle [1] combined with the impedance
concept [2], by considering the bare object (without or with
cloak) and the background in terms of their admittance
functions relative to a specific incoming wave. This concept
is generally exploited in static or quasistatic models (mainly
circuit problems), but it is also implicitly contained in Lorenz-
Mie theory [14]. In this work, the problem is particularized
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to electromagnetics, even though such methodology can be
extended in a straightforward manner to any other physical
scattering phenomenon, once the admittance function is
properly defined, such as in elastic [15], thermal [16], or
acoustic [17] nonradiating and cloaking problems.

II. THEORY

As a starting point, we reconsider one of the two classes
of nonradiating solutions as derived from the Devaney-Wolf
theorem [18]. According to Theorem III as originally derived
[3], a necessary and sufficient condition for a physical (or
equivalent) surface source distribution �Qs , projected along its
unit polarization vector q̂, to be nonradiating is∫

�

[ �Qs(ρ) · q̂]e−ikbρd� = 0 with ρ ∈ �, (1)

where kb is the wave number in the background medium and
� is the boundary surface under consideration. By ensuring to
zero all its Fourier components, Eq. (1) predicts the existence
of nonradiating sources. An apparently trivial solution that
satisfies the Devaney-Wolf theorem is

Qs(�) =
{ �Js(�) = 0

�Ms(�) = 0
, (2)

where the general sources at the surface � are Qs(�), defined
in terms of �Js and �Ms , electric and magnetic surface current
densities, respectively. Possessing all local zeros in the domain
where the source itself is localized (in this case, the surface
boundary �), this configuration has been referred as the strong
solution for nonradiating and cloaking problems [18], due
to its vanishing components at any considered point. This
kind of solution leads to nontrivial results because Eq. (1)
is applied to equivalent fictitious sources rather than physical
actual sources.

As rediscovered by Schelkunoff [1], a general radiating
event, supported by physical scatterers, can be represented and
replaced by electric and magnetic surface equivalent sources
located at an arbitrary boundary � as

�Js(�) = n̂ × [ �H (�+) − �H (�−)], (3)

�Ms(�) = −n̂ × [ �E(�+) − �E(�−)], (4)

where �Js and �Ms surface sources, located at �, are proportional
to the discontinuity of tangential magnetic and electric fields
at the outer (+) and the inner (−) side of the surface boundary
�. If such independent electromagnetic sources are identically
zero at �, according to Eq. (2), a nonradiating and cloaking
condition is thus achieved, giving

�H (�+) = �H (�−), (5)

�E(�+) = �E(�−). (6)

The simultaneous conditions in Eqs. (5) and (6) can be
rewritten in a compact form, using the admittance functions as
defined in terms of magnetic-electric fields ratio, forming for
each component the condition

Ỹb(�+) − Ỹd (�−) = 0, (7)

FIG. 1. Nonradiating problem: volumetric scattering from a bare
dielectric particle with permittivity εd in a background medium
εb (left) and equivalent treatment at an arbitrary boundary � with
normalized admittances Ỹd (·) for the dielectric object at �− and Ỹb

for the background material at �+ (right).

which aims to control the ratio of the magnetic and electric
tangential fields (normalized admittance functions), through
properly incorporating the scatterers at the outer (background
material) and the inner side (dielectric material) of the surface
boundary �.

Consider for simplicity, as shown in Fig. 1, a dielectric
cylinder of absolute permittivity εd , permeability μb, and
circular transverse section of radius a in an infinite background
medium of permittivity εb and permeability μb. Due to the
arbitrary choice of the surface boundary, we choose � to be
directly attached, at ρ = a, to the surface of the bare dielectric
cylinder, positioned with axis parallel to ẑ and illuminated by
an incoming TM polarization wave (the largest contribution to
scattering for dielectrics). In this scenario, the total fields can
be analytically computed using Lorenz-Mie theory [14]. Even
if the object is still without any cloak, there is a nonradiating
condition for which the coefficient cTM

n vanishes [6] or
becomes near zero for a specific scattering order, without any
coating. Applying Cramer’s rule, such condition reads∣∣∣∣∣∣

Jn(kda) Jn(kba)

kdJ
′
n(kda) kbJ

′
n(kba)

∣∣∣∣∣∣ = 0, (8)

which is valid for each harmonic index n. Solving this
determinant and rewriting such relation in terms of admittance
functions, the nonradiating condition reads

−i
J

′
n(kba)

Jn(kba)
+ i

√
εr

J
′
n(kda)

Jn(kda)
= 0, (9)

where εd ≡ εrεb and with time convention implicitly assumed
to be eiωt . The first term can be recognized as the normalized
admittance Ỹb(�+) (ratio of normalized magnetic and electric
field functions) as computed at ρ = a+ for the specific cylin-
drical harmonic of choice in a free-space scenario (complete
background) [19]. This is consistent with Schelkunoff’s idea
of considering the impedance or admittance “as an attribute of
the field as well as of the body or the medium which supports
the field, so that the impedance to a plane wave is not the
same as the impedance to a cylindrical wave, even when both
are propagated in infinite free-space” [2] (p. 18). The same
reasoning can be applied to the second term, recognized to be
the normalized admittance Ỹd (�−) = −i

√
εrJ

′
n(kda)/Jn(kda)

for each incoming cylindrical harmonic when traveling in
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a medium with εr as relative permittivity [19]. Beyond the
trivial case when εr = 1, Eq. (9) can be therefore interpreted
as the fact that the scattering due to a certain harmonic can
be minimized when the admittance (or impedance) of the two
media (bare particle and background) is the same at the surface
of the object for the harmonic of interest.

As shown in Fig. 1, this interpretation of a homogeneous
dielectric particle in a volumetric nonradiating condition,
which can show weak scattering responses even without any
loading surface for some frequency values, can serve as surface
admittance model for dielectric nanoparticles supporting a
nonradiating anapole mode and metamolecules [20,21].

Once reconsidered the nonradiating volumetric problem at
the surface boundary �, it becomes straightforward to solve
also the cloaking problem.

Equation (9) can now be altered and controlled through the
insertion of a proper cloaking surface impedance, or mantle
cloak, which is an additional normalized admittance sheet Ỹs :
the intentional choice of �, to be directly attached to the surface
of the dielectric cylinder, leads the fictitious equivalent surface
sources to be sustained as zeros and implemented by a physical
dispersive cloak. Due to the insertion of such lumped surface
admittance in parallel, the relation in Eq. (9) is modified into

Ỹb(kba,n) − [Ỹd (kba,εr ,n) + Ỹs] = 0, (10)

where the dependence from the main dimensionless variables
of the cloaking problem are three: the normalized size with
respect to the background wavelength kba = 2πa/λ, the
relative permittivity of the uncloaked object εr , and the
cylindrical harmonic index n. Similar to Eq. (9), we can expect
that the proper tailoring of Ỹs in Eq. (10) is able to match the
two impedances on the surface of the object, and therefore to
suppress the scattering contribution from harmonic n.

Without solving the entire Lorenz-Mie scattering for the
overall cloaking problem [9,12] but perfectly consistent with
it, the analytical formula (10) predicts the required cloaking
impedance Zs = ZB/Ỹs = Rs + iXs , where ZB = √

μb/εb is
assumed as the reference background impedance with respect
all the other values are normalized to (tilde sign on top), as
shown in Fig. 2.

In essence, Eq. (10) exploits the equivalence principle as
applied to nonradiating problems: If the scattered field on a
surface is identically zero, being sustained by the absence of
sources, it should be zero even everywhere outside the surface
boundary �. Therefore, by making sure that the impedance is
matched on the surface of interest, which is achieved adding
a suitably designed mantle cloak satisfying Eq. (10), we can
make sure that, for the harmonic of interest, the scattering is
zero everywhere.

Once defined the constitutive parameter εr and the radius a

of the object to be hidden, the residual scattering for each
harmonic can be associated to the imaginary part of the
difference between the background and the dielectric object
admittances. Considering the frequency regime λ ≡ kba and
each n cylindrical harmonic, we define the function �(λ,n) as

−i�(λ,n) ≡ Ỹb(λ,n) − Ỹd (λ,εr ,n). (11)

When such residual function is different from zero for the
bare particle, a surface load is required in order to achieve a
cloaking effect for the harmonic of interest and it is found to

FIG. 2. Cloaking problem: cloaked dielectric cylinder, having
permittivity εd and radius a, with surface impedance Zs , in a
background region εb (bottom). Formulation in terms of normalized
admittances Ỹd (dielectric), Ỹs (cloak), and Ỹb (background), all
interacting as lumped elements (top).

be equal to Ỹs(λ,n) = −i�(λ,n) or explicitly

Ỹs(λ,n) = −i

[
J

′
n(λ)

Jn(λ)
− √

εr

J
′
n(λ

√
εr )

Jn(λ
√

εr )

]
∀n,∀λ, (12)

which is exactly the value needed to compensate such residual
difference or mismatch.

Interestingly, it is only over a single surface that each
Ỹ function (bare object, cloak, and background) takes into
account both information about the field shape and material
constitutive parameters of the object: Consistent with the
surface equivalence principle [1], this ensures the cloaking
effect to be achieved at any arbitrary distance far away from
the initial surface boundary.

Equation (12) is consistent with the closed-form analytical
formula previously derived in the subwavelength (or qua-
sistatic) frequency regime for mantle cloaks [9,12,13]. In the
conformal case for γ ≡ a/ac = 1, the value of the normal-
ized surface admittance Ỹ QS

s = G̃QS
s + iB̃QS

s in a quasistatic
regime can be obtained directly from Lorenz-Mie theory as
[9,12]

XQS
s = + 2

ωaεb(εr − 1)
or B̃QS

s = −λ
(εr − 1)

2
. (13)

The same result is confirmed as a particular case in
Eq. (12), solved for the dominant mode n = 0 in the quasistatic
frequency regime. In the small argument limit for x → 0, the
Bessel functions become J0(x) ≈ 1 and J

′
0(x) ≈ −x/2, and

thus the result reads

Ỹs(λ 
 1,n = 0) = −i

[
−λ

2
+ √

εr

λ
√

εr

2

]
= iB̃QS

s . (14)
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III. RESULTS AND DISCUSSION

We consider now a couple of examples of cloaking for
cylinders, in order to highlight the efficient analytical design
of mantle cloaks based on this formula. Consider first a di-
electric cylinder with a = 0.15λ (thus, λ = 0.3π ), possessing
a relative permittivity εr = 3 with respect to the background
εb = ε0 (free space, thus ZB = Z0 = 120π 
), loaded by a
surface impedance at ac = a to achieve an optimal scattering
suppression. Using classical Lorenz-Mie theory as applied to
the uncloaked cylinder plus the impedance sheet, the analytical
result in quasistatic condition, using Eq. (13), leads to the
normalized value Ỹ QS

s = −i0.3π (ZQS
s = +i400 
). We can

now analytically derive the optimal value of required surface
impedance by using Eq. (12). Information about the dominant
mode for a certain frequency regime λ can be derived in a
straightforward manner in terms of �(λ,n), which represents a
dimensionless quantity that remains real for lossless scatterers
and backgrounds. It is expected that the largest mismatch
will correspond to the largest contribution (dominant) into the
outgoing scattered field for the n cylindrical harmonic mode.
For this reason, the strategy here adopted to build the complete
dispersion response of the normalized surface admittance is

Ỹ opt
s (λ) = −i max

n
�(λ,n). (15)

For monochromatic illumination, the value of the normal-
ized admittance gives a surface impedance value of Z

opt
s =

+i216.80 
 in the frequency regime λ = 0.3π , for which
the first dominant mode to be suppressed appears to be
n = 0. In Fig. 3, the three cases are shown in terms of
absolute value of scattered fields (here, the incoming field
is completely polarized parallel to the cylinder’s axis): the
uncloaked dielectric object (a), the cloaked device with Zs =
ZQS

s (b), and the cloaked system with Zs = Z
opt
s (c).

For a monochromatic incoming field, with TM polarization,
traveling from the left to the right of each panel, the scattered
field is maximum for the uncloaked dielectric, whereas it is
clearly reduced for the two cloaked device. For the impedance
sheet with ZQS

s , reflections exist in the backward direction,
whereas for the impedance coating with Z

opt
s very low scattered

energy in the outside region is observed.
For wide-band incoming signals, the optimal Zs , once fixed

on the geometrical and constituive parameters of the cloaked
system, can be analytically derived from the complete function
Ỹs(λ) using Eq. (15). In order to suppress the first dominant
mode at any frequency, it is expected that, as frequency
changes, also the first dominant mode moves its index n,
with consequent jumps in the dispersion of Xs as obtained
in Eq. (15).

In order to validate this effect, the dispersion of the surface
impedance Z

opt
s (λ) is depicted as a function of the normalized

diameter Dλ = λ/π in the range [0.1 ÷ 0.7] for the same
cylindrical object. Interestingly, such functional dependence
of the surface impedance with respect to the inverse of λ (thus,
directly proportional to ω) is monotonically decreasing: in
order to realize the dispersion of such admittance or impedance
cloak, which would realize a broadband cloaking device,
the Foster’s reactance theorem has to be broken [22] and
non-Foster metasurfaces, loaded with active elements [13],

FIG. 3. Absolute value of the scattered field (with xy axis
normalized to λ) for the frequency regime value λ = 0.3π ≈ 0.94: (a)
uncloaked dielectric object, (b) cloaked device with ZQS

s = +i400 
,
and (c) cloaked system with Zopt

s = +i216.80 
.

have to be employed. For this reason, this formulation is
appealing to explore the limitations as dictated by all passive
Foster cloaks [23].

As shown in Fig. 4, a jump arises when λ = 0.45π , for
which �(λ,n = 1) > �(λ,n = 0) and the first dominant term
passes from n = 0 (the same as in the quasistatic regime) to
n = 1 (and it is maintained up to the final value λ = 0.7π ).
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FIG. 4. Dispersion behavior of Xs , imaginary part of Zs = iXs .
Comparison between quasistatic approximation (circle line) and
dynamic analytical formulas (triangle line).

The gain in term of SCS for the cloaked scenario is defined,
with respect to the uncloaked scenario, as

GSCS(λ) =
∑Nmax

n=0 (2 − δn,0)|cTM
n (λ)|2clk∑Nmax

n=0 (2 − δn,0)|cTM
n (λ)|2unc

, (16)

where δn,0 is the Kronecker δ, which takes into account the
symmetric contribution for ±n harmonics with respect to the
central index n = 0, as mentioned above. The SCS gain leads
to less-than-unity values (thus a negative sign in dB units)
for the GSCS(λ) function if the scattering of the uncloaked
structured is very large with respect to the cloaked case. As
reported in Fig. 5, this is the case for the entire frequency
regime window. As also shown in Fig. 3 at λ = 0.3π , the
improvement of the optimal surface impedance with proper
dispersion (triangle line) is around −10 dB with respect to the

FIG. 5. Gain functions (dB units) as defined in Eq. (16). Qua-
sistatic approximation formula (circle line) and optimal analytical
formula (triangle line), with the dispersion of Fig. 4. As a reference,
the uncloaked case is the 0-dB line.

cloaked case with quasistatic approximation formula (circle
line). Around the frequency regime value λ = 0.45π ≈ 1.41,
the function G

opt
SCS(λ) becomes slightly worse with respect to

G
QS
SCS(λ). This can be due to a good trade-off achieved by

Eq. (13) not for the cancellation of the entire harmonic n = 0
but for a minimization of the overall mismatch for n = 0 and
n = 1 simultaneously.

From λ = 0.45π to λ = 0.55π , both gain functions are
similar, because by chance this corresponds to similar values
in the Zs as reported in Fig. 4 and, towards the end, while
the quasistatic approximation design gets closer to 0 dB (the
uncloaked case), the analytical formula exploited for the first
dominant term is able to achieve a drastic reduction around
−6 dB from λ = 0.65π until the end of this frequency regime
window.

FIG. 6. Real part of the total field (with axis normalized to λ)
for the frequency regime value λ = 0.7π ≈ 2.20: (a) uncloaked
dielectric object and (b) cloaked system with Zopt

s = +i4.93 
 with
inset for nonsaturated field levels in the range [−20, + 20] V/m.
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The real part of the total electric field is shown for the
frequency regime λ = 0.7π ≈ 2.20 in Fig. 6, for the uncloaked
and optimal cloaked cases with the first dominant mode
(n = 1) suppressed with Z

opt
s = +i4.93 
. An inset has been

reported in Fig. 6(b), in order to appreciate the internal fields,
with increased levels in the range [−20, + 20] V/m because
now the energy is no more scattered outside but it remains
confined inside the object itself as concentrated energy.

When the overall object size exceeds λ � 2, it becomes
more challenging to reduce the SCS using a single impedance
sheet as observed beyond this frequency window (not reported
here). This implies that for λ � 2 the scattering is dominated
by two (or more) different dominant cylindrical harmonics but,
due to the fact that each cloaking shell (even in the volumetric
case) can control one single harmonic at time, there is at least
the direct control for cancellation of only the first dominant
term. This does not ensure a reduction in the overall SCS if the
second dominant term (or the third, and so on) is comparable
with respect to the first contribution. However, a systematic
generalization, based on such surface admittance equivalence
principle, towards N -impedance layers for n = Nmax harmonic
control is under investigation.

IV. CONCLUSION

A reformulation of the surface equivalence principle, in
terms of discontinuity in tangential fields components [1],

has been proposed in terms of field ratio at the same
surface boundary. For nonradiating and cloaking problems,
the overall scattering interactions can be written in terms
of the admittance functions for the bare object (without or
with cloak) and background, calculated over a surface of
choice. For nonradiating problems, the zero surface sources
solution of the Devaney-Wolf theorem ensures an admittance
model, appealing for anapole modes and metamolecules with
weak radiation properties [20,21]. For cloaking problems, the
closed-form solution for the required surface impedance is
adjusted to ensure zero scattering for a specific cylindrical
harmonic excitation. Previous findings, based on Lorenz-
Mie scattering theory, are confirmed in quasistatic regime.
Comparisons, with a deep analysis on the role of the frequency
regime λ in terms of harmonic scattering control, have been
also performed, validating this cloaking admittance model,
which is appealing for the design of non-Foster metasurfaces.
These findings can be generalized in a straightforward manner
towards multilayer structures and, in addition, for any wave
phenomenon once the admittance or impedance concept, as
envisioned by Schelkunoff [2], can be properly defined and
applied.
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