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Terahertz time-domain spectroscopy is increasingly used in many fields of research. For strongly absorbing
materials with refraction index close to 1, optical parameters at terahertz frequencies are most conveniently
quantified using transmission measurements through thin samples. Unfortunately, extracting optical parameters
from raw data implies the use and/or development of complicated numerical data processing procedures. In
this work we present an efficient computational procedure for extracting the optical parameters in very thin
samples (�100 μm) from transmission terahertz time-domain spectroscopy. In our procedure, we are able to
successfully remove from raw data the Fabry-Perot interference effects, which are commonly recognized to be
the leading cause of inaccuracy in the extracted parameters, introducing fictitious oscillations in their frequency
dependence. The procedure is based on the Davidenko method to identify the roots of complex functions used to
numerically solve the implicit equation obtained by equating the experimental and theoretical transfer functions.
The advantage of the method is the possibility of obtaining the roots using the numerical solution of a system of
real differential equations using standard mathematical packages. In addition, we show that complete removal of
the Fabry-Perot oscillations is achieved by including in the computational procedure, besides the sample thickness,
the instrumental error on the starting instant of the terahertz signal sampling. This error could be common to many
terahertz time-domain systems, especially those using optical fibers. This correction is necessary in general to
preserve the terahertz spectroscopic features in the extracted optical parameters for strongly absorbing materials
with refraction index close to 1, such as water, biological matter, and several organic materials.
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I. INTRODUCTION

In recent years, technological advances in the generation
of coherent sources have made terahertz (THz) time-domain
spectroscopy (TDS) [1] available to an ever wider audience of
researchers working in different fields. This technique is based
on the emission of THz pulses with a duration in the range
of picoseconds. Many sources of THz radiation have been
proposed so far: photoconductive antennae, collinear optical
rectification in electro-optic materials, tilted pulse generation
in LiNbO3, rectification in organic crystals, and mixed-field
air plasma [1]. Photoconductive antennae are semiconductor
structures with a short carrier lifetime. Terahertz pulses are
generated switching the antenna using an ultrafast laser pulse
with a duration of some tens of femtoseconds, thus causing
the applied bias to generate a rapidly varying photocurrent.
Detection of the THz pulse is realized by another photocon-
ductive antenna, which works as a dipole when excited by the
ultrafast laser pulse. This causes the incoming THz pulse to
induce a small current as the output signal. By using an optical
delay line, the beam path difference between the THz path
and the detector antenna laser path can be varied and used to
sample the THz electrical field at the detector antenna E(t) as
a function of time (stroboscopic sampling) [2,3].

Transmission and reflection spectroscopy can be used for
the measurement of the complex refractive index of a sample
versus frequency ω, n̂(ω) = n(ω) + iα(ω)c/2ω, where α(ω) is
the absorption coefficient, n(ω) is the phase refraction index,
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and c is the speed of light. In the simplest transmission
experiment, two time-domain THz pulses E(t), propagating
through the sample and through vacuum or air, respectively,
are recorded and their calculated spectral amplitude and phase
Êsample(ω) and Êref(ω) are compared by using the complex
transfer function T̂ (ω) defined as

T̂ (ω) = T (ω)eiϕ(ω) = Êsample(ω)

Êref(ω)
, (1)

where ϕ(ω) is the transfer function phase [3]. The variation
in frequency of n̂(ω) can be obtained by solving the inverse
scattering problem for the electromagnetic waves, namely, by
equating the experimental transfer function

T̂expt(ωj ) = Êsample(ωj )

Êref(ωj )

(j is a data array index) with the analytical expression
of T̂ (n̂,ωj ) obtained by solving the direct electromagnetic
problem.

However, the coherence of the THz radiation in THz TDS
represents a critical issue for the extraction of the optical
parameters from data due to interference effects caused by
multiple reflections within the sample. In fact, when the THz
pulse propagates within a sample, it will undergo internal
reflections whenever an interface is encountered, transmitting
at the same time part of the incident radiation. Multiple
reflections at the interfaces generate echoes following the main
THz pulse in the E(t) signal. These interference effects will
in general result in a complicated response of the sample to
the electromagnetic stimulus, depending on n̂(ω) as well as
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FIG. 1. Shown on the left are time traces of the reference (black line) and sample [red (gray) line] pulses from the transmission THz TDS
experiments for all three samples. The inset shows that the first echo peak for the thinner sample A1 is expected to be superimposed on the
main peak (indicated by the arrow) but is not evident. On the right is the FFT amplitude as obtained from the FFT of the full [red (gray) line]
and truncated [cyan (light gray) line] time trace data of the left panel. The dashed-line rectangles delimit the truncated range of the Si and LiF
time traces.

on the shape of the sample itself. In fact, in properly designed
systems, this dependence can be exploited to control wave
propagation so that response is governed by geometry as
opposed to composition [4].

Therefore, one of the problems that must be addressed using
THz TDS is the disentanglement of the optical parameters from
the interference effects in the solution of the inverse scattering
problem for the electromagnetic waves. A considerable simpli-
fication is obtained by using radiation incident perpendicularly
on the flat surface of a homogeneous rectangular sample. This
simplification is acceptable if the interface roughness is smaller
than the probe radiation wavelength.

In a standard geometry in which the radiation impinges,
from vacuum or air, perpendicularly on a flat sample, multiple
reflections inside the sample give rise to the well-known
Fabry-Perot (FP) interference effect. In this case the analytical
expression of T̂ (n̂,ω), obtained trough the transfer matrix
method [5], is

T̂ (n̂,ω) = 4n̂

(1 + n̂)2

ei(n̂−1)ωd/c

1 − (
n̂−1
n̂+1

)2
e2i(ω/c)n̂d

, (2)

where d is the sample thickness and the denominator of the
second factor represents the FP contribution. Extraction of the
optical parameters can be obtained by equating theoretical and
experimental transfer function: T̂ (n̂,ωj ) = T̂expt(ωj ). How-
ever, this expression cannot be analytically inverted in order
to express the optical parameters in terms of the experimental
quantities.

Nevertheless, for optically thick samples, a simplified
procedure, which will be described in detail in Sec. III, is
possible. In these cases the main sample THz pulse is well
separated in time from the echoes. This allows the sample and
reference E(t) signals to be truncated before the appearance of
the first echo, avoiding the FP interference effects in T̂expt(ωj )
[see the red (full time trace) and blue (truncated) curves of the
fast Fourier transform (FFT) amplitude in Fig. 1]. Finally, the

FFT of the truncated curves allows the use of the analytically
invertible Eq. (3) instead of Eq. (2).

Thin samples will instead lead to a sequence of echoes
following closely or being superimposed on the main THz
pulse and making the truncation procedure very difficult, if
not impossible. In this case the FFT amplitude shows almost
imperceptible slowly varying FP oscillations in the T̂expt(ωj )
(see the red curve A1 of the FFT amplitude in Fig. 1). Despite
the apparently small amplitude of these oscillations, use of
Eq. (3) gives rise to fictitious oscillations in the extracted
optical parameters that can distort real spectroscopic features
(see the black curves A1 in Fig. 2). In general, it is then
necessary to use numerical algorithms to extract the optical
parameters from the THz TDS measurements using Eq. (2).
Several authors in the past have proposed different numerical
methods to perform accurate cancellation of FP oscillations
in thin samples. All of them had shown that such cancellation
depends critically on the thickness parameter and proposed

FIG. 2. Absorption coefficient and refraction index as a function
of frequency as obtained by Eqs. (4) and (5) (black line) and after FP
cancellation [red (gray) line] for all three samples.
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some criteria in order to establish the best value at which this
cancellation is optimal [6–11].

In this paper we present a computational procedure for
extracting optical parameters from THz TDS measurements,
able to provide the optical parameters of thin samples
(�100 μm) with refraction index close to 1. This algorithm,
different from previous methods, is based on the Davidenko
method for finding the roots of complex functions. This method
has already been used in the past to solve electromagnetic
problems in multilayer dielectric structures. Compared to other
methods, it has the advantage that the initial values, necessary
for the numerical solution, do not need to be very close to
the true solution as in the widely used Newton-Raphson (NR)
method [6,12].

Furthermore, the proposed algorithm incorporates in a
simple and computationally efficient way the correction of the
temporal drift of the starting time of the stroboscopic sampling,
affecting the sample-reference delay time. This correction
allows the accurate extraction of the optical parameters for
samples of thickness �100 μm and refraction index close
to 1, up to now based on the adjustment of the thickness
parameter only. This inaccuracy is likely present in many
THz TDS setups, in particular in those based on optical fiber
transmission of the laser pulse to the antennae. Its correction
should be considered whenever the THz pulse delay time
between reference and sample is comparable to this inaccuracy.

II. EXPERIMENT

A. Materials

In order to show the functioning of our computational
method in significantly different situations, we selected three
samples: a Si crystal (named Si), a LiF crystal (named LiF),
and a specimen (named A1) from an ancient paper sheet. The
sample Si is square shaped with an edge of 2 cm and is obtained
from a B-doped polished silicon wafer with a resistivity of
100 � cm. The LiF sample is a polished, nominally pure,
LiF crystal square shaped with a side of 1.5 cm, containing
point defects (color centers) induced by γ radiation [13,14].
The sample A1 is a piece of about 2 × 4 cm2 of unprinted
paper produced in 1413 in Perpignan (France) and made from
cotton and linen cellulose, already used for several studies
[15–19]. The samples may be considered as representative of
as many paradigmatic classes of solid materials at the THz
frequencies: Si is low absorbent, high refractive index; LiF
is medium absorbent, high refractive index; and A1 is strong
absorbent, low refractive index and very thin. All samples
are shaped according to the standard geometry used for
transmission mode measurements and are considered to meet
the general assumption of facing two flat and parallel surfaces
perpendicular to the direction of propagation. Scattering for
the porous sample A1 can be neglected as the length scale
of inhomogeneities (of the order of tens of micrometers) is
smaller than the THz wavelength [20,21]. In Table I main
sample data and information are reported.

As widely noted in previous works [8,10,11], the values of
the sample thickness used in a numerical extraction method
have to be adjusted to achieve the complete cancellation of
the FP oscillation from the optical parameters. In fact, the

TABLE I. Sample thickness, measured by a micrometer, t ;
estimated by Eq. (6), d∗; and best value from the numerical procedure,
d . Also reported are the refraction index n and absorption coefficient
α at ∼1.5 THz.

Name t ± 0.01 (mm) d∗ (mm) d (mm) n α (cm−1)

Si 0.52 0.519 0.519 3.35 ≈1
LiF 1.15 1.138 1.154 3.05 ≈10
A1 0.108 0.115 1.35 ≈25

precision necessary in the thickness measurement in this case
is higher than that obtainable by a micrometer screw gauge.
Then the thickness t reported for A1 represents only the initial
value used in our algorithm but not the value that gives the
best FP cancellation (d values). For the other two samples
the presence of the echoes is exploited for a more precise
determination (d∗ values), but a slight adjustment is necessary
for LiF.

B. Method

Terahertz spectra were recorded in transmission mode using
a Menlo Systems (Germany) TERA K15 THz TDS equipped
with photoconductive antennae excited by a femtosecond fiber-
coupled laser (Menlo Systems T-Light). The laser emission
wavelength was 1560 nm, the repetition frequency 100 MHz,
and the pulse duration approximately 90 fs. For all acquisitions
the delay line scan range was 100 ps, the scan rate was 8 Hz,
and data were pitched every 33 fs. Spectra were obtained by
averaging the signal over 400 scans (each lasting 0.125 s),
therefore the time for a single acquisition was 50 s.

Since water vapor absorbs THz radiation, prior to spectra
acquisition, the sample compartment of the THz setup was
purged with N2 until most water vapor absorption lines were
indistinguishable from noise (nearly 60 min). The usable
range for this apparatus was found to be 0.2–3.5 THz. The
frequency-dependent dynamic range obtained by averaging
over 400 scans was about 77 dB at 0.35 THz and about 20 at
3.5 THz.

Terahertz radiation emitted by the photoconductive antenna
was collected and focused to the sample by means of two TPX
lenses with 50-mm nominal focal length. Radiation transmitted
through the sample was collected and focalized to the receiver
antenna by another pair of identical 50-mm nominal focal
length TPX lenses. All samples were placed in the transmission
lines with the two flat parallel surfaces orthogonal to the THz
beam line axis.

C. Terahertz data analysis

Typical THz pulses propagating without the sample (refer-
ence signal) and through the sample are shown in Fig. 1 for
Si, LiF, and A1 (left panels). The presence of multiple echoes
following the main THz pulse is well evident for Si and LiF
samples. The blue dashed line in the rectangles in the left panel
delimit the truncated range of the Si and LiF time traces.

Terahertz pulse data arrays were converted in spectral data
by a standard discrete FFT algorithm. The resulting curves for
the full (red) and truncated (blue) time traces are shown in the
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right panels of Fig. 1. The presence of multiple pulse echoes
in the time trace introduces oscillations in the FFT [7]. Such
oscillations are evident in the sample FFT amplitude for Si,
less evident for LiF, and apparently absent for A1.

III. COMPUTATIONAL METHOD

As explained in the Introduction, the extraction of n̂(ω)
from the THz TDS signal measured in transmission mode
can be carried out by using T̂ (n̂,ω) [Eq. (1)]. Equating
the experimental transfer function T̂expt(ωj ) with T̂ (n̂,ωj )
obtained by solving the direct electromagnetic problem (2)
allows the recovery of n̂(ω).

The solution of this equation requires a numerical approach.
On the contrary, a simpler approach can be used in the special
case of optically thick samples or whenever the echo peaks
are well separated in the sample time trace. In this case, it is
possible to truncate the pulse data array before the appearance
of the echoes (see Fig. 1) and use as a theoretical transfer
function the expression

T̂ (n̂,ω) = 4n̂

(1 + n̂)2
e−αd/2ei(n−1)ωd/c (3)

in which the multiple reflections are neglected [7].
Equation (3) can be easily inverted when equated to the

experimental transfer function if the absorption contribution
in the first factor of the equation is first neglected, obtaining

n(ω) = 1 + ϕexpt(ω)c

ωd
, (4)

α(ω) = − 2

d
ln

(
(1 + n)2

4n
Texpt(ω)

)
. (5)

Here care must be taken in the numerical procedure used to
unwrap the experimental phase ϕexpt(ωj ) that can introduce
fictitious sudden phase jumps of 2π [8].

As already evidenced in many previous works, regardless of
the transfer function used, the extracted values of n̂(ω) depend
critically on the sample thickness. If well separated echoes are
present in the time trace a good approximation of d can be
found by measuring the time delays between the reference and
sample pulses �trs and the sample and first echo pulses �tse:

d∗ = c�trs

n̄ − 1
, (6)

where the group refraction index over the THz spectral range
n̄ is

n̄ = 1

1 − 2�trs
�tse

. (7)

In general, if use of Eq. (6) is possible, one obtains a thickness
value d∗ that is more accurate than t , both reported in Table I.
It is to be noted that d∗ can be obtained only for the Si and LiF
samples, for which some echoes are present in the time traces,
but not for the A1 sample. In fact, due to its small thickness,
low refraction index, and high absorption coefficient the THz
pulse is totally superimposed with the first echo (see the inset
of Fig. 1). In this case the echo truncation is not feasible, as
well as the use of Eqs. (4) and (5). As Fig. 2 clearly shows,
using these equations, when echoes are present in the time

trace, always leads to the presence of the FP oscillations in
the extracted optical parameters also for A1 for which the FP
oscillations are apparently absent in the FFT amplitude (see
Fig. 1). Moreover, if the sample pulse is superimposed on the
first echo, one also has the drawback of the unavailability of a
sample thickness determination.

The only way to determine the optical parameters as a
function of frequency is to solve the implicit equation obtained
by equating T̂expt(ωj ) with T̂ (n̂,ωj ) [Eq. (2)] in which the FP
effects are self-contained. This equation can be solved only
numerically. Defining

f (n̂,ω) = T̂expt(ω) − 4n̂

(1 + n̂)2

ei(n̂−1)ωd/c

1 − (
n̂−1
n̂+1

)2
e2i(ω/c)n̂d

, (8)

we have to find the n̂ complex root that satisfies for each ωj

the equation f (n̂,ωj ) = 0. One of the commonly considered
approaches to solving root search problems is the NR method,
but, as has been noted in the past, this method is unstable
and its convergence is critical, especially when used with
expressions containing rapidly oscillating functions such as
Eq. (8). To overcome this problem, alternative methods
based on minimization of error functions built using the
theoretical and experimental transfer function were proposed
[6]. However, all procedures based on this scheme revealed
some application limits [11]. Furthermore, some of them
require the implementation of particular algorithms especially
when applied to data coming from thin samples. Ultimately,
these approaches are unsuitable for nonspecialists in numerical
computing.

The computational procedure proposed here to solve Eq. (8)
is based on Davidenko’s method in complex root search. It
can be considered as a sort of Newton method applied to
complex function root search problems [12]. The Davidenko
method allows us to find the roots of complex functions by
the numerical solution of a differential equation in place of
the original equation. Further, convergence of the Davidenko
method is in general faster than other methods and it does not
need the initial value to be very close to the solution as in
the NR method. One advantage of this method relies on the
possibility to solve a differential equation by using a standard
mathematical package.

Calling D(n̂) = ∂f (n̂)/∂n̂ the symbolic derivative of f with
respect to n̂ and introducing a dummy variable ξ in the
functional dependence of n̂,

n̂(ξ ) = n(ξ ) + iκ(ξ ),

it is necessary to solve the differential complex equation

∂n̂(ξ )

∂ξ
+ f (n̂)D(n̂)∗

|D(n̂)|2 = 0. (9)

Equation (9) can be split into a coupled real differential
equation system

∂n(ξ )

∂ξ
+ Re[D(n̂)]Re[f (n̂)] + Im[D(n̂)]Im[f (n̂)]

|D(n̂)|2 = 0,

∂κ(ξ )

∂ξ
+ Re[D(n̂)]Im[f (n̂)] − Re[f (n̂)]Im[D(n̂)]

|D(n̂)|2 = 0

and the roots solution of Eq. (8) for each ωj value are found
asymptotically for ξ → ∞: n̂(∞) = n(∞) + iκ(∞).
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In order to obtain the root values one has to solve the two
coupled real differential equation system. It is convenient to
solve this system numerically using standard mathematical
packages that allow one to obtain the numerical solutions for
a large enough ξ value within an acceptable computational
time also on personal computers. In order to obtain a rapid
convergence (small ξ interval) the initial root search values for
the algorithm are found by using Eqs. (4) and (5).

As pointed out in previous studies, the minimization or
complete removal of the residual Fabry-Perot oscillations
present in the behaviors of the optical parameters is obtained
by optimizing the sample thickness [10,11]. Indeed, up to now
the sample thickness was considered the only parameter to be
optimized for the extraction of the optical parameters in thin
samples.

As can be noted from Fig. 1, all time-domain data present
the zero line reference (ZLR) before the THz pulse. The time
extension of the ZLR before the pulse is in general assumed
to be constant over the course of the experimental session.
However, experimental investigations carried out on our THz
TDS system showed a drift in the ZLR up to more than
100 fs during the experimental sessions (lasting several hours).
Tests carried out to clarify the origin of this drift showed
that temperature variation of optical fibers was primarily
responsible for this systematic error. As a consequence, the
sample-reference delay time can be affected by this error, from
now on called �tinstr. This error is normally much smaller
than the delay time between the THz reference and sample
pulses and normally has a negligible effect on the calculation
of n̂ (see Fig. 1, panel Si or LiF). However, when thin and
low-refraction-index samples have to be measured, such as
in the case of the sample A1 (see Fig. 1), this variation
becomes important and �tinstr can be comparable to the true
reference-sample delay time.

In order to recover the true spectral variation of n̂ for the
thinner sample A1 we have improved the signal extraction
procedure by introducing a further adjustable parameter that
takes account of �tinstr. Considering that the Fourier transform
of a pulse signal is by definition

Ê(ω) =
∫

p(t)eiωtdt

and by introducing the �tinstr parameter in an incorrect transfer
function T̂ ′(ω), we have

T̂ ′(ω) =
∫

psample(t + �tinstr)eiωtdt

Êref(ω)

=
∫

p(t̃)eiωt̃ e−iω�tinstrdt̃

Êref(ω)

= T̂ (ω)e−iω�tinstr

= T (ω)ei[ϕ(ω)−ω�tinstr].

Thus �tinstr gives to T̂expt(ωj ) an extra phase-frequency-
dependent contribution with respect to the true experimental
transfer function. It should be noted that this correction
can be implemented in a simple way in the computational
procedure as an adjustable parameter of the original FFT data
set T̂expt(ωj ), without involving a reprocessing of the time trace
data and without a significant increase of computational time.

A typical computational run of our code on a 400 data array
length spanning the available frequency range 0–4 THz of our
apparatus takes about 10 s on a PC dated 2011 and about 4
s on a last generation PC, thus allowing us to perform in a
reasonable time several runs in order to adjust at the best-fit
parameter values.

The overall convergency relative error committed by the
procedure can be estimated by considering the following
expression:

Conv Err =
∑

j

∣∣∣∣∣Re

[
f (n̂j ,ωj )

T̂expt(ωj )

]∣∣∣∣∣ +
∣∣∣∣∣Im

[
f (n̂j ,ωj )

T̂expt(ωj )

]∣∣∣∣∣.
The precision of our calculation for the refractive index and
absorption coefficient is such that typical values for Conv Err
obtained in our application are of the order 10−8. That means
that the relative difference, of the real or imaginary part,
between any experimental and theoretical transfer function
spectral component is in the worst case of the order 10−8.

IV. RESULTS AND DISCUSSION

As a test of our computational procedure we applied it to
the Si and LiF full time trace starting from the thickness values
d∗ obtained by means of Eq. (6). The thickness parameter was
then adjusted to the final value d in order to reach the accurate
cancellation of FP oscillations [7,8,10,11]. Results are shown
in Fig. 2, where the accuracy of the FP oscillations removal
from the optical parameters is evident. It should be noted that
the time-windowed data treated by Eqs. (4) and (5) gave for Si
and LiF the same results of the general method, so indicating
the reliability of our algorithm.

Subsequently, we applied our procedure to the optically
thin sample A1. Different from Si and LiF data processing, we
found that in sample A1, to achieve the complete removal of
the FP oscillations, it is necessary to adjust both the sample

FIG. 3. Graphic-lattice form of the best parameter search per-
formed on the sample A1 for the absorption coefficient. The best fit is
reported in the central plot. In the top left plot the variation obtained
by Eq. (5) [red (gray) line] is also shown for comparison.
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thickness d and the �tinstr parameters. A quadratic fit of the
minimum THz pulse peaks has also been applied in order
to enhance the time resolution for the determination of the
sample-reference delay time.

We report in Fig. 3, in a graphic-lattice form, the optimized
parameter search performed on the A1 absorption coefficient,
where the plots in each row (column) have been carried out
at constant (variable) �tinstr and variable (constant) d. The
central plot represents the best fit obtained by minimizing the
FP oscillations according to the criteria given in Ref. [11].
As can be seen following the plots in the central column, if
the �tinstr parameter is not optimized, residual FP oscillations
remain in the absorption coefficient frequency dependence.
It is worthwhile to note that in the case of A1 this is really
important in order to preserve the behavior of the spectroscopic
features (i.e., the ω2-like background in the range 0–2 THz
[22,23] and the peak visible at about 2.1 THz [24]).

V. CONCLUSION

In this paper we have proposed a numerical procedure
able to extract the optical parameters from THz TDS data
in very thin samples. Like previous methods, our method
works equally well with samples of varied thickness, re-
fractive index, and absorption coefficient. In distinction from
previous methods, we have shown that in order to obtain an
accurate determination of the optical parameters in strongly
absorbent optically thin samples it is necessary to take into
account an instrumental systematic error that affects the pulse
sample-reference delay time. Furthermore, we have shown
that the correction of this error can be easily incorporated
in a computationally efficient manner within a numerical

procedure. This is essential in order to obtain the frequency
dependence of the optical parameters without the uncertainty
due to the FP oscillations. Such oscillations could in fact
obscure or mask relevant spectroscopic information as shown
in Fig. 3.

It is worthwhile to note that preliminary tests carried out
to clarify the origin of this systematic error have shown that
temperature variation of optical fibers could be the main cause
of sample-reference delay time drifting. This suggests that
this effect could be common to many THz TDS setups based
on optical fibers. However, this effect could be present also
in THz TDS setups without optical fibers due to electronic
or thermal drift of different origin. Finally, our procedure is
based on the direct application of a numerical method (the
Davidenko method) which, in principle, can be implemented
in personal computers using standard mathematical packages
even by nonspecialists in numerical calculation.

For all these reasons the use of this procedure might
therefore be of interest to a wide audience of researchers,
especially when measurements have to be performed on very
thin and strongly absorbent samples with refractive index
close to 1, such as biological matter, water, solutions of
biomolecules, or organic materials with hydrogen bonds such
as carbohydrates (i.e., cellulose and its derivatives).
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