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Polarizability expressions for predicting resonances in plasmonic and Mie scatterers
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Polarizability expressions are commonly used in optics and photonics to model light scattering by small
particles. Models based on Taylor series of the scattering coefficients of the particles fail to predict the morphologic
resonances hosted by dielectric particles. Here we propose to use the factorization of the special functions
appearing in the expression of the Mie scattering coefficients to derive pointlike models. These models can be
applied to reproduce both Mie resonances of dielectric particles and plasmonic resonances of metallic particles.
They provide simple but robust tools to predict accurately the electric and magnetic Mie resonances in dielectric
particles.
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I. INTRODUCTION AND MOTIVATIONS

Light scattering by subwavelength-sized scatterers is a
fundamental problem in optics [1–6]. The full electromagnetic
problem can be solved with the well-known Mie theory,
which permits accurate determination of the optical response
of spherical objects regardless of their size and composition
[7,8]. However, the complexity of the multipolar formalism has
motivated the derivation of pointlike models providing more
insight into the physical processes involved in light scattering.

Such models have been widely used, for example, in the
case of small metallic particles behaving like electric dipoles
and hosting localized surface plasmon resonances [5,9]. In
this case, the electric dipolar polarizability αe relating the
dipolar moment p to the excitation field Eexc is given by
p = ε0εbαeEexc. αe may easily be linked to the dipolar Mie
coefficient a1 through the relation αe = i 6π

k3 a1 [10,11].
Accurate approximations of αe calculated in the long

wavelength limit have greatly contributed to extend the
understanding of the resonant process responsible for the
interesting features of small plasmonic scatterers [12–18].
Simplified models for metallic particles including the radiative
and finite-size corrections were proposed by Moroz [15] and
by Meier and Wokaun [13]. The first is obtained by calculating
the power series expansion of the Mie coefficient a1 to the third
order, while the latter is obtained by taking into account the
depolarization field.

High refractive index dielectric subwavelength-sized par-
ticles can also resonantly interact with light [19–24] via the
excitation of low-order electric and magnetic Mie resonances.
Pointlike models should then be able to predict electric and
magnetic resonances. However, the classical models widely
used in plasmonics fail to predict the dipolar electric resonant
response of these dielectric scatterers.

We illustrate this problem by plotting in Fig. 1 the real
part of the first electric Mie coefficient calculated with the
complete Mie theory (full line) and with a Taylor expansion
(dashed line) derived up to the third order [Eq. (11) in
Ref. [15]] in the case of a sphere, 120 nm in diameter, made
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of silver or made of silicon. It is clearly seen that while
this expansion does predict the localized surface plasmon
resonance around 410 nm, it fails to predict the morphological
resonance at 450 nm. This issue motivates the development of
a generalized pointlike model working for both positive and
negative dielectrics. Throughout this article, it is demonstrated
that the Weierstrass factorization of Bessel functions permits
to derive accurate approximations of the Mie coefficients and
consequently particle polarizabilities for both dielectric and
metallic particles. The optical response of spherical scatterers
can be accurately described with a set of electric and magnetic
Mie coefficients an and bn [1,3,4,27] which can be expressed
as

an(εs,z0) = jn(z0)

h
(+)
n (z0)

εsϕ
(1)
n (z0) − ϕ(1)

n (zs)

εsϕ
(+)
n (z0) − ϕ

(1)
n (zs)

, (1)

where εs is the relative permittivity, εs = εs

εb
(εs and εb being

the dielectric permittivities of the sphere and background
medium respectively), and n describes the order of the mode.
z0 = kR is the size parameter of the scatterer, k the wave
number 2π

λ
, R the radius of the scatterer considered, and

zs = √
εsz0 for a nonmagnetic material. The functions h(+)

n and
jn are, respectively, the spherical outgoing Hankel functions
and the Bessel functions. Finally, the functions ϕ(1)

n and
ϕ(+)

n are reduced logarithmic derivative Ricatti-Hankel and
Ricatti-Bessel functions, respectively:

ϕ(+)
n (z) = [zh(+)

n (z)]′

h
(+)
n (z)

,ϕ(1)
n (z) = [zjn(z)]′

jn(z)
. (2)

Equation (1) remains completely equivalent to the formu-
lation commonly employed in the literature [3] and proves to
be well adapted for our study. An advantage of this expression
is that the magnetic Mie coefficients bn can be obtained from
the expression in Eq. (1) by replacing the permittivity contrast
εs by the permeability contrast μs (equal to 1 in the case of
nonmagnetic media).

II. RESONANCE CONDITIONS
IN SUBWAVELENGTH SPHERES

As a first step toward more general expressions, we propose
to determine the resonance conditions (1) graphically and
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FIG. 1. Mie coefficient |a1| plotted with respect to the wavelength
in the case of a sphere of radius 60 nm made of silicon [25] and
silver [26]. Full lines: calculated with the exact expression derived
in Eq. (1) with n = 1 with silicon (blue) and silver (black). Dashed
lines: approximation a

(T 1)
1 in Eq. (24) taken from Ref. [15] in red for

silicon and green for silver.

(2) in the asymptotic limit z0 → 0 for any arbitrary made
material homogeneous particles. This methodology will allow
us to choose the proper approximations of the special functions
appearing in Mie theory in order to derive pointlike models
valid for metallic and dielectric particles.

We first introduce the K-matrix formulation that will allow
us to establish the resonance condition with respect to the
ϕ(1)

n (zs) function. The reactance K-matrix describes the light
scattering by a particle [18]. By means of the K-matrix
coefficients, one can reformulate the Mie coefficients [10]:

(an)−1 = −i
(
K (e)

n

)−1 + 1, (3)

(bn)−1 = −i
(
K (h)

n

)−1 + 1. (4)

where the K-matrix coefficients of a sphere are [10]

K (e)
n = − jn(z0)

yn(z0)
εsϕ

(1)
n (z0)−ϕ

(1)
n (zs )

εsϕ
(2)
n (z0)−ϕ

(1)
n (zs )

, (5)

K (h)
n = − jn(z0)

yn(z0)
ϕ

(1)
n (z0)−ϕ

(1)
n (zs )

ϕ
(2)
n (z0)−ϕ

(1)
n (zs )

, (6)

where yn are the spherical Neumann functions and ϕ(2)
n (z) =

[zyn(z)]′
yn(z) . As the K-matrix is Hermitian for nonabsorptive

particles [10,18], one can notice that the coefficients K (e)
n and

K (h)
n of a lossless spherical scatterer are real. The expression (3)

can in fact be seen as a generalization of the energy-conserving
formulation of the polarizability α−1

e = α−1
n.r. − i k3

6π
[10,17],

where αn.r. = −6πK
(e)
1 /k3 is the nonradiative polarizability,

real for lossless scatterers, while the term −i k3

6π
corresponds

to the radiative corrections and is analog to the +1 term in (3).

A. Definitions of resonances

In this study, the light-scatterer interaction will be considered at
resonance when one of the Mie coefficients reaches the unitary
limit, i.e., when an = 1 or bn = 1 [10,28]. This corresponds
to the upper limit imposed to the Mie coefficients by the
energy conservation for lossless scatterers. Let us remark that
resonances (thus defined) are different from the modes of the
scatterer, corresponding to the poles of Mie coefficients found

FIG. 2. Graphic representation of the resonance condition as a
function of the size parameter z0 for (a) ε = 16 and (b) ε = −2.5:
the electric and magnetic resonances are marked by the black dots,
predictions of those resonances provided by Eqs. (11) (full black
vertical lines), function ϕ

(1)
1 (zs) (dashed green line), function ϕ

(2)
1 (z0)

(full blue line), and εsϕ
(2)
1 (z0) (dotted red line). Dashed black line

in (b): ϕ
(1)
1 (zs) = 2 − z2

5 calculated with Eq. (14) at the 1st order
with n = 1.

in the complex frequency plane, for which a scattered field may
exist in the absence of an excitation field [21,27]. Expressions
(3) allow us to show that this definition of resonances results
in the following condition on the K-matrix coefficients:

an = 1 ⇒ (
K (e)

n

)−1 = 0, (7)

bn = 1 ⇒ (
K (h)

n

)−1 = 0. (8)

Resonances thus correspond to the poles of the K-matrix
coefficients. The resonance conditions provided by Eqs. (7) are
displayed graphically for a constant and positive permittivity
equal to 16 in Fig. 2(a). As seen from Eqs. (5) and (7),
resonances of the magnetic dipole occur at the intersections
between ϕ

(2)
1 (z0) (solid blue line) and ϕ

(1)
1 (zs) (dashed green

line) denoted by (h), whereas resonances of the electric dipole
correspond to the intersections between εsϕ

(2)
1 (z0) (dotted red

line) and ϕ
(1)
1 (zs) (dashed green line) denoted by (e) in Fig. 2.

One can also choose to set a permittivity negative and purely
real. Even if materials with such a permittivity do not exist,
it can be enlightening to study what happens in this case to
provide a better understanding of the plasmonic resonances.
As illustrated in Fig. 2(b), a resonance of the electric dipole
also occurs at the intersection between εsϕ

(2)
1 (z0) (dotted red

line) and ϕ
(1)
1 (zs) (dotted green line) denoted by (e). As ϕ

(2)
1 (z0)
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is negative for small values of z0, no resonance of the magnetic
dipole occurs. Although the plots of Fig. 2 show only the first
solutions of the conditions (7) for n = 1, one has to keep
in mind that these conditions are transcendental equations
and have an infinity of solutions. However, in what follows,
we will mainly be interested in the first resonance of each
multipolar order for subwavelength-sized scatterers. That is
why we will first restrict our study to the limit z0 → 0. In this
limit, it is possible to simplify the resonance conditions by
approximating the functions of z0 by the first term of their
power-series expansion: jn(z0) � zn

0
(2n+1)!! , ϕ(1)

n (z0) � n + 1,

yn(z0) � − (2n−1)!!
zn+1

0
, and ϕ(2)

n (z0) � −n, where !! is defined

in Appendix B. That leads to the following approximate
expressions of the K-matrix coefficients:

K (e)
n � −κn

(n+1)εs−ϕ
(1)
n (zs )

nεs+ϕ
(1)
n (zs )

(9)

K (h)
n � −κn

(n+1)−ϕ
(1)
n (zs )

n+ϕ
(1)
n (zs )

, (10)

with κn = z2n+1
0

(2n−1)!!(2n+1)!! . The exact expression of ϕ(1)
n (zs) is

kept because the in-medium size parameter zs = √
εsz0 is not

assumed to be necessarily small. In fact, one should keep in
mind that morphological resonances, for small particles occur
for large permittivity so that zs may not be small [20,29]. It
is then straightforward from Eqs. (7) and (9) to determine an
approximation of the resonance conditions (7):

an = 1 ⇒ ϕ(1)
n (zs) � −nεs, (11)

bn = 1 ⇒ ϕ(1)
n (zs) � −n. (12)

B. Resonances of plasmonic scatterers

Only the assumption z0 << 1 has been made so far, but no
assumption was made about zs ; Eq. (11) is valid for both
metallic and dielectric particles. Let us derive the Taylor
expansion to the sixth order of the ϕ(1)

n function [10]:

ϕ(T 1)
n (z) = n + 1 − z2

2n + 3
− z4

(2n + 5)(2n + 3)2
+ O(z6).

(13)

In the limit (zs → 0), it is sufficient to consider the first term of
this expansion (n + 1), and it can easily be shown that Eq. (11)
tends towards the well-known quasistatic resonance conditions
for very small plasmonic particles for electric multipoles [3]:

ε � −n + 1

n
. (14)

In this same limit Eq. (12) has no solution, confirming that
subwavelength plasmonic particles do not support magnetic
resonances.

C. Morphological resonances of Mie scatterers

Electric and magnetic morphological resonances in small
dielectric particles can occur only when zs > 1 requiring the
permittivity to be sufficiently large [29]. Thus, approximations
made with the assumption zs << 1 will fail to predict the
morphological resonances. That is why approximations of

TABLE I. Numerical values of the constants employed in the
article for the first multipole orders.

x rn ρ(e)
n ρ(h)

n

n = 0 π −0.065 x

n = 1 4.49 −0.05 −0.055
n = 2 5.76 −0.041 −0.047

the Mie coefficients based on Taylor series expansion do not
predict morphological resonances unless many terms are taken
into account. This result can be observed in Figs. 1 and 2, and
it will be further illustrated in Sec. IV.

In fact, the electric morphological resonances can be better
understood by studying the limit |εs | → ∞. One can easily
deduce from Eq. (11) that multipolar electric resonances occur
at the poles of the ϕ(1)

n functions in this limit [30]. These poles
correspond to the zeros of the Bessel functions [31,32], and in
what follows, the first zero of the nth order Bessel functions
will be noted rn. For high index dielectric scatterers for which
|εs | is large but not infinite, it can then be safely inferred that
the first resonance of the nth order electric multipole occurs
close to the position:

zs � rn. (15)

This result can be observed in Fig. 2 where the electric
resonance condition is seen to be close to the pole of ϕ

(1)
1 in the

case of n = 1. The exact values of r0, r1, and rn are provided
in Table 1, but it may be recalled that a good approximation of
the lth zero of the nth order Bessel function can be provided by
rn,l � lπ + nπ

2 [31,32]. At this point, one should emphasize
that the condition zs = rn actually corresponds to the first TE
modes of the nth multipole of a spherical hollow resonator
(a spherical cavity in a perfect conductor) [33–35]. This pro-
vides some insights on the origin of morphological resonances
as will be further discussed in Sec. V.

A prediction of the magnetic resonance condition can then
be easily deduced from Eq. (12) by noticing that ϕn(rn−1) =
−n (see Appendix A) [30]. If |εs | is large, it can then be
assumed that the first resonance of the nth magnetic multipole
occurs close to the position:

zs � rn−1. (16)

This is confirmed in Fig. 2 in the case of n = 1 where
one clearly sees that the magnetic resonance is close to this
condition. This resonance condition differs from the first TM
mode of a spherical hollow resonator occurring for zs � r

′
n,

r
′
n being the first zero of the derivative of the nth order Bessel

functions [33,35]. This will be further discussed in Sec. V.
In order to get a good approximation of bn at the vicinity of

the magnetic resonance, one could then choose to approximate
ϕ(1)

n (zs) by its power series expansion around zs = rn−1

(calculations are made in Appendix D):

ϕ(T 2)
n (z) � −n − rn−1(z − rn−1) − (n + 1)(z − rn−1)2

− 1

3

[
n(2n + 1)

rn−1

]
(z − rn−1)3. (17)
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FIG. 3. Comparison of the approximations of the ϕ
(1)
1 (zs) func-

tion. Exact calculation (full blue line). ϕ
(T 1)
1 (zs): Taylor expansions

around zs = 0 (dashed black line),ϕ(W1)
1 (zs): approximation derived

in Eq. (20) (dashed red line), ϕ
(T 2)
1 (zs): Taylor expansion around

zs = rn−1 derived in Eq. (17) (dotted green line).

Figure 3 shows that Eq. (17) provides a very good approxima-
tion of ϕ(1)

n (zs), but only on a small interval of size parameters
close to the resonance.

It can then be concluded from this study that the slow
convergence of the Taylor series expansions does not allow
accurate and compact approximated expressions of the ϕ(1)

n

functions. It will be confirmed by the results obtained on
Sec. IV.

III. WEIERSTRASS APPROXIMATIONS OF ϕ(1)
n

We propose to address this issue of the slow convergence
of the Taylor descriptions in the proximity of the poles of
ϕ(1)

n (zs) by using the Weierstrass expansion of the Bessel
function [31,32]:

jn(z) = zn

(2n + 1)!!

∞∏
l=1

[
1 −

(
z

rn,l

)2
]
, (18)

where rn,l is the lth zero of the nth order Bessel function.
The expression of the ϕ(1)

n function can then be deduced from
Eqs. (2) and (18) (see Appendix B) [36,37]:

ϕ(1)
n (z) = n + 1 +

∞∑
l=1

2z2

z2 − (rn,l)2
. (19)

Expression (19) is an exact expansion of ϕ(1)
n which takes

into account the existence of an infinite number of poles located
on the real axis, as observed in Fig. 2, and corresponding to
the zeros of jn. It is then interesting to recall the asymptotic
form of these zeros for large values of l: rn,l � lπ + nπ/2
[31,32]. In the previous section, it was shown that those
poles are of great importance in the emergence of the electric
morphological resonances and that is why it is necessary
to find approximations of ϕ(1)

n featuring the same poles. In
our study, we are seeking for approximations capable to
predict the first morphological resonance. Approximations
of ϕ(1)

n can be obtained by truncating the infinite sum in

Eq. (19) and by conserving only its first term. But, rather
than completely neglecting the influence of higher order poles,
one can also approximate their contributions. As shown in
Appendix C, if we consider that zs << rn,2, we obtain the
following approximation:

ϕ(W1)
n (z0) = n + 1 + 2z2

n

z2
n − 1

+ 2ρ(e)
n z2

0, (20)

where we set for compact notations that zn ≡ z0/rn,1 ≡ z0/rn

and ρ(e)
n ≡ 1

r2
n

− 1
2(2n+3) , with rn being the first zero of jn.

Regarding the approximation of the magnetic coefficients, we
have seen in Sec. II that their first resonance occurs near the
condition zs = rn−1. In order to have a good prediction of the
magnetic resonances, an accurate approximation of ϕ(1)

n (zs)
near zs = rn−1 must be found. As seen in the previous section
and in Fig. 3, a simple power series expansion of ϕ(1)

n (zs) does
not provide satisfying results. A better approximation has been
found under the following form:

ϕ(W2)
n (z0) = n + 1 + 2z2

n

z2
n − 1

+ 2ρ(h)
n z2

0, (21)

where ρ(h)
n has been derived to impose ϕ(A2)

n (z) = −n. It can
then be easily shown that ρ(h)

n ≡ 1
r2
n−r2

n−1
− 2n+1

2r2
n−1

.

Approximations of the Bessel functions can also be derived
by following a similar approach leading to the subsequent
expression (see Appendix C):

j (W1)
n (z0) = zn

0

(2n + 1)!!

(
1 − z2

n

)
eρnz

2
0 . (22)

The approximations obtained for the special functions
appearing in the Mie theory can now be used to find
approximations of the Mie coefficients.

IV. APPROXIMATIONS OF an AND bn

In order to find an accurate approximation of the an and
bn coefficients, in particular at the vicinity of their resonances
[38–40], we start from the exact expression (1) and make
use of the approximations (20) and (22) derived with the sole
assumption zs << rn,2. If the exact expressions of h(+)

n and ϕ(+)
n

are kept, it can be shown, provided several steps of calculations,
that the Mie coefficients can be cast (see Appendix E and
Appendix F):

a(A1)
n = (n + 1)z2n+1

(2n + 1)!!

e−iz+ρ
(e)
n z2

Qn(z)

× (ε − 1)
[
fn(ε,z) − z2

n

]
εgn(z)fn(ε,z) − (n + 1)

b(A1)
n = z2n+1

(2n + 1)!!

e−iz+ρ
(h)
n z2

Qn(z)

× (ε − 1)Ln(ε,z)

εLn(ε,z) − (n + 1) + ϕ
(+)
n (z)

(23)
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FIG. 4. Comparison between exact (full blue line) and approxi-
mations (23) (dotted green line) and (24) (dashed red and black lines)
of a1 for a sphere of silver [26] 60 nm (a) and 80 nm (b) in radius.

with gn(z) = ϕ(+)
n (z) − 2ρnz

2 and Qn(z) is a polynomial
function detailed in Appendix G and ϕ(+)

n (z) being simply
calculated using Eqs. (2) and (G1). In the electric coefficient

expression, fn(ε,z) = 1−εz2
n

1− n+3
n+1 εz2

n

while in the magnetic coeffi-

cient expression Ln(ε,z) = − 2z2
n

εz2
n−1 − 2ρ(h)

n z2.
Comparisons between these approximations and exact

calculations are shown in the following figures. In order to
further highlight the relevance of our study, we also make
comparisons with approximations already derived in literature
[10,15] that are based on power series expansions of the Kn

coefficients in Eqs. (3) and (4):

(
a

(T 1)
1

)−1 = −i

[
− 3(ε + 2)

2z3(ε − 1)
+ 9(ε − 2)

10z(ε − 1)

]
+ 1,

(
b

(T 1)
1

)−1 = i
45

z5(ε − 1)
− 15i(2ε − 5)

7z3(ε − 1)

− i(ε2 + 100ε − 125)

49z(ε − 1)
+ 1,

(
a

(T 2)
1

)−1 = i
3(ε + 2)

2z3(ε − 1)
− 9i(ε − 2)

10z(ε − 1)

− 9iz(ε2 − 24ε + 16)

700(ε − 1)
+ 1. (24)

It is clearly observed in Fig. 4 that our approximations
achieve to reproduce the resonances predicted by exact
calculations in a more accurate way than state-of-the-art

FIG. 5. Comparison between exact calculations of a1 (full blue
line) and b1 (full green line) with approximations (23) of a1 (dashed
black line) and b1 (dotted blue line) and power-series approximations
of b1 (24) (dashed red line), for a sphere of silicon [25] of radius
70 nm (a) and 100 nm (b).

approximations, even quite lengthy high-order Taylor expan-
sions.

Although we did not explicitly derive these approximations
for describing plasmonic scatterers, one clearly sees that these
new approximations are more accurate than the approxima-
tions (24) as can be seen in Fig. 4.

However, the main interest of these new approximations is
that they are highly accurate for high-index dielectric scatterers
as shown in Fig. 5 for a silicon scatterer.

In fact, it was already shown in Fig. 1 that no approximation
based on Taylor series expansions is able to predict the
resonance of a1 but the approximation derived in this study
(23) does predict these resonances accurately. Regarding the
magnetic resonances, even though the approximation b

(T 1)
1 in

Eq. (24) which is a high-order power-series expansion of b1

shows the dipolar magnetic resonance [10], our approximation
stays more accurate for a larger range of sizes and wavelengths.

We now aim at studying the validity of these expressions in
the case of larger particles made of lower refractive index. This
will allow us to test the accuracy of higher orders expressions,
in particular quadrupolar orders. For that purpose, we consider
a sphere made of TiO2, 140 nm in radius. We compare
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FIG. 6. Comparison between exact calculations and approxima-
tions 23 for a1 (full red line and dashed black line), b1 (full blue line
and dotted green line), a2 (full green line and dashed gray line), and
b2 (full cyan line and dotted red line) for TiO2 [41] 140 nm in radius.

the calculations of the dipolar and quadrupolar electric and
magnetic Mie coefficients obtained by exact calculations
[Eq. (1)] with the expressions (23). The plot in Fig. 6 shows
the very good accuracy of these expressions for dipolar and
quadrupolar orders, even when considering larger particles
made of lower refractive indices.

V. DISCUSSION

Conditions of resonance derived in Sec. II C have been
very useful to derive accurate approximations of the Mie
coefficients in the previous section. Here we will show that they
can also provide more insight on the origin of morphological
resonances. Since condition (15) is close to the TE mode of a
hollow resonator, one can infer that morphological resonances
occur thanks to the ability of high index dielectric scatterers to
play the role of a cavity. Since high index dielectric scatterers
are not perfect cavities, the trapped electromagnetic field
leaks in the surrounding medium driving to resonances of the
scattered field. When |εs | → ∞, the scatterer becomes a very
good cavity for the electromagnetic field which can be trapped
inside the resonator for a long time. It is not surprising then
to find the same resonance condition as the one of a hollow
resonator in this case.

Nonetheless, the resonance condition (16) for magnetic
multipoles is different from the TM mode of a hollow
resonator. This TM mode normally occurs at zs � r

′
n, r

′
n being

the first zero of the derivative of the nth order Bessel functions
[33] and not zs � rn−1. For n = 1, r

′
1 and rn−1 = r0 take the

following value r
′
1 = 2.744 and r0 = π . However, one can

infer that magnetic morphological resonances also occur due
to the ability of high-index dielectric scatterers to concentrate
light. Since even in the limit |εs | → ∞, these high-index
dielectric scatterers are not perfect cavities, and that explains
why the magnetic resonances are different from the TM modes
of hollow resonators.

In Sec. II C, these resonance conditions were derived in the
limit |εs | → ∞. One could then question the validity of such
conditions of resonance for large but not infinite values of |εs |.
A comparison between the exact values of |εs | required to reach
the resonance, also called unitary limit [10], and the predictions

FIG. 7. Comparison between the exact εUL (black full line)
required to reach the resonance and the prediction provided by
Eqs. (15) and (16) respectively labeled ε

(e1)
UL and ε

(h1)
UL (dotted

green line). A better approximation of ε
(e)
UL is obtained by solving

ϕ(W1)
n (zs) = −nεs , labeled ε

(e2)
UL (dashed blue line)

provided in Sec. II C needs then to be carried out. The exact
values of the permittivity needed to reach the resonance for
a given z0 = kR can be derived by numerically solving the
equation a1 = 1 for the electric dipole resonance and b1 = 1
for the magnetic dipole resonance. In Fig. 7 the exact value of
the unitary limit permittivity for the electric dipole ε

(e)
UL in Fig. 7

is compared to the prediction provided by Eq. (15) in Sec. II C,
zs = r1, or equivalently, ε(e1)

s = ( r1
z

)2. One can clearly see that
this expression predicts accurately the asymptotic behavior of
the exact ε

(e)
UL for very small z0 but is not very accurate for

larger z0. In Fig. 7 the same comparison is also carried out
between the exact unitary limit permittivity for the magnetic
dipole ε

(h)
UL and the prediction given by Eq. (16), ε(h1)

s = ( r0
z

)2.
A very good agreement is observed between the exact value
and the prediction.

A more accurate prediction of ε
(e)
UL can also be derived.

To do so, one could solve Eq. (11) for n = 1: ϕ
(1)
1 (zs) = −εs .

However, this equation can only be solved numerically. On the
other hand, if the approximation ϕ

(W1)
1 (zs) given by Eq. (20) is

used, the previous equation reduces to a second order equation
in ε and can be analytically solved leading to the prediction
ε

(e2)
UL (the exact expression of ε

(e2)
UL is provided in Appendix H).

This prediction proves to be quite accurate for a large range of
z0 as can be seen in Fig. 7.
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Finally it is also interesting to notice that the approximation
(23) also predicts a zero of the Mie coefficients different from
the trivial condition (ε − 1). These zeros actually correspond
to the anapoles in Ref. [42]. They are in fact reached when
fn(ε,z) − z2

n = 0 or equivalently 1
z2
n
fn(ε,z) = 1. This latter

condition can be found while searching for solutions to
εeq = 1, the definition of εeq(z) = ( r1

z
)2 1−ε(z/r1)2

1−2ε(z/r1)2 being pro-
vided in Ref. [37]. Expression (23) also provides a condition
for which bn is null. The nontrivial solution, different from the
trivial solution ε = 1, corresponds to Ln(ε,z) = 0.

VI. CONCLUSION

To conclude, the use of the K-matrix has allowed us to
derive resonance conditions for both plasmonic and high-index
dielectric resonant particles. We have thus been able to show
that under the condition |εs | >> 1, different from the condition
used for Taylor series zs << 1, the electric resonance is close
to zs � rn and the magnetic resonance is close to zs � rn−1.
The proximity of the electric resonance to the pole of the
ϕn(zs) function at zs = rn explains the weak convergence of
the Taylor series expansion for approximating Mie coefficients
especially near the electric resonances. We proposed to
solve this problem by using a Weierstrass expansion of
the Bessel functions. This method allows us to derive for
any multipolar order highly accurate electric and magnetic
polarizability expressions. We evidenced the high accuracy of
these expressions by calculating the dipolar and quadrupolar
polarizability expressions of spherical particles made of silver,
silicon, and titania. These expressions bring analytical tools to
explain the resonant light interaction with metallic or dielectric
particles. They also permitted us to bring more physical insight
on the origin of morphological resonances. In particular,
these formulations allowed us to calculate a very accurate
prediction of the dielectric permittivity required to reach the
resonance, also called unitary limit. Such expressions will
offer opportunities for modeling the light scattering in complex
media or for homogenizing optical systems made of resonant
light scatterers.
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APPENDIX A: RESONANCE AND ZERO
CONDITIONS OF bn

It has been shown in Sec. II that a good prediction of the
first resonance of bn in the limit z0 << 1 could be provided by
the solution of the following equation:

ϕ(1)
n (z) = −n. (A1)

If we use the following recurrence relation for spherical Bessel
functions [32]:

j ′
n(z) = −n + 1

z
jn(z) + jn−1(z),

⇒ [zjn(z)]′ = −njn(z) + zjn−1(z),

⇒ ϕ(1)
n (z) = −n + z

jn−1(z)

jn(z)
. (A2)

It then follows that Eq. (A1) is verified for the zeros of Bessel
functions of order n − 1: z = rn−1,l .

APPENDIX B: WEIERSTRASS FACTORIZATION
OF BESSEL FUNCTIONS

As demonstrated by Watson in Ref. [31], it is possible to
express cylindrical Bessel functions as an infinite product of
factors involving their zeros:

Jν(z) = 1

�(ν + 1)

( z

2

)ν
∞∏

n=1

[
1 −

(
z

zν,n

)2
]
, (B1)

where zν,n is the nth zero of the cylindrical Bessel func-
tions of order ν. This expression can be generalized to
the spherical Bessel functions jn by means of the relation:

jn(z) =
√

π
2z

Jn+1/2(z). If we set rn,j ≡ zn+1/2,j and if we notice

that �(n + 1/2) = 2−n
√

π (2n − 1)!!, we get the following
expression (18):

jn(z) = zn

(2n + 1)!!

∞∏
l=1

[
1 −

(
z

rn,l

)2
]
. (B2)

The double factorial operator !! is defined such that

n!! =
m∏

k=0

(n − 2k) = n(n − 2)(n − 4) · · · , (B3)

where m = Int[(n + 1)/2] − 1 with 0!! = 1, or in terms of
ordinary factorials via the relations (2n − 1)!! = (2n)!

2nn! and
(2n)!! = 2nn! for n = 0,1,2, . . ..

These expressions are designated as Weierstrass factoriza-
tions throughout the article as it can also be obtained by using
the Weierstrass factorization theorem. It can then be used to
derive an expression of ϕ(1)

n functions also appearing in our
formulation of the Mie coefficients. One should first notice
that ϕ(1)

n as defined in (2) is equal to z times the logarithmic
derivative of the Ricatti-Bessel functions zjn(z). From (18), it
is then straightforward to show that

ϕ(1)
n (z) = z

⎧⎨
⎩(n + 1)

1

z
+

∞∑
l=1

[
− 2z

(rn,l)2

]
1

1 − (
z

rn,l

)2

⎫⎬
⎭,

ϕ(1)
n (z) = n + 1 +

∞∑
l=1

2z2

z2 − (rn,l)2
(B4)

APPENDIX C: APPROXIMATION OF ϕ(1)
n FOR an

As suggested in Ref. [27] (see notably the supplementary
material), the expressions derived in Appendix A can be used
to approximate functions jn and ϕ(1)

n as an alternative to their
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Taylor series expansions. It was this method that was followed
to derive the approximations (20), (21), and (22). Here, we
provide a demonstration of these two expressions. ϕ(1)

n is
equal to

ϕ(1)
n (z) = n + 1 + 2z2

z2 − r2
n

+
∞∑
l=2

2z2

z2 − (rn,l)2

= n + 1 + 2z2

z2 − r2
n

− 2z2
∞∑
l=2

1

(rn,l)2

1

1 − z2

(rn,l )2

.

(C1)

As in our study z << rn,2, for l � 2 1

1− z2

(rn,l )2

� 1 which

leads to

ϕ
(1)
1 (z) � 2 + 2z2

z2 − r2
n

− 2z2
∞∑
l=2

1

(r1,l)2
. (C2)

Finally, as
∞∑
l=1

1
(rn,l )2 = 1

2(2n+3) [31], Eq. (C2) simplifies to

ϕn(z) ≈ n + 1 + 2z2

z2 − (rn)2
+ 2ρnz

2, (C3)

where ρn ≡ 1
r2
n

− 1
2(2n+3) .

Moreover, we can apply the same idea to approximate the
spherical Bessel functions jn:

jn(z) = zn

(2n + 1)!!

[
1 −

(
z

rn,1

]2
) ∞∏

l=2

[
1 −

(
z

rn,l

)2
]
,

(C4)

and
∞∏
l=2

[1 − ( z
rn,l

)2] can be approximated:

∞∏
l=2

[
1 −

(
z

rn,l

)2
]

= exp

(
ln

{ ∞∏
l=2

[
1 −

(
z

rn,l

)2
]})

= exp

{ ∞∑
l=2

ln

[
1 −

(
z

rn,l

)2
]}

. (C5)

If z << rn,2,
∞∑
l=2

ln [1 − ( z
rn,l

)2] → −
∞∑
l=2

( z
rn,l

)2, it then follows

from the previous results that

∞∏
l=2

[
1 −

(
z

rn,l

)2
]

� exp(ρnz
2), (C6)

which leads to the following approximation for jn:

jn(z) � zn

(2n + 1)!!

[
1 −

(
z

rn,1

)2
]

exp(ρnz
2). (C7)

APPENDIX D: APPROXIMATION OF ϕ(1)
n FOR bn

In order to approximate the function ϕ(1)
n at the vicinity of

the resonance condition of bn, we can make the choice to take

the power series expansion around zs = rn−1:

ϕ(1)
n (z) � ϕ(1)

n (rn−1) + (z − rn−1)
dϕ(1)

n

dz

∣∣∣∣
rn−1

+ · · · , (D1)

dϕ(1)
n

dz
(z) = d

dz

[
z
jn−1(z)

jn(z)

]

= jn−1(z)

jn(z)
+ zjn−1(z)

d

dz

[
1

jn(z)

]

+ z

jn(z)

djn−1

dz
(z), (D2)

which leads to

dϕ(1)
n

dz

∣∣∣∣
rn−1

= rn−1

jn(rn−1)
j ′
n−1(rn−1). (D3)

By using a recurrence relation for spherical Bessel
functions [32],

− n

z
jn(z) + j ′

n(z) = −jn+1(z), (D4)

we can show that j ′
n−1(rn−1) = −jn(rn−1). This result leads to

dϕ(1)
n

dz

∣∣∣∣
rn−1

= −rn−1. (D5)

Similar calculations allow us to show that ϕ(1)′′
n (rn−1) =

−2(n + 1) and d3ϕ
(1)
n

dz3 |
rn−1

= −2 n(2n+1)
rn−1

− 2rn−1.

APPENDIX E: APPROXIMATION of an

ϕ(A1)
n may be reexpressed in the following way:

ϕ(A1)
n (z0) = n + 1 + 2z2

n

z2
n − 1

+ 2ρnz
2
0 (E1)

= (n + 3)z2
n − (n + 1)

z2
n − 1

+ 2ρnz
2
0, (E2)

ϕ(A1)
n (z0) = (n + 1)

(n+3)
(n+1)z

2
n − 1

z2
n − 1

+ 2ρnz
2
0, (E3)

which leads to

εsϕ
(A1)
n (z0) − ϕ(A1)

n (zs)

= εs

[
(n + 1)

(n+3)
(n+1)z

2
n − 1

z2
n − 1

+ 2ρnz
2
0

]

−
[

(n + 1)
(n+3)
(n+1)εsz

2
n − 1

εsz2
n − 1

+ 2ρnεsz
2
0

]

= (n + 1)(εs − 1)

1 − z2
n

[
1 − z2

n

(n+3)
(n+1)εsz

2
n − 1

εsz2
n − 1

]
,

× εsϕ
(A1)
n (z0) − ϕ(A1)

n (zs)

= (n + 1)(εs − 1)
[
fn(εs,z0) − z2

n

]
(1 − z2

n)fn(εs,z0)
(E4)
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The numerator of an can then be reexpressed in the following way:

j (A1)
n (z0)

[
εsϕ

(A1)
n (z0) − ϕ(A1)

n (zs)
] = (n + 1)zn

0

(2n + 1)!!

e−ρnz
2
0

fn(εs,z0)
(εs − 1)

[
fn(εs,z0) − z2

n

]
, (E5)

where the function fn has been defined in the article. The denominator can be also simplified:

h(+)
n (z0)

[
εsϕ

(+)
n (z0) − ϕ(A1)

n (zs)
] = eiz0

zn+1
0

Qn(z0)

[
εsϕ

(+)
n (z0) − (n + 1)

(n+3)
(n+1)εs.z

2
n − 1

εs.z2
n − 1

− 2ρnεsz
2
0

]
,

h(+)
n (z0)

[
εsϕ

(+)
n (z0) − ϕ(A1)

n (zs)
] = eiz0

zn+1
0

Qn(z0)

fn(εs,z0)
[εsfn(εs,z0)gn(z0) − (n + 1)], (E6)

where gn has been defined in the article. That finally leads to the following approximation of the electric Mie coefficients:

a(A1)
n = (n + 1)z2n+1

0

(2n + 1)!!

e−ρnz
2
0−iz0

Qn(z0)

(εs − 1)
(
fn(εs,z0) − z2

n

)
εsfn(εs,z0)gn(z0) − (n + 1)

. (E7)

APPENDIX F: APPROXIMATION OF bn

ϕ(A1)
n (z0) − ϕ(A1)

n (zs) = 2z2
n

z2
n − 1

+ 2ρnz
2
0 − 2εsz

2
n

εsz2
n − 1

− 2ρnεsz
2
0 = −2ρnz

2
0(εs − 1) + 2z2

n

[
εs − 1

(z2
n − 1)

(
εsz2

n − 1
)
]
. (F1)

If we assume that z2
n << 1, it then leads to

ϕ(A1)
n (z0) − ϕ(A1)

n (zs) � (εs − 1)

(
− 2z2

n

εsz2
n − 1

− 2ρnz
2
0

)
. (F2)

Keeping the assumption z2
n << 1 in the approximation j (A1)

n , it then follows that

j (A1)
n (z0)

[
εsϕ

(A1)
n (z0) − ϕ(A1)

n (zs)
]

� z2n+1
0

(2n + 1)!!
e−ρnz

2
0 (εs − 1)Ln(εs,z0), (F3)

and the denominator can be also approximated:

ϕ(+)
n (z0) − ϕ(A1)

n (zs) = ϕ(+)
n (z0) − (n + 1) − εs

(
2z2

n

z2
n − 1

+ 2ρnz
2
0

)
= εsLn(εs,z0) + ϕ(+)

n (z0) − (n + 1), (F4)

which then leads to the following approximation for bn:

b(A1)
n = z2n+1

0

(2n + 1)!!

e−ρnz
2
0−iz0

Qn(z0)

(εs − 1)Ln(z0)

εsLn(εs,z0) + ϕ
(+)
n (z0) − (n + 1)

. (F5)

APPENDIX G:

The outgoing spherical Hankel functions can be written in the following form:

h(+)
n (z) = (−i)n+1 eiz

z

n∑
s=0

is

s!(2z)s
(n + s)!

(n − s)!
= eiz

zn+1

n∑
s=0

(−1)n+1 in+s+1

s!(2)s
(n + s)!

(n − s)!
zn−s ,

h(+)
n (z) = eiz

zn+1
Qn(z), (G1)

where the polynomial function Qn(z) =
n∑

s=0
(−1)n+1 in+s+1

s!(2)s
(n+s)!
(n−s)!z

n−s .

APPENDIX H:

ε
(e2)
UL =

−([
n+3
r2
n

− 2ρ(e)
n

)
z2

0 − n
] +

√[(
n+3
r2
n

− 2ρ
(e)
n

)
z2

0 − n
]2 + 4(n + 1)

[
n
(

z
rn

)2 + 2ρ
(e)
n

z4

r2
n

]
[
n
(

z
rn

)2 + 2ρ
(e)
n

z4

r2
n

] . (H1)
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