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Quality of spatial entanglement propagation
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We explore, both experimentally and theoretically, the propagation dynamics of spatially entangled photon
pairs (biphotons). Characterization of entanglement is done via the Schmidt number, which is a universal
measurement of the degree of entanglement directly related to the nonseparability of the state into its subsystems.
We develop expressions for the terms of the Schmidt number that depend on the amplitude and phase of the
commonly used double-Gaussian approximation for the biphoton wave function, and demonstrate migration of
entanglement between amplitude and phase upon propagation. We then extend this analysis to incorporate both
phase curvature in the pump beam and higher spatial frequency content of more realistic non-Gaussian wave
functions. Specifically, we generalize the classical beam quality parameter M2 to the biphotons, allowing the
description of more information-rich beams and more complex dynamics. Agreement is found with experimental
measurements using direct imaging and Fourier optics.
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I. INTRODUCTION

Entanglement is a key resource in quantum information.
While entanglement in discrete variables, such as spin or po-
larization [1–5], forms the basis of qubits, of growing interest
is entanglement in continuous variables, such as transverse
spatial position and momentum. The conjugate nature of
these variables underlies imaging and propagation, while their
infinite-dimensional Hilbert space holds much potential for
quantum computation [6–9]. Typically, the photon source for
continuous-variable entanglement is spontaneous parametric
down-conversion (SPDC) [10–14] but, remarkably, there have
been few investigations into its amount and distribution upon
propagation [15,16].

A universal metric to quantify the degree of entanglement
is the Schmidt number, which is directly related to the
nonseparability of the state’s (two) subsystems [17–19]. While
interferometric measurements of the Schmidt number have
been proposed [15] and demonstrated [16], such methods do
not examine the manifestation of the entanglement, i.e., non-
separability of amplitude or phase. Furthermore, theoretical
analysis has thus far focused primarily on Gaussian spatial
profiles, which are not generated experimentally.

Here, we present an analysis of the Schmidt number
of realistic non-Gaussian entangled photon wave functions,
explicitly revealing the migration of entanglement with
propagation from amplitude to phase and back again [15].
First, we present a Schmidt decomposition of the commonly
used double-Gaussian approximation for the biphoton wave
function. We clearly identify amplitude and phase components
and demonstrate migration between them during propagation.
This migration depends on the focusing geometry of the
pump used to generate the photon pairs, as its phase profile
directly determines the far-field properties of the biphoton
wave function. We then examine more realistic biphoton
wave functions that have different propagation behavior from
the ideal double-Gaussian. In particular, the higher spatial
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frequency content of non-Gaussian beams causes increased
diffraction of the biphoton. To characterize this, we introduce
an effective quantum M2 factor, generalizing the quality
parameter commonly used to describe classical laser beams
[20]. We demonstrate good predictive capability of our
model, and make comparisons to experimental measurements
conducted with a single-photon-sensitive electron-multiplying
charge-coupled device (EMCCD) camera [21,22].

II. SCHMIDT NUMBER

The quantum state of an entangled-photon pair (biphoton)
may be described by a wave function which propagates accord-
ing to Maxwell’s equations [23–26]. Assuming degenerate,
collinear down-conversion and a collimated strong (classical)
pump beam, the momentum space wave function is [12]

�(k1,k2) = N ′sinc

(
L

4kp

|q1 − q2|2
)

Ẽp(q1 + q2), (1)

where N ′ is a normalization constant, sin c(x) = sin(x)/x, L

is the crystal thickness, kp is the wave number of the pump,
qi = kx,i k̂x,i + ky,i k̂y,i are the transverse components of the
wave vector, and Ẽp is the spatial frequency spectrum of
the pump field. The real-space biphoton wave function at the
output surface of the crystal is given by the 4D inverse Fourier
transform of Eq. (1), which is

ψ(ρ1,ρ2) = NSsi

(
kp

4L

∣∣ρ1 − ρ2

∣∣2
)

Ep

(
ρ1 + ρ2

2

)
, (2)

where N is another normalization constant, Ssi is the shifted
sine integral [27], ρi = xi x̂i + yi ŷi are the transverse coor-
dinates of each photon, and Ep is the spatial distribution
of the pump field. In general, Eq. (2) is not separable in
the coordinates of the two subsystems (ρ1,ρ2), meaning it
represents a spatially entangled state. However, it is separable
in the sum and difference coordinates, defined by ρ± =
(ρ1 ± ρ2)/

√
2, i.e., ψ(ρ+,ρ−) = ψ−(ρ−)ψ+(ρ+). Phyically,

ψ+(ρ+) is proportional to the spatial profile of pump field and
ψ−(ρ−) depends on the longitudinal profile of the nonlinear
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susceptibility of the crystal, which we have here assumed to
be constant.

Because Eq. (2) is rather inconvenient to work with,
the biphoton wave function is often approximated by a
double-Gaussian function [12,15,28–30], which in (ρ+,ρ−)
coordinates is

ψdG(ρ+,ρ−) = N exp

{
−

(
1

4σ 2−
+ i

k0

2R−

)
ρ2

−

−
(

1

4σ 2+
+ i

k0

2R+

)
ρ2

+ + iζ

}
, (3)

where k0 = 2π/λ is the down-converted wavelength. ψdG

has many similarities with classical Gaussian laser beams.
In particular, the standard deviations of |ψdG|2 in sum and
difference coordinates σ± have the same z dependence as the
radius of a TEM00 Gaussian beam

σ±(z) = σ±,0

√
1 +

(
z

z0,±

)2

, (4)

where σ±,0 = σ±(z = 0) are the minima. The quantities z0,± =
2kσ 2

±,0 are analogous to the Rayleigh range of a classical
Gaussian beam. The spatially dependent phase terms depend
on the radii of curvature along the ρ± directions, which follow

R±(z) = z

[
1 +

(
z0,±
z

)2
]
, (5)

in analogy to the radius of curvature of the phase fronts of a
Gaussian beam. Finally, ζ (z) = tan−1(z/z0,−) + tan−1(z/z0,+)
is analogous to the classical Gouy phase. Based on this
analytic double-Gaussian wave function, it is straightforward
to evaluate entanglement during propagation.

A general approach to characterizing the degree of en-
tanglement of a bipartite system is via the Schmidt decom-
position, which expresses a pure entangled state as |	〉 =∑

nλ
1/2
n |un〉|vn〉, where

∑
nλn = 1. As the number of terms

is directly related to the nonseparability of the state, the
degree of entanglement can be characterized by the Schmidt
number K ≡ (

∑
nλ

2
n)−1. While K describes the fundamental

meaning of entanglement, i.e., the nonseparability of the
two subsystems [18,19,28], it contains no information about
the form in which the entanglement is manifest—that is, in
amplitude or phase [15,16]. For the double-Gaussian wave
function, the Schmidt number can be expressed directly in
terms of the wave function (see the Appendix):

KdG =
[∫∫

ψ∗
dG(ρ+,ρ−)ψdG(−ρ−,−ρ+)d2ρ+d2ρ−

]−1

.

(6)

Evaluating KdG with Eq. (3) yields an analytic expression

KdG = 1

4

(
σ+
σ−

+ σ−
σ+

)2

+ k2σ 2
+σ 2

−

(
1

R−
− 1

R+

)2

. (7)

In sum, KdG represents the total degree of entanglement,
and is related to the average first-order coherence of the
beam [31,32]. In parts, the two terms have a clear physical
meaning. The first term depends only on the amplitude of
ψdG, specifically the ratios of the standard deviations in ρ+

FIG. 1. Migration of spatial entanglement between amplitude and
phase. (a) Evolution of the components of the KdG with σ+(0) =
100 μm and σ−,0 = 5.5 μm for (solid) collimated, and noncollimated
pump beam [dashed, (b)] Rp = 18.7 cm (zp = −7.6 cm) and [dotted,
(c)] Rp = −18.7 cm (zp = 7.6 cm). Rayleigh ranges are indicated by
the gray vertical lines, indicating z0,− = 470 μm and z0,+ = 155 mm.
The Schmidt number begins in the near field entirely in the amplitude
[red (dark gray)], migrates into the phase [blue (light gray)] upon
propagation, and back to amplitude in the far field, such that the
total (top black) remains constant. Rayleigh ranges z0,− = 469 μm
and z0,+ = 155 mm are indicated by the vertical gray lines. For
noncollimated pump beams, Kamp and Kphase follow much the same
form as the collimated case up to z ≈ 2 cm, beyond which the
influence of the curved pump wave fronts causes an altered migration
of entanglement, and different far-field behavior.

and ρ−. We will therefore refer to this as Kamp. It is essentially
a measure of how many correlation areas there are within the
beam, and is equal to the expression from [28]. The second
term depends on the phase of the biphoton wave function,
in terms of the difference of curvature in the ρ+ and ρ−
planes. We therefore refer to the second term as Kphase. This
represents an explicit expression for entanglement within the
spatial phase of entangled photon pairs.

Figure 1 shows the evolution of the components of the
Schmidt number upon propagation, using Eqs. (4) and (5) in
Eq. (7), showing migration from amplitude to phase and back
as the biphoton beam goes from the near field to the far field.
The wavelength here and throughout is 810 nm. Note that in
this case z0,− � z0,+, and the entanglement in amplitude and
phase are equal at z = z0,− and z = z0,+.

The effect of the pump beam’s phase profile can also be
included. A noncollimated Gaussian pump, i.e., a focusing or
defocusing beam, has field profile

Ep(ρ) = Ep,0 exp

{
−

(
1

4σ 2
p

+ i
kp

2Rp

)
ρ2

}
, (8)

where σp and Rp are the pump’s standard deviation and
radius of curvature, respectively. At the crystal, σ+ = √

(2)σp,
R+ = Rp, and z0,+ = z0,p (the Rayleigh range of the pump).
We define the distance between the pump beam waist and the
parametric down-conversion crystal as zp, and incorporate its
effect on ψdG by letting z → z − zp in the expressions for σ+
and R+. In Fig. 1 we also show two additional cases of the
evolution of the Schmidt number: the pump focusing before
and after the crystal. Here, Kphase is nonzero in the far field
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FIG. 2. Evolution of entanglement of realistic biphoton wave
function. (a) Evolution of the Gaussian components of the Schmidt
number [Eq. (7)], of the realistic biphoton wave function [Eq. (2)]
where σ−,0 = 5.5 μm, σ+,0 = 100 μm, and M2

− = 1.89, which con-
tains only a portion of (dotted green line) the total Schmidt number K .
Rayleigh ranges are indicated by the vertical solid gray lines, and the
dashed gray line is z0,−/M2

−. The higher spatial frequency content of
the Ssi(x2) function causes greater diffraction (in ρ−) than the double-
Gaussian (dashed red curve), leading to a more rapid migration of
entanglement from amplitude to phase, and higher maxima of Kphase

and Kamp in the far field. Difference-coordinate dependence of the
(solid black curve) realistic biphoton wave function [Eqs. (1) and (2)]
with (dotted red curve) Gaussian fits in the (b) far- and (c) near-field.
The oscillatory structure of the realistic wave function is lost in the
Gaussian approximation. In (b) q− = (q1 − q2)/

√
2.

due to the phase curvature of the pump, given by the initial
difference between R+ and R− (at z = 0, R− = ±∞ and R+ =
Rp). When the pump is focusing into the crystal, R+ starts out
negative, goes to −∞ as the phase fronts flatten, changes sign
to +∞ at z = zp as divergence takes over, reduces to a local
minimum value at z = z0,+, and then increases. In contrast,
R− starts out positive and increases faster than R+, since
z0,− < z0,+. At z ≈ zp + z2

0,+/zp (assuming σ−,0 � σ+,0), the
curvatures become equal (R+ = R−) and Kphase drops to zero.
For positive Rp (negative zp), R+ is always positive and greater
than R−, and no such oscillatory features are observed.

Unfortunately, the actual biphoton wave function is not
well approximated by a double-Gaussian, particularly not upon
propagation. Figures 2(b) and 2(c) show the dependence of the
realistic biphoton wave function on difference coordinates,
along with a Gaussian fit, in both the near and far fields.
The fine oscillatory structure is completely lost in the double-
Gaussian approximation. Kamp in Eq. (7) therefore does not
represent the entirety of the entanglement of the amplitude.
In particular, the functions may have the same variances, and
thus the same Kamp, but very different Schmidt numbers K .
The oscillatory nature of Ssi(x2) means that the amplitude of
Eq. (2) will never be separable in (ρ1,ρ2) coordinates, even
when σ− = σ+. This means that the common experimental
practice of measuring {σ±,σ } and evaluating Kamp [14,33] does
not accurately capture the entirety of the spatial entanglement
information content, but rather only a small portion [16,28].

In general, proper evaluation of the Schmidt number must
be done numerically, so there is no analytic form that clearly
identifies the amplitude and phase components. Still, we
may use Eq. (7) to evaluate the “Gaussian” components of
the Schmidt number, with the understanding that they will

necessarily be less than the total. To do so, we numerically
propagate the realistic biphoton wave function [Eq. (2) with
a collimated Gaussian pump] a distance z and fit the result
to a double-Gaussian wave function to determine σ± and R±.
Fitting in this way, rather than, say, directly evaluating the
variances and effective radii of curvature [34], yields a Gaus-
sian approximation that more accurately reflects both the peak
probability density and its full width at half maximum [12].
This is essentially what is done experimentally: measure the
biphoton probability distribution and fit the result to a Gaussian
to determine σ− and σ+ [14,16,35–37]. For σ− = 5.5 μm and
σ+ = 100 μm, this procedure yields Fig. 2(a). This Gaussian
part of the Schmidt number, KdG, not only migrates from am-
plitude to phase and back, but also changes its total upon prop-
agation, although never reaching the total Schmidt number K .

The evolution of the components of KdG of the realistic
biphoton wave function can be accounted for through a mod-
ified double-Gaussian approximation. The Ssi(x2) function
has higher spatial frequency content than a Gaussian and
therefore diffracts more rapidly, resulting in a more rapid
migration of entanglement from amplitude into phase. To
describe such increased diffraction, we borrow the concept
of “beam-quality” parameter M2 ≡ 2σxσk commonly used
to characterize classical laser beams [20]. It is a measure of
how far a beam is from diffraction-limited, and equal to the
ratio of the divergence angle of a realistic beam to that of
an ideal TEM00 Gaussian beam of the same waist. For this
ideal minimum-uncertainty beam, M2 = 1, while deviations
(enhanced diffraction) result in increasing M2. To extend
this concept to the biphoton wave function, we introduce
the dual “biphoton-quality” parameters M±2, in ρ− and ρ+
coordinates. Using the Gaussian fits in Figs. 2(b) and 2(c) of
the realistic biphoton wave function ψ−, we find M−2 = 1.89,
while M+2 = 1 (since the pump is assumed to be TEM00). We
can then modify both σ±(z) and R±(z) in the same manner done
for classical laser beams by modifying the Rayleigh ranges
z0,± → z0,±/M±2. Thus Eqs. (4) and (5) become

σ±(z) = σ±,0

√
1 +

(
M2±

z

z0,±

)2

, (9)

and

R±(z) = z

[
1 +

(
1

M2±

z0,±
z

)2
]
, (10)

respectively. Evaluating Kamp and Kphase using this modified
expression reproduces the Gaussian parts of the Schmidt
number in Fig. 2(a).

An interesting point is that the ratio of Kamp in the near
and far fields is related to that of M+2 and M−2. Assuming
σ−,0 � σ+,0 [or alternatively

√
(L/kp) � σp], as is typically

the case in experiment, we find

Kamp(z → ∞)

Kamp(z = 0)
≈

(
M2

−
M2+

)2

. (11)

For an ideal double-Gaussian wave function, where M±2 =
1, the ratio is unity, while for the realistic biphoton wave
function in Eq. (2) it is 3.56 [see Fig. 2(a)]. This agrees well
with the value of (1.89/1.0)2 = 3.57 calculated from Eq. (11).
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FIG. 3. Images of the [(a),(b)] irradiance and [(c),(d)] correlation
distributions in the [(a),(c)] near- and [(b),(d)] far field. Black regions
of (c) have been zeroed out to eliminate charge-smearing artifact [14].

III. EXPERIMENTAL RESULTS

To confirm this behavior, we performed experiments using
an EMCCD camera, which has both single-photon sensitivity
and massively parallel measurement capabilities, making it
convenient for biphoton measurements [14,37–39]. A spatially
filtered 405-nm cw laser beam pumps a type-I SPDC crystal
(beta barium borate, L = 3 mm), generating near-collinear
entangled photons, and nearly degenerate pairs are selected via
spectral filter. Two lens systems image the near and far fields
of the crystal onto the camera, which has 16 × 16 μm2 pixels,
and operates at −85 ◦C, a 17-MHz readout rate, and 0.3-μs
vertical shift time. The marginal (irradiance) distributions
are measured by long exposures. To measure the conditional
distributions, the camera is operated in photon-counting mode,
with a binary thresholding on each pixel level and a mean
count rate per pixel of ∼0.15, chosen to optimize the signal-
to-noise ratio [40]. Conditional probabilities are calculated by
autocorrelation (self-convolution) of each frame for near field
(far field), with background subtracted, calculated via cross-
correlation (cross-convolution) between successive frames.
104 frames were collected at each z position. The camera
was translated by amount 
z about z = 0, and for far-field
measurements the effective far-field distance was calculated
using z = f (f + m2
z)/(m2
z), where f is the focal length
of the Fourier transform lens and m is the magnification.

Figure 3 shows typical measurements in both the near and
far fields. At these planes, both the spatial correlation in real-
space (position) and anticorrelation in k space (momentum)
are approximately Gaussian. Their relative uncertainties are
given by their standard deviations; correspondingly, it is easy
to demonstrate the Einstein-Podolsky-Rosen paradox. In our
case, we find a violation σx−σk+ = (2.7 ± 0.1) × 10−2 �
1/2. In terms of information content, we find Kamp = 1133 ±
38 in the near field and 1136 ± 70 in the far field. The

FIG. 4. Comparison of (circles) measured Kamp with [solid red
(dark gray)] theory for (a) σ− = 11.2 μm, σ = 533 μm, M+2 =
M−2 = 2.67, and zp = 0, and (b) σ− = 11.3 μm, σ = 345 μm,
M+2 = 4, M−2 = 3, and zp = 30 cm (Rp = −96 cm). Dashed red
curve shows Kamp with same parameters but M±2 = 1. Blue (light
gray) and top black curves show corresponding Kphase and KdG,
respectively. Errors in measured Kamp are ∼10% (not shown).

irradiance and correlation profiles for several defocused planes
from the ideal image and Fourier planes of the crystal reveal
the falloff of the correlation with propagation, i.e., the decay
of entanglement in amplitude.

Figure 4 shows measurements of Kamp about the near and far
fields, for both collimated and focusing pump beams. Excellent
agreement with theory is obtained with values of M±2 > 1.
Also plotted are the corresponding components Kphase and
KdG, which reach values nearly an order of magnitude greater
than Kamp, indicating that only a small portion of the total
Schmidt number resides in the Gaussian part. Note that
many effects could be responsible for the relatively large
values of M±2, such as the bandwidth of the bandpass filters
(50 nm), noncollinear phase matching, spatial walk-off within
the crystal, aberrations in the imaging systems, and imperfect
spatial filtering.

IV. CONCLUSION

We have studied the dynamics of spatial entanglement
and the distribution of information content with the biphoton
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wave function. For the double-Gaussian approximation
for entangled photon pairs, we have presented an analytic
expression of the Schmidt number with separate amplitude
and phase terms, and studied migration of entanglement
between the two with propagation. For more realistic wave
functions, we introduced the biphoton quality parameters M±2

to allow more accurate modeling and better characterization
of the evolution of spatial entanglement. By identifying the
information content in the amplitude and phase, and following
the migration between them, it becomes possible to engineer
the degree of entanglement in either component and transfer
it to the other upon propagation. With more parameters, these
ideas can be extended to include higher-order moments and
address more degrees of freedom within the fine structure of
continuous-variable wave functions.
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APPENDIX

We derive the expression for the Gaussian part of the
Schmidt number in terms of the biphoton wave function,
Eq. (6) in the main text. Following [16], we can express the
Schmidt modes in terms of the creation operators of the signal
and idler photons:

|	〉 =
∑

n

√
λnÂ

†
nB̂

†
n|0,0〉, (A1)

where

Â†
n|0〉 =

∫
ϕn(ρ1)â†(ρ1)|0〉d2ρ1, (A2)

B̂†
n|0〉 =

∫
ϕn(ρ2)â†(ρ2)|0〉d2ρ2. (A3)

With the electric field operator

Ê(+)(ρ1) =
∑

n

Â†
nϕ

∗
n(ρ1) (A4)

and E(−)(ρ1) = [E(+)(ρ1)]†, the first-order coherence function
is given by

G(1)(ρ1,ρ
′
1) =

∑
n

λnϕn(ρ1)ϕ∗
n(ρ ′

1), (A5)

and likewise for ρ2. The Schmidt modes of a double-Gaussian
wave function are Hermite-Gaussian polynomials, which have

symmetry properties

ϕ2n(−ρ1) = ϕ2n(ρ1), (A6)

ϕ2n+1(−ρ1) = −ϕ2n+1(ρ1). (A7)

Letting ρ ′
1 = −ρ1 allows simplification of the first-order

coherence function

G
(1)
dG(ρ1,−ρ1) =

∑
n

(λ2n|ϕ2n(ρ1)|2 − λ2n+1|ϕ2n+1(ρ1)|2),

(A8)

where we have added the subscript dG to indicate that this
is valid for the “double-Gaussian” wave function. Integrating
over ρ1, and using the normalization of ϕn(ρ1), yields∫

G
(1)
dG(ρ1,−ρ1)d2ρ1 =

∑
n

(λ2n − λ2n+1). (A9)

We now apply two properties of the eigenvalues of the
Schmidt modes. First, they decrease exponentially with n, i.e.,
λn = λ0α

−n [15,16,30,41], yielding∫
G

(1)
dG(ρ1, − ρ1)d2ρ1 =

∑
n

λ0(α−2n − α−(2n+1))

=
∑

n

λ0(1 − α−1)α−2n. (A10)

Second, they are normalized such that
∑

nλn = 1, meaning
λ0 = 1 − α−1. This allows the simplification∫

G
(1)
dG(ρ1,−ρ1)d2ρ1 =

∑
n

(λ0α
−n)2 =

∑
n

λ2
n, (A11)

the inverse of which is the definition of the Schmidt number.
Therefore the Gaussian part of the Schmidt number is related
to the average first-order coherence.

In terms of the double-Gaussian biphoton wave function

G
(1)
dG(ρ1,ρ

′
1) =

∫
ψ∗

dG(ρ1,ρ2)ψdG(ρ ′
1,ρ2)d2ρ2. (A12)

Integrating over ρ1 gives∫∫
ψ∗

dG(ρ1,ρ2)ψdG(−ρ1,ρ2)d2ρ2d2ρ1, (A13)

the inverse of which is equal to the Schmidt number. Changing
variables from (ρ1,ρ2) to (ρ+,ρ−) transforms the wave func-
tion according to ψ(ρ1,ρ2) → ψ(ρ+,ρ−) and ψ(−ρ1,ρ2) →
ψ(−ρ−,−ρ+) yielding Eq. (6):

KdG =
[∫∫

ψ∗
dG(ρ+,ρ−)ψdG(−ρ−, − ρ+)d2ρ+d2ρ−

]−1

.

(A14)
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