
PHYSICAL REVIEW A 95, 063839 (2017)

Light scattering by dielectric bodies in the Born approximation
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Light scattering is one of the most important elementary processes in near-field optics. We build up the Born
series for scattering by dielectric bodies with sharp boundaries. The Green’s function for a two-dimensional
homogeneous dielectric cylinder is obtained. As an example, the formulas are derived for a scattered field of two
parallel cylinders. The polar diagram is shown to agree with the numerical calculation by the known methods of
discrete dipoles and boundary elements.

DOI: 10.1103/PhysRevA.95.063839

I. INTRODUCTION

In the past decades substantial progress has been achieved
in nano-optics [1–3]. However, a significant methodological
deficiency still persists even for basic problems, like scattering
by nanosized bodies. Unlike “macroscopic” optics, where
transverse waves (for instance, plane or spherical) are very
useful to study, say, diffraction and interference, in the
subwavelength region the treatment of these phenomena
becomes much more complicated. The reason is evanescent
waves near the boundary of illuminated objects. Such waves
usually can be neglected in optical processes with large
scatterers, but in nano-optics this is not the case. Strong
coupling via evanescent waves is the key feature that most
practical nanophotonics tasks focus on. They include a light
energy concentration within a few-nanometer range [4], high-
efficiency broad-band solar cells [5], light-induced forces at
the nanoscale [6,7], surface-enhanced Raman spectroscopy
[8], and the tomographic reconstruction of a nanostructure [9].

Only a few problems allow analytical solutions in photon-
ics. Along with the classical papers on one cylinder [10,11],
the scattering from two cylinders [12] and two perfectly
conducting spheres [13] can be found in the quasistatic limit
using bipolar coordinates; a perfectly conducting cylinder
near a surface was considered in terms of cylindrical wave
expansion [14]. In more complicated cases, numerical or
semianalytical methods become the only ones capable of
calculating electromagnetic fields in both near and far regions,
for instance, in a system of several cylinders or a periodic chain
of them [15–17].

Analytical approximations are very useful for understand-
ing the scattering properties of a structure, at least for testing
numerical methods. There is a universal method to derive the
formulas based on the Born approximation. It consists in taking
the incident field in place of the total field at each point inside
the scattering potential. If the scatterer is not sufficiently weak,
the next approximations are exploited. Several recent optical
research studies have been devoted to high-order terms of the
approximation. In optical diffusion tomography high orders
are necessary for solving the nonlinear inverse problem [18].
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The second-order approximation is needed for numerical
reconstruction of a shallow buried object by the scattered
amplitude [19]. The resonant-state expansion approximation
uses second-order terms to find eigenfrequencies in an optical
fiber waveguide [20]. However, the traditional Born series is
not applicable to a system of dielectric bodies with sharp edges,
as it does not satisfy the boundary conditions.

The main goal of the present work is to construct a
modified Born approximation for a set of dielectric bodies. The
integral relations are derived and the series for two dielectric
cylinders is obtained. We managed to account for the first
cylinder exactly by means of the special Green’s function for
a cylindrical dielectric, which intrinsically includes multiple
scattering processes with this cylinder. Thus, another aim of
our paper is to derive that special Green’s function.

The Born series is constructed in Sec. II. Scattering by two
cylinders, considered in Sec. III, illustrates the application
of the developed approach. The obtained formulas are in
agreement with numerical calculations using surface integral
equations and the discrete dipole approximation (DDA). The
Green’s function is derived in Appendix A: the expressions for
a source point inside and outside the dielectric are given for the
cases of both p and s waves. The boundary element method
(BEM) has been discussed in our works [21–23] devoted to the
scattering by cylinders on a dielectric substrate. The formulas
for the two-dimensional discrete dipole method are derived in
Appendix B.

II. BORN SERIES

The Helmholtz equations for magnetic fields inside and
outside the dielectric (denoted by the subscripts “in” and “out,”
respectively) are(

� + k2
1

)
Hin(r) = 0,

(
� + k2

0

)
Hout(r) = 0, (1)

where � is the two-dimensional Laplace operator with respect
to the x and y variables, wave numbers k0 = ω/c and k1 =√

εω/c, c is the speed of light, ω is the frequency, and ε is the
dielectric permittivity. The field Hout in free space is slightly
changed due to a weak perturbation, which is small enough
(i.e., k1a � 1, where a is its size) and/or low-polarizable
(|ε − 1| � 1). The internal field Hin can be quite different.
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FIG. 1. Domains of integration D+ and D− for Eq. (3). The
boundary of D− consists of γ = ∂D+ (solid line) and the external
infinitely remote contour � (dashed line). Arrows indicate external
normals n to ∂D−.

The Green’s function obeys the equation

(� + k2)G = δ(r − r′). (2)

Here k is the corresponding value: k = k0 or k = k1.
We use Eqs. (1) and (2) to derive the relations between

amplitudes at the boundary:

Hin(r) =
∫
D+

[Hin(r′)�Gp − Gp�Hin(r′)]dS ′,

Hout(r) =
∫
D−

[Hout(r′)�G − G�Hout(r′)]dS ′, (3)

where dS ′ is the element of integration over the dielectric
domain D+ or free-space domain D− (Fig. 1). The Green’s
function G(r,r′) describes free space, and Gp(r,r′) is a similar
function that corresponds to a dielectric with permittivity ε.
The Green’s function of free space is the solution of Eq. (2)
with k = k0 and can be written as

G(r,r′) = 1

4i
H

(1)
0 (k|r − r′|)

= 1

4i

∞∑
m=−∞

eim(ϕ−ϕ′)
{
H (1)

m (kr )Jm(kr ′), r > r ′,
H (1)

m (kr ′)Jm(kr ), r ′ > r ,

(4)

where Jm, and H (1)
m are Bessel and Hankel functions [24].

The boundary conditions are

Hin|γ = Hout|γ ,
1

ε

∂Hin

∂r

∣∣∣∣
γ

= ∂Hout

∂r

∣∣∣∣
γ

, (5)

where γ is the contour separating the D− and D+ domains.
Applying Green’s theorem [25] to Eq. (3) we can reduce the
surface integral as

Hin(r) =
∫

γ

n[Hout(r′)∇Gp − εGp∇Hout(r′)]dl′,

Hout(r) = −
∫

γ

n
[
Hin(r′)∇G − 1

ε
G∇Hin(r′)

]
dl′

+
∫

�

n[Hout(r′)∇G − G∇Hout(r′)]dl′, (6)

where dl′ is the element of path, n is the unit vector along
the external normal, and � is some remote contour (Fig. 1).

The integral over � can be calculated explicitly by the known
relation for the Wronskian determinant [24]:

−kρ

4i

∫ π

−π

[
H

(1)
0 (kρ) + i cos ϕH

(1)
1 (kρ)

]
eikρ cos ϕ dϕ

= 2πkρ
[
J1(kρ)H (1)

0 (kρ) − J0(kρ)H (1)
1 (kρ)

] = 1.

Then this integral reproduces the field of a plane incident wave
H(0)

out = H0e
ikr. Equations (6) are similar to boundary integral

equations; the only difference is the absence of the factor 1/2
in the terms outside the integral. These terms are given within
the external or internal limit, in contrast to boundary equations,
where they are determined directly at the contour [26].

The successive approximation series can be built up for
both external and internal fields:

Hout = H(0)
out + H(1)

out + · · · , Hin = H(0)
in +H(1)

in + · · · . (7)

Then from (6) we get the recurrent relations:

H(j )
in (r) =

∫
γ

n
[
H(j )

out(r
′)∇Gp − εGp∇H(j )

out(r
′)
]
dl′,

H(j+1)
out (r) =

∫
γ

n
[
G

ε
∇H(j )

in (r′) − H(j )
in (r′)∇G

]
dl′. (8)

The approximation exactly takes into account the boundary
conditions, what is distinct from the Born approach in quantum
mechanics. This is to emphasize that the shape of the contour
γ can be arbitrary; the circular cylinder (considered in the next
section) is, basically, just the simplest example. The dielectric
region D− could be unconnected; in that case the contour γ is
the sum of all the boundaries of dielectric domains.

III. SCATTERING BY TWO CYLINDERS

Let us now consider two cylinders (see Fig. 2). There
are three domains, with different dielectric permittivities. The
Helmholtz equation (2), is valid for k0 = ω/c, k1 = √

εω/c,

E0

H0
k0 x

y

ε, a

x̃

ỹ

εp, b
R

r
r̃

r′

r̃′
α

FIG. 2. Scheme of p-wave scattering by two parallel cylinders.
The dielectric permittivity and the radius are indicated in the first (left)
and second (right) cylinders. The external infinitely remote contour
� is not shown.
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FIG. 3. Polar diagram of scattering by a pair of equal dielectric
cylinders at a = b = 0.1 μm, εp = ε = 2.25, and R = 0.3 μm at
incidence angle α = −π/4, wavelength λ = 1.5 μm, and distance
between the observation point and the center of the first cylinder
r = 2λ. First Born approximation (dotted line), second Born approx-
imation (dashed line), and BEM (solid line).

or kp = √
εpω/c, and condition (5) is

Hin|γ = Hout|γ ,
1

ε

∂Hin

∂r

∣∣∣∣
γ

= ∂Hout

∂r

∣∣∣∣
γ

,

Hp|γp
= Hout|γp

,
1

εp

∂Hp

∂r̃

∣∣∣∣
γp

= ∂Hout

∂r̃

∣∣∣∣
γp

. (9)

We treat the second cylinder as the perturbation here. Let us
obtain a number of successive approximations for the whole
complicated configuration shown in Fig. 2. We exploit the
Green’s function for cylindric geometry (A12). Using this
function makes it possible to account for the first cylinder
exactly including the multiple scattering. The second cylinder
is described in terms of the Born approximation. To find
the number of terms sufficient to get the field with a given
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FIG. 4. Polar diagram of the scattered field with the same
parameters as in Fig. 3: third Born approximation (dotted line), BEM
(solid line), and DDA (dashed line). Inset: Magnifcation of the area
of the main plot indicated by the box.

accuracy, we compare it with numerical solutions obtained by
known well-studied approaches, namely, the discrete dipole
approximation and boundary element methods.

The boundary equations are analogous to (6). When the
perturbation is weak, expansion (7) yields

H(j )
p (r̃) =

∫
γp

n
[
H(j )

out(r
′)∇Gp − εpGp∇H(j )

out(r
′)
]
dl̃′,

H(j+1)
out (r) =

∫
γp

n
[

G

εp

∇H(j )
p (r̃′) − H(j )

p (r̃′)∇G

]
dl̃′. (10)

Here Gp = Gp(r̃,r̃′), r̃ = r − R, n = nγp
. The recurrence

relations are valid for arbitrary shape of the perturber with
a sharp boundary, provided its layout is in the external region
of the main cylinder. The integral over the boundary of the
perturber can be calculated. The final relation is a Fourier
series in azimuthal angle with a shift due to the axis offset.
The coefficients of series are:

Dm(0)
p = πkpb

2i
[Jm(k0b)H ′

m(kpb) − √
εpJ ′

m(k0b)Hm(kpb)]

[
imeik0R cos α +

∞∑
n=−∞

inei(n−m)αCnHn−m(k0R)

]
,

Dm(j )
p = πkpb

2i

{
D̃

m(j )
out [Hm(k0b)H ′

m(kpb) − √
εpH ′

m(k0b)Hm(kpb)]

+
∞∑

n=−∞
D

n(j )
out ei(n−m)αHn−m(k0R)[Jm(k0b)H ′

m(kpb) − √
εpJ ′

m(k0b)Hm(kpb)]

}
,

D
m(j+1)
out = −πk0b

2i
Cm

∞∑
n=−∞

Dn(j )
p ei(n−m)αHm−n(k0R)

[
Jn(kpb)J ′

n(k0b) − 1√
εp

J ′
n(kpb)Jn(k0b)

]
,

D̃
m(j+1)
out = −πk0b

2i
Dm(j )

p

[
Jm(kpb)J ′

m(k0b) − 1√
εp

J ′
m(kpb)Jm(k0b)

]
.
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Hereafter the upper index (1) of the Hankel function is omitted;
the prime indicates the derivative of a cylindric function with
respect to its argument.

Figure 3 shows the angular dependence of the scattered
field square |Hsc/H0|2. As the figure demonstrates, the first
approximation gives a rather correct qualitative description of
the diagram, with a deviation of 15%. The error of the second
order is nearly 3%. Figure 4 shows the comparison of the third
Born approximation with calculations by the BEM and DDA.
The deviation appears to be about 1%.

IV. CONCLUSIONS

The Green’s function for a dielectric cylinder is found in the
cases of p and s waves with source points inside and outside the
cylinder. High-order Born approximations of two dielectrics
with sharp boundaries are reduced to recurrence relations. This
technique is analytically applied to the scattering by a pair of
cylinders. The first approximation demonstrates its qualitative
agreement in shape with numerical results. The second and
third approximations are shown to agree quantitatively with
calculations by boundary elements and discrete dipoles.
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APPENDIX A: SCALAR GREEN’S FUNCTION

Let us consider a cylinder whose axis is along the z direc-
tion, as shown in Fig. 5. We are looking for the scalar Green’s
function G(r,r′), which is the solution to the inhomogeneous
two-dimensional Helmholtz equation (2), with k = k0 in free
space and k = k1 in the dielectric.

Rewrite the delta function (2), in polar coordinates,

δ(r − r ′) = 1

r
δ(r − r ′)δ(ϕ − ϕ′), (A1)

where r, ϕ and r ′,ϕ′ are the polar coordinates of the source
and observation points and decompose the angular factor into
the Fourier series:

δ(ϕ − ϕ′) = 1

2π

∞∑
m=−∞

eim(ϕ−ϕ′). (A2)

x

y

E0

H0

k

(x, y)

FIG. 5. Right: Cross section of an infinite cylinder in homo-
geneous space. The green circle indicates the observation point
r = (x,y). Left: p polarization.

The coefficient 1/2π is found from the delta-function normal-
ization

∫ π

−π
δ(ϕ) dϕ = 1.

Expanding the Green’s function in partial waves

G(r,ϕ; r ′,ϕ′) =
∞∑

m=−∞
gm(r,r ′)eim(ϕ−ϕ′) (A3)

and substituting into (2), we get an ordinary equation for each
m:

d2gm

dr2
+ 1

r

dgm

dr
+

(
k2 − m2

r2

)
gm = 1

2πr
δ(r − r ′). (A4)

At r > r ′ or r < r ′, the corresponding solutions can be
expressed through the combinations of Bessel and Hankel
functions, k = k0:

gm =

⎧⎪⎨⎪⎩
amJm(k1r), r < a,

AmJm(kr) + BmHm(kr), a < r < r ′,
dmHm(kr), r ′ < r.

(A5)

Conditions (5) are the continuity of the magnetic field
and its weighted normal derivative at the interface between
dielectric and free space, r = a,

[gm]r=a = 0,

[
1

ε

dgm

dr

]
r=a

= 0, (A6)

where the brackets denote a jump of the corresponding value.
The conditions are written for a p wave, where the magnetic
field is parallel to the z axis. The next pair of conditions follows
from the continuity of the Green’s function and the jump of its
first derivative at r = r ′:

[gm]r=r ′ = 0,

[
dgm

dr

]
r=r ′

= 1

2πr ′ . (A7)

We omit the Hankel function in the first line and Bessel
function in the third line in Eq. (A5) on the basis of regularity at
r → 0 and the Sommerfeld radiation requirement at r → ∞.

Substituting (A5) into boundary conditions (A6) and (A7)
we get the set for the coefficients:

AmJm(ka) + BmHm(ka) = amJm(k1a), (A8)

AmJ ′
m(ka) + BmH ′

m(ka) = 1√
ε
amJ ′

m(k1a),

AmJm(kr ′) + BmHm(kr ′) = dmHm(kr ′),

AmJ ′
m(kr ′) + BmH ′

m(kr ′) = dmH ′
m(kr ′) − 1

2πkr ′ . (A9)

From (A8) we get Bm = αmAm, where

αm = Jm(ka)J ′
m(k1a) − √

εJ ′
m(ka)Jm(k1a)√

εH ′
m(ka)Jm(k1a) − Hm(ka)J ′

m(k1a)
. (A10)

Then the determinant of the set (A9), for coefficients Am and
dm is {Jm + αmHm,Hm} = 2i/πkr ′, where the curly bracket
stands for the Wronskian {f,g} = fg′ − f ′g at r = r ′.
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Let us summarize the formulas for the partial Green’s
function. At r ′ < a they are

gm =

⎧⎪⎨⎪⎩
1
4i

Jm(k1r )Z1(k1r
′), 0 < r < r ′,

1
4i

Jm(k1r
′)Z1(k1r), r ′ < r < a,

βmHm(k0r)Jm(k1r
′), a < r,

Cm = −Hm(k1a)H ′
m(k0a) − ενH ′

m(k1a)Hm(k0a)

�
, (A11)

where Z1(z) = CmJm(z) + Hm(z), βm = εν/2πk1a�.
At r ′ > a the formulas are

gm =

⎧⎪⎨⎪⎩
βmJm(k1r )Hm(k0r

′), r < a,

1
4i

Hm(k0r
′)Z2(k0r), a < r < r ′,

1
4i

Hm(k0r )Z2(k0r
′), a < r ′ < r,

Cm = −Jm(k1a)J ′
m(k0a) − ενJ ′

m(k1a)Jm(k0a)

�
, (A12)

� = Jm(k1a)H ′
m(k0a) − ενJ ′

m(k1a)Hm(k0a),

where Z2(z) = Jm(z) + CmHm(z), βm = 1/2πk0a�. The for-
mulas with ν = −1/2,1/2 refer to the case of p and s waves,
respectively.

APPENDIX B: DDA

Below we briefly recall the two-dimensional DDA approach
[27] to obtain the particular relationships we used in our
calculations. Let us have some scattering body, with volume
V (which is per unit length along the z direction in the
two-dimensional case) and permittivity ε (which is constant
within the body), placed in vacuum. From the Helmholtz
equation we obtain the integral equation for an isotropic
medium,

E(r) = Einc(r) +
∫

V \V0

d2r ′[Ĝ(r,r′)χ (r′)E(r′)]

+
∫

V0

d2r ′[Ĝ(r,r′)χ (r′)E(r′)], (B1)

where V0 is a small volume around the singularity point R =
r − r′ → 0, V \V0 is the volume of the dielectric without the
singular part, Einc(r) is the given field of the incident wave,
χ (r) ≡ (ε − 1)/4π is the polarizability, and the Green’s tensor
Ĝ(r,r′) is the solution to the Maxwell equations:

rot rot Ĝ − k2Ĝ = 4πk2δ(r − r′). (B2)

The Green’s tensor obeying (B2) can be expressed [1,26] in
terms of the scalar Green’s function g, which satisfies Eq. (2),

Gαβ = 4π
(
k2δαβ + ∇α∇β

)
g, (B3)

where α and β are Cartesian indices. Then, it is well known
that the Green’s tensor actually depends on the difference R.
Finally, in the two-dimensional case we have

Gαβ(R) = iπk

R

[
A(kR)δαβ − B(kR)

RαRβ

R2

]
,

(B4)
A(x) = xH0(x) − H1(x), B(x) = xH0(x) − 2H1(x),

where R = r − r′, H0(x), H1(x) are Hankel functions of the
first kind.

In Eq. (B1) we implicitly isolate the term that includes the
singularity of the Green’s tensor at r = r′ by means of a small
volume V0, for which the point r is internal. Then we rewrite
this term, introducing the following quantities:

M̂(V0,r) =
∫

V0

d2r ′
[
Gαβ(r − r′)

− 4RαRβ − 2δαβR2

R4

]
χ (r′)E(r′) (B5)

and

L̂(V0,r) = −
∫

V0

d2r ′ 4RαRβ − 2δαβR2

R4
χ (r′)E(r′). (B6)

Note that M̂ is free from the singularity, thus M̂ → 0 with
V0 → 0. The fraction under integration is, basically, the static
limit (at k → 0) of the Green’s tensor. Also, we need to
discretize the whole scattering volume V into parts Vj (in
such a way that V0 coincides with one of them). With the use
of (B5) and (B6), Eq. (B1) becomes

E(ri) = Einc(ri) +
∑
j 	=i

∫
Vj

d2r ′[Ĝ(ri − r′)χ (r′)E(r′)]

+ M̂(Vi,ri) − L̂(Vi,ri), (B7)

where ri denotes a point lying inside the volume Vi .
Up to this line, the equations are fully correct as exact

consequences of the initial wave equation. Now we make two
approximations: the first is that E(r′) and χ (r′) are constant
within the volume Vj ; the second approximation assumes that

1

Vj

∫
Vj

d2r ′Ĝ(ri ,r′) = Ĝ(ri ,rj ). (B8)

Condition (B8) is intrinsically contained in all DDA formula-
tions [28], which initially deal with replacing the scatterer with
a set of point dipoles. If the volumes Vi are square cells (we
should keep in mind that we are treating the two-dimensional
case), then we can place the points ri in the center of the
corresponding squares.

Below, we neglect M̂, as most authors do, thus choosing
the simpler (or “weak”) DDA formulation [28,29]. Integrating
(B6) we transform (B7) into its final form,

di α̂
−1
i = Ei,inc +

∑
j 	=i

Ĝ(ri − rj )dj , (B9)

where we denote, for simplicity, the dependence on ri (and rj )
by the corresponding subscript; di = ViχiEi is the polarization
of the volume Vi (basically, its dipole moment, as we took χi

and Ei to be constant within Vi); and α̂i is the polarizability
tensor, defined as

α̂i = ÎViχi(1 + 2πχi)
−1 ≡ a2

2

ε − 1

ε + 1
Î. (B10)

The last term is the known quasistatic dipole polarizability of
a thin cylinder (two-dimensional dipole) with the cross section
πa2 equal to Vi .

Thus, the calculations consisted in finding the dipole
moments di by solving (B9) with (B10) and (B4). From them,
all the quantities of interest can be obtained. In our case, we
calculate the scattered magnetic field.
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