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We theoretically study the transparency in the generalized two-level system with hyperfine structure by utilizing
double detuning-induced stimulated Raman adiabatic passage (double D-STIRAP). The double D-STIRAP is
carried out by sequentially applying the three pulses, one near-resonant pump pulse and two far-off resonant
Stark pulses before and after the pump pulse. From the study of single-atom response we can roughly learn the
transparency conditions, since the full recovery of the system to the initial state is associated with the perfect
transparency. After the numerical calculations we find that, for the perfect transparency, the pulse intensities of
double D-STIRAP for the generalized two-level systems with hyperfine structure has to be stronger than that for
the ideal two-level system. More precisely, we find that the ratio of amplitude to time for the Rabi frequency of
the pump pulse and the detuning induced by the Stark pulse have to be close to each other to satisfy the adiabatic
conditions. The above conditions, however, are necessary conditions we can learn from the single-atom response,
and to ensure that they are indeed sufficient for perfect transparency, we perform the propagation calculations to
obtain the temporal profile of the pump pulse at arbitrary propagation depths to find that double D-STIRAP, when
applied to the generalized two-level system with hyperfine structure, is indeed robust for perfect transparency.
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I. INTRODUCTION

Nonlinear procedures have been widely investigated when
optical fields interact with quantum systems. One of the
most interesting phenomena is the transparency in quantum
systems due to its potential applications in many areas such as
optical fiber communication [1–3] and quantum information
[4–6]. Among the mechanisms for transparency, self-induced
transparency (SIT) [7] in simple two-level systems, simultons
[8], and electromagnetically induced transparency (EIT) [9]
in simple three-level systems are well known for researchers
and they have been studied for many years. The underlying
physics for transparency can be understood in the way that if
the quantum system can be fully recovered after interacting
with the pulse, then the laser field will also stay at its initial
status.

Many quantum control theories are first proposed in simple
systems. However, for the experimental realization they have
to be applied to much more complicated systems. One of
the reasons is that in many cases, the hyperfine structure
in atoms or molecules cannot be spectrally resolved and it
has to be taken into consideration. This is true especially
when pulsed lasers are employed instead of cw lasers. During
the interaction, the hyperfine structure is found to play an
important role and the quantum control theories need to be
treated carefully.

For the transparency mechanisms in simple quantum
systems mentioned above, the situation is also the same. Thus
in order to clarify the effect of hyperfine structure on the
transparency mechanisms, many efforts have been devoted
to it [10–22]. The results show that, as expected, the exis-

*dengli@ecust.edu.cn
†nakajima@iae.kyoto-u.ac.jp
‡sqgong@ecust.edu.cn

tence of hyperfine structure does influence the transparency
mechanisms to some extent. Taking the EIT as an example,
Xia et al. [14] pointed out that the medium will become opaque
if the two levels coupled by the strong field involve hyperfine
structure. So, if we want to obtain the transparency again, the
control field and the probe field need to be tuned carefully to
the respective center of gravity of the two transitions. On the
other hand, if the two levels coupled by the weak probe pulse
contain hyperfine structure, Kis et al. [15] showed that the
probe pulse with elliptical polarization will separate into the
two modes during propagation, in which one mode survives
via EIT while the other mode undergoes damping.

Recently, a new mechanism for transparency in a two-level
system was reported [23]. The basic idea of the mechanism
can be shown in Fig. 1. It is based on the stimulated Raman
adiabatic passage (STIRAP) in a two-level system [24]. The
authors of Ref. [24] pointed out that the optical Bloch equation
for the resonantly driven two-level system is mathematically
similar to the Schrödinger equation for a three-level system.
Therefore, using the elements of density matrix for the two-
level system where |1〉 and |2〉 are the lower and upper levels,
respectively, the three parameters in the Bloch equation, which
are the population inversion, w = ρ22 − ρ11, and the real and
the imaginary parts of the coherence term, 2ρ12 = u + iv, can
be considered as the components of an equivalent three-level
system [see Fig. 1(a)]. With a counterintuitive pulse sequence
in which the detuning pulse is turned on ahead of the pump
pulse, the value of w (w = −1) will transfer to the real
part of the coherence term u while the imaginary part of
the coherence term v will stay at zero during the process.
As a result, maximum coherence can be generated. During
the process, the adiabatic condition

∫ ∞
−∞

√
�2 + �2dt � π/2

should be satisfied, in which � is the detuning and � is
the Rabi frequency of the pump pulse. Since the process is
realized under the assistance of a detuning pulse, here we call
it detuning-induced STIRAP (D-STIRAP).
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FIG. 1. (a) Prototype of double D-STIRAP scheme in an ideal
two-level system. (b) Representation of D-STIRAP in analogy to
the well-known three-level STIRAP. (c) The first detuning pulse and
the left half of the pump pulse transfer the value of w to u. After
that, the right half of the pump pulse and the second detuning pulse
transfer the value of u back to w. When the process is finished, the
two-level system is fully recovered.

D-STIRAP [24] can be used to induce transparency if it
is applied twice [23], which we call double D-STIRAP. The
authors of Ref. [23] showed theoretically that when the first
D-STIRAP is completed, the real part of the coherence term u

is −1 and the population inversion w is zero. Afterwards, the
second D-STIRAP with the pump pulse ahead of the detuning
pulse will again transfer the value of u back to that of w, as can
be shown in Fig. 1(b). When the whole process is completed,
the initial condition in the two-level system is fully recovered
and alternatively the system is transparent to the pump pulse
(double D-STIRAP induced transparency). In order to realize
the double D-STIRAP induced transparency, two idealized
detuning pulses and one pump pulse with flat top are employed
[23]. It is found that, although the adiabatic condition is not
satisfied, the double D-STIRAP can still induce transparency
under the presence of Doppler broadening. Double D-STIRAP
induced transparency in an ideal two-level system was also
discussed in different systems such as quantum dot [25] or
realized by specially chirped femtosecond pulse [26].

Knowing that the double D-STIRAP works to induce
transparency in the simple two-level system, it is natural
for us to wonder whether the transparency can be induced
in a generalized two-level system where the upper and
lower levels have hyperfine structures. It should be noted
that we have studied the influence of hyperfine structure on
generating coherence with single D-STIRAP [27] and found
that the maximum coherence cannot be generated any more if
the hyperfine structure is present. In order to obtain coherence
as high as possible, polarization of the pump pulse should
be chosen with care [27].

In this paper, we study the double D-STIRAP in the
generalized two-level system by taking into account the
influence of the hyperfine structure. Unlike the idealized

detuning pulse and pump pulse with flat top [23], or the pump
pulse with a special chirp rate [26], here we use Gaussian
pulses without chirps for double D-STIRAP. The detuning is
realized by far-off resonant Stark pulse and the pump pulse
is near resonant with the two-level system. Moreover, since
there may be time delay between the Stark and the pump
pulse during the propagation and the time delay may ruin the
adiabatic condition, we go beyond the single-atom response
and use the full description of density-matrix equations
combined with propagation equations. Following our previous
work [27] by using states 3 2S1/2 and 3 2P1/2 of 23Na as
an example to investigate the single D-STIRAP, we carry
out the analysis of double D-STIRAP in the same model.
Since the pump pulse may be linearly or elliptically polarized,
the generalized two-level system will then consist of several
independent subsystems such as two-level, V, �, and double-�
subsystems [27].

In the following sections we will first discuss the recovery
of a generalized two-level system with hyperfine structure
by double D-STIRAP in terms of single-atom response. It is
found that full recovery of such a system can be realized only
when the adiabatic condition is satisfied. It requires that the
intensities of the Stark and pump pulses should be stronger than
those used in the simple two-level system. Furthermore, the
ratio of amplitude to time for the Rabi frequency of the pump
pulse and the detuning induced by the Stark pulse had better
be close to each other. After this, we will continue discussing
the propagation effect of the pump pulse. The calculations
show that the pump pulse will propagate transparently in the
generalized two-level system with the speed of light in vacuum.
Since the two far-off resonant Stark pulses also propagate
in the system with the speed of light in vacuum, there is
no time delay between the Stark, pump, and second Stark
pulses. Hence the adiabatic condition can be preserved during
the propagation and the transparency of the pump pulse is
maintained in the generalized two-level system. The results
indicate that, different from single D-STIRAP which is unable
to produce maximum coherence in the generalized two-level
system with hyperfine structure, double D-STIRAP induced
transparency still works even in this case. More detailed
calculations show that, as long as the adiabaticity is well
maintained, the exact choice of parameters such as the pulse
intensities, the time delay, and the initial detuning of the pump
pulse does not influence the transparency. We also compare
our results with SIT in the generalized two-level system with
hyperfine structure to find that SIT does not work any more.

II. SINGLE-ATOM RESPONSE

In this section, we discuss the single-atom response of
a two-level system with hyperfine structure under double
D-STIRAP. As in our previous work [27], we employ the D1

transition of 23Na, which consists of 3 2S1/2 and 3 2P1/2, for
double D-STIRAP. The hyperfine structure contained in the
D1 transition is shown in Fig. 2. As can be seen in this figure,
when the near-resonant pump pulse is linearly or left-circularly
polarized, the essential subsystems which are independent to
each other are the two-level, V, �, and double-� subsystems.
Subsystems established by the right-circularly polarized pump
pulse is similar to those in the left-circular case and we do not

063828-2



TRANSPARENCY UNDER DOUBLE DETUNING-INDUCED . . . PHYSICAL REVIEW A 95, 063828 (2017)

mF=2
mF=1mF=0mF=-1

mF=-2

2

2−

 

2

2−
 

2

2−

4

6−
4

2−
 

4

24

6−
2

2

F=132P1/2

32S1/2

Ω

linearly 
polarized

F=2

F=1
F=2

Na

 

4

6−
 

4

2

 

4

2−
 

4

6−

189MHz

1.8GHz

(a)

 

2

1−

 

2

3

 

4

2−

 

4

6

4

6−

 

4

2
 

4

6−
 

4

2

2

1−
2

3−

mF=2
mF=1mF=0mF=-1

mF=-2

F=132P1/2

32S1/2

Ω

left-circularly 
polarized

F=2

F=1
F=2

Na

(b)

 

4

2

4

2
 

4

6−

FIG. 2. Hyperfine structure of D1 transition in 23Na which is
coupled by the near-resonant pump pulse with (a) linear and (b) left-
circular polarization. Scheme (a) consists of two-level and double-�
subsystems, while scheme (b) consists of V, �, and double-�
subsystems. The numbers written in each scheme represent the
relevant angular coefficients for the corresponding dipole moments.

discuss it here. The numbers written in Fig. 2 are the relevant
angular coefficients for the corresponding dipole moments.

In order to describe the evolution of these subsystems, it is
convenient to use a general four-level system which consists
of the two hyperfine sublevels of 3 2S1/2 and those of 3 2P1/2 to
represent all of them. The general four-level system is shown
in Fig. 3. In this system, all possible dipole couplings and
the corresponding detunings are taken into account. ηji is the
coupling coefficient for the dipole transition between the lower
level |i〉 and upper level |j 〉. By properly setting ηji to zero or
1 we can reduce the four-level system to the two-level, V, �,
or double-� subsystems.

The equation of motion of the general four-level system is
governed by the density-matrix equations under rotating-wave
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FIG. 3. Four-level system which is referred to as two-level
system with two upper and two lower levels arising from hyperfine
interactions. With the coupling coefficients, ηji , being set as zero or
1, the system can be reduced to the two-level, V, �, and double-�
subsystems.

approximation, which can be written in the following form:

ρ̇11 = iη31A31(�∗
effρ31 − �effρ13)

+ iη41A41(�∗
effρ41 − �effρ14),

ρ̇22 = iη32A32(�∗
effρ32 − �effρ23)

+ iη42A42(�∗
effρ42 − �effρ24),

ρ̇33 = iη31A31(�effρ13 − �∗
effρ31)

+ iη32A32(�effρ23 − �∗
effρ32),

ρ̇44 = iη41A41(�effρ14 − �∗
effρ41)

+ iη42A42(�effρ24 − �∗
effρ42),

ρ̇12 = iω21ρ12 − iη32A32�effρ13 − iη42A42�effρ14

+ iη31A31�
∗
effρ32 + iη41A41�

∗
effρ42,

ρ̇13 = i�ω31ρ13 + iη31A31�
∗
eff(ρ33 − ρ11)

− iη32A32�
∗
effρ12 + iη41A41�

∗
effρ43,

ρ̇14 = i�ω41ρ14 + iη41A41�
∗
eff(ρ44 − ρ11)

− iη42A42�
∗
effρ12 + iη31A31�

∗
effρ34,

ρ̇23 = i�ω32ρ23 + iη32A32�
∗
eff(ρ33 − ρ22)

− iη31A31�
∗
effρ21 + iη42A42�

∗
effρ43,

ρ̇24 = i�ω42ρ24 + iη42A42�
∗
eff(ρ44 − ρ22)

− iη41A41�
∗
effρ21 + iη32A32�

∗
effρ34,

ρ̇34 = iω43ρ34 − iη41A41�
∗
effρ31 + iη31A31�effρ14

− iη42A42�
∗
effρ32 + iη32A32�effρ24. (1)

In these equations, ρ̇ij (i,j = 1,2,3,4) is the time derivative
of ρij . ρii(i = 1,2,3,4) is the population of level |i〉 and
ρij (i,j = 1,2,3,4,i �= j ) is the coherence between level |i〉
and |j 〉. ω21 and ω43 represent the hyperfine splitting of the
lower and upper levels. �ωji is the detuning of the pump
pulse with respect to the transition frequency, ωji , for the
dipole transition between |j 〉 and |i〉. We also note that the
Rabi frequency between levels |j 〉 and |i〉, �ji , in Fig. 3 is
replaced by �ji = Aji�eff in Eqs. (1) with Aji and �eff being
defined as

Aji = μji

|μeff| ,

�eff = |μeff|E(t)

2h̄
. (2)

In Eqs. (2), μji is the dipole moment between levels
|j 〉 and |i〉, and E(t) is the electric field envelope of the

pump pulse. |μeff| =
√∑

j,i(ηjiμji)2 is the effective dipole

moment to connect the generalized two-level system (with
hyperfine structure) and the simple two-level system [27].
Correspondingly, �eff can be considered as the effective Rabi
frequency between the upper and lower level manifolds of the
generalized two-level system. The decay from the upper level
manifold due to the spontaneous decay and ionization loss have
been neglected here because, as we will show below, when the
double D-STIRAP is completed and the system returns to its
initial ground states, the decay does not play a role during such
a short interaction time.
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Now we turn to the discussion of single-atom response of all
subsystems under double D-STIRAP by numerically solving
Eqs. (1). The double D-STIRAP in this paper is realized by
using two far-off resonant Stark pulses and one near-resonant
pump pulse with all of them having the Gaussian shapes.
The effective Rabi frequency �eff of the pump pulse and the
detuning �ω32 induced by the Stark pulse are given as

�eff = �0
effexp

[
− ln4(t − t1)2

τ 2
p

]
,

�ω32 = �ω0
32

{
exp

(
− ln4t2

τ 2
S

)

+ exp

[
− ln4(t − t1 − t2)2

τ 2
S

]}
+ δ0. (3)

Accordingly, the other three detunings are �ω31 = �ω32 +
ω21, �ω42 = �ω32 + ω43, and �ω41 = �ω32 + ω21 + ω43. In
Eqs. (3), �0

eff and �ω0
32 are the amplitude of the effective Rabi

frequency and the detuning. τp and τS are the durations of
the pump and Stark pulse. t1 is the time delay between the
first Stark pulse and the pump pulse, while t2 is the time
delay between the pump pulse and the second Stark pulse.
δ0 is the initial detuning of the pump pulse with respect to the
transition between |2〉 and |3〉. In the following calculations, all
the parameters are chosen with respect to τS. The time delays
t1, t2 and the duration of the pump pulse τp are defined in units
of τS. The other parameters such as �0

eff,�ω0
32, δ0, and also

the hyperfine splittings ω21, ω43, are defined in units of 1/τS.
By setting τS = 1, we have τp = 2τS and t1 = t2 = 4τS. Under
the choice of these parameters, the two detunings induced by
the two Stark pulses in �ω32 are partially overlapped with the
effective Rabi frequency. The two detunings, however, are well
separated without overlapping [Fig. 1(b)]. With the absence of
the Stark pulses, the pump pulse is assumed to be resonant
with the transition ω32 by setting δ0 = 0.

A. Degenerate hyperfine structure case

Although none of the subsystems in Fig. 2 is degenerate, we
start the discussion by assuming the degenerate subsystems,
since it helps to make the underlying physics clearer. Accord-
ingly we set ω21 = ω43 = 0 and �ω31 = �ω32 = �ω41 =
�ω42.

1. Transparency in double-� type subsystem

For the two-level, degenerate V, �, and double-� type
subsystems, calculations show that it is very important to sat-
isfy the adiabatic condition simultaneously for the realization
of perfect transparency. It is also found that there is a more
stringent requirement for pulses to meet the adiabaticity than
in the simple two-level system. Here we use the double-�
type subsystem as an example to explain how to meet the
adiabaticity. From our previous work [27], we know that
there exists a common term B = A31A42 − A32A41 in the
density-matrix equations only for the double-� subsystem.
Depending on whether this term is equal to zero or nonzero,
the different amount of coherence will be produced in the
subsystem under single D-STIRAP. Hence particularly we
choose double-� type subsystem with B �= 0 for double

0 5 10 15 20
0
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100

time (in units of τS)

(a)Δω32 Ωeff
Δω32

0 5 10 15 20
0

0.5

1

time (in units of τS)

(b)

|ρeff|

ρl

ρu

FIG. 4. (a) Pulse sequence of double D-STIRAP in double-�
type subsystem. The common term B = A31A42 − A32A41, which
determines the amount of the generated transient coherence, is set to
be nonzero. The detuning �ω32 and the effective Rabi frequency �eff

have the same amplitude �ω0
32 = �0

eff = 100/τS but different ratio of
amplitude to time; (b) the corresponding evolution of the subsystem
shows the imperfect transparency.

D-STIRAP. The double-� type subsystem with B �= 0 can be
realized by choosing |3 2S1/2 F = 1, mF = −1〉, |3 2S1/2 F =
2, mF = −1〉, |3 2P1/2 F = 1, mF = −1〉, and |3 2P1/2 F = 2,
mF = −1〉 as |1〉, |2〉, |3〉, and |4〉 in Fig. 2(a), for which
A31 = −

√
2

4 , A32 = −
√

6
4 , A41 = −

√
6

4 , and A42 =
√

2
4 , and

consequently B = − 1
2 .

By assuming all the population equally populated in the two
ground sublevels |1〉 and |2〉, we first choose �ω0

32 = �0
eff =

100/τS for the detuning and the effective Rabi frequency to
carry out the double D-STIRAP, which is stronger than what
we used to realize single D-STIRAP in the simple two-level
system [27]. The calculation results are shown in Fig. 4. Note
that in Fig. 4(b), |ρeff| = |∑j,i ηjiAjiρji | is the absolute value
of the effective coherence between the lower and upper level
manifolds, while ρl and ρu indicate the population in the lower
and upper level manifolds, respectively. Although the much
more intense pulses are employed for the double D-STIRAP
[Fig. 4(a)], the double-� type subsystem with B �= 0 does not
return to the initial state, as we see in Fig. 4(b). The reason
is that the ratio of amplitude-to-time for the detuning and
effective Rabi frequency, which is critical for the adiabatic
condition, is different during the process. The duration of
the pump pulse is twice longer than that of the Stark pulse,
and hence the ratio of amplitude to time for the detuning
is twice larger than that of the effective Rabi frequency. In
order to obtain the perfect transparency in the double-� type
subsystem, we may adjust the ratio of amplitude to time for the
detuning and effective Rabi frequency to close to each other by
changing the Stark pulse intensity or the pump pulse intensity.

Accordingly, in the following, we repeat the calculations by
reducing the amplitude of the detuning to �ω0

32 = 50/τS with
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FIG. 5. (a) Same pulse sequence as shown in Fig. 4(a) but with
different amplitudes of �ω0

32 = 50/τS and �0
eff = 100/τS . Now the

ratio of amplitude to time for effective Rabi frequency and detuning
are equal to each other; (b) the corresponding evolution of the double-
� type subsystem with B �= 0. Still we cannot obtain the perfect
transparency.

other parameters unchanged so that the ratio of amplitude to
time for the detuning and effective Rabi frequency becomes the
same. The results are shown in Fig. 5. With the pulse sequence
shown in Fig. 5(a), the complete recovery of the double-� type
subsystem is not yet attained as we see in Fig. 5(b). This may
be because the employed pulse intensities are not sufficiently
strong to satisfy the adiabatic condition.

Therefore, we increase the amplitude of the employed
parameters to �0

eff = 200/τS and �ω0
32 = 100/τS, as shown in

Fig. 6(a), and repeat the calculations with all other parameters
kept the same. The results are shown in Fig. 6(b). In this figure,
we can clearly see that with the same ratio of amplitude to time
and stronger pulse intensities used, the adiabatic condition is
well satisfied and, as a result, the perfect transparency in the
double-� type subsystem is realized. Thus, from Figs. 4–6
we can say the following: for the double-� type subsystem
with B �= 0 to be perfectly transparent through the double
D-STIRAP, the adiabatic condition has to be satisfied. That
is, the effective Rabi frequency and detuning must have
sufficiently strong amplitudes with comparable amplitude-to-
time ratios.

2. Perfect transparency in other subsystems

Now we turn to the cases of other kinds of subsystems
of two-level, V, �, and double-� type with B = 0 with de-
generate hyperfine structure under double D-STIRAP. Perfect
transparency in all the subsystems should be realized under
the same pulse sequence and adiabatic condition. Otherwise
the entire system with all subsystems will not be transparent.
Thus we employ the parameters used for Fig. 6 in the following
calculations. Furthermore, we suppose that all the population
is initially in level |2〉 in the two-level and degenerate V type
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Δω32
Δω32

Ωeff

(a)

0 5 10 15 20
0
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|ρeff|

ρl

(b)

ρu

FIG. 6. (a) Same pulse sequence as shown in Fig. 5(a) but
with stronger amplitudes of �ω0

32 = 100/τS and �0
eff = 200/τS;

(b) the corresponding evolution of the double-� type subsystem with
B �= 0. Now the adiabatic condition is well satisfied and the perfect
transparency is obtained.

subsystems, or equally populated in levels |1〉 and |2〉 in the
degenerate � and double-� type subsystems with B = 0.
The calculation results are shown in Fig. 7. We can see that
all these subsystems also exhibit perfect transparency after
the double D-STIRAP. The only difference is that transient
coherence behaves in different ways during the pulse sequence
in different subsystems. In the two-level and degenerate V type
subsystems, maximum coherence |ρeff| = 0.5 is obtained as
shown in Fig. 7(a), while in the degenerate � and double-�
type subsystems with B = 0, a moderate amount of coherence
of |ρeff| = 0.25 is produced, as shown in Fig. 7(b).

By combining the results of Figs. 6 and 7, we can see that
perfect transparency can be realized in all kinds of subsystems
through double D-STIRAP if the pulse intensities and the
amplitude-to-time ratios of the effective Rabi frequency and
the detuning are appropriately chosen. However, these results
are not enough to comfirm that the double D-STIRAP works
to attain perfect transparency in the two-level systems with
degenerate hyperfine structure, which is different from the
double D-STIRAP in the simple two-level system (Fig. 1).
This is because the pump pulse may have different propagation
speed in these subsystems and the relative time delay between
the pump and Stark pulses may be altered. The mismatch
of the propagation speeds of the resonant pump and far-off
resonant Stark pulses will destroy the adiabatic condition and
accordingly the transparency will be lost. Therefore, we need
further investigations in Sec. III by taking into account the
propagation effect.

B. Nondegenerate hyperfine structure case

In this section we will consider the evolution of all
subsystems with nondegenerate hyperfine structure under
double D-STIRAP, which is indeed the case in the D1 transition
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FIG. 7. (a) Same pulse sequence of the detuning and pump pulse,
and same pulse intensities as those used in Fig. 6(a) are employed
again for the double D-STIRAP, in which �ω32 and �eff have the units
of 1/τS. The evolution of two-level, degenerate V type subsystems in
(b) and degenerate �, double-� type subsystems with B = 0 in (c)
are given. Perfect transparency is obtained.

of 23Na. As we have recently shown [27], nondegenerate
hyperfine structure in these subsystems results in the transient
oscillation of coherence under single D-STIRAP. This is
practically due to the nonzero detuning of the pump pulse
with respect to the hyperfine sublevels, and we first examine
whether similar undesired oscillation occurs for the double
D-STIRAP under the presence of nondegenerate hyperfine
structure.

Again, we first investigate the nondegenerate double-�
type subsystem with B �= 0. According to the level structure
shown in Fig. 2, we set the hyperfine splitting of the
lower and upper levels as ω21 = 0.5/τS and ω43 = 0.05/τS,
respectively. The initial detuning of the pump pulse with
respect to the transition between |2〉 and |3〉 is adjusted to
be δ0 = − 1

2 (ω21 + ω43) = −0.275/τS, although this is not
a mandatory choice. All the other parameters are kept the
same with those in Figs. 6 and 7. According to the analysis
in Ref. [27], if we choose the duration of the Stark pulse
as τS = 10 ps, then the relative value of the duration of the
pump pulses is τp = 20 ps, and the time delay between them
is t1 = t2 = 40 ps. The amplitudes of the Rabi frequency
�eff and the detuning �ω32 are �0

eff = 20 × 1012 rad/s and

0 20 40 60 80 100 120
0

50

100

150

200

time (in units of τS)

Ωeff

Δω32
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(b)single D−STIRAP

|ρeff| ρu

ρl
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Ωeff

Δω32

(c)
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0
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1

time (in units of τS)

ρl
double D−STIRAP

(d)

ρu
|ρeff|

FIG. 8. (a) Single D-STIRAP and (c) double D-STIRAP in
nondegenerate double-� type subsystem with B �= 0 realized by
different pulse sequence. All the parameters are kept the same as in
Fig. 6 except that the hyperfine splittings are chosen as ω21 = 0.5/τS

and ω43 = 0.05/τS, while �ω32 and �eff have the units of 1/τS. The
corresponding evolution of the subsystem is shown in (b) and (d),
respectively.

�ω0
32 = 10 × 1012rad/s, respectively. The wavelength of the

pump pulse is 589 nm and Stark pulse with wavelength of
1064 nm is used to induce the detuning. This corresponds
to the intensities of the pump pulse and Stark pulse as
Ipump = 0.59 GW/cm2 and IStark = 50 GW/cm2.

As an example, we compare the performance of the
double D-STIRAP and single D-STIRAP in the double-� type
subsystem with B �= 0. The pulse sequence we employ for the
single D-STIRAP is shown in Fig. 8(a). The corresponding
evolution of the subsystem is shown in Fig. 8(b). We
observe the transient oscillation of coherence after the pulse
sequence is over. The oscillation period is determined by the
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FIG. 9. Population inversion ρinv = ρu − ρl at t = 20τS after the
double D-STIRAP as a function of (a) the amplitude of the effective
Rabi frequency, �0

eff , and (b) the time delay between the first Stark
pulse and the pump pulse, t1, in nondegenerate V, �, and double-�
type subsystems with B �= 0. In (a), the amplitude of the detuning
�ω0

32 changes linearly with �0
eff , which is �ω0

32 = 1
2 �0

eff , while in (b),
the time delay between the pump pulse and the second Stark pulse t2
changes accordingly with t1, which is t2 = t1. The other parameters
are kept to be the same as those in Fig. 8.

hyperfine splittings ω21 and ω43. In contrast, for the double
D-STIRAP with the pulse sequence shown in Fig. 8(c), we
observe no transient oscillation of coherence, as shown in
Fig. 8(d). This is simply because all the populations in the
subsystem goes back to the initial ground state by applying
the pulse sequence, and hence coherence remains zero after
the pulse sequence is over. From the results shown in Fig. 8,
we can say that the single D-STIRAP does not work to induce
perfect coherence if the system is not the simple two-level
but generalized two-level system with hyperfine structure.
However, the double D-STIRAP does work even in such a
case.

We repeat calculations for other kinds of subsystems with
nondegenerate hyperfine structure under double D-STIRAP
while all parameters are kept to be the same with those used in
Fig. 8. The results in these subsystems with nondegenerate
hyperfine structure are the same as those with degenerate
hyperfine structure, as shown in Fig. 7.

Without the loss of generality, it is necessary to point out
that the parameters employed in the above figures do not
need to be so specific. Therefore, we continue investigating
the robustness of the double D-STIRAP in two-level systems
with nondegenerate hyperfine structure. In Fig. 9, by defining
ρinv = ρu − ρl with the initial value of −1 as the population
inversion in the generalized two-level systems, we calculate
its value at t = 20τS after the double D-STIRAP in all kinds
of subsystems as a function of the amplitude of the effective
Rabi frequency, �0

eff , and the time delay between the first
Stark pulse and the pump pulse, t1. The results indicate that

the curves for the two-level subsystem and double-� type
subsystem with B = 0 are quite similar to those of the V
type subsystem and � type subsystem, respectively; thus they
are not shown in this figure. In Fig. 9(a), since the ratio of
amplitude to time for the effective Rabi frequency and the
detuning had better be comparable to each other to realize
the double D-STIRAP, the amplitude of the detuning varies
proportionally to that of the effective Rabi frequency, which
is �ω0

32 = 1
2�0

eff . The other parameters are the same as those
in Fig. 8. From this figure we can see that the population
inversion in all the subsystems will go back to its initial
value as long as the pulses are strong enough to satisfy the
adiabatic condition. Moreover, the overlapped region of these
curves suggests that all the subsystems can show transparency
simultaneously. In Fig. 9(b), due to the symmetry of the double
D-STIRAP, the time delay between the pump pulse and the
second Stark pulse t2 changes the same with t1, which is t2 = t1.
The other parameters are also the same as those in Fig. 8. The
figure shows that the population inversion in these subsystems
can return to its initial value for a certain region of the time
delay. The overlapped region of the curves also suggests that
these subsystems can be transparent simultaneously. However,
when comparing Fig. 9(b) with 9(a), we can see that double
D-STIRAP is more sensitive to the time delay.

As for the influence of the initial detuning of the pump
pulse on double D-STIRAP, calculations show that double
D-STIRAP works for either near-resonant or far-off resonant
pump pulse. Since we focus on the transparency of the near-
resonant pump pulse, the impact of the initial detuning of the
pump pulse is not a main consideration in our study.

Once again, from Figs. 8 and 9 we cannot yet say with
confidence that double D-STIRAP works for the two-level
systems with nondegenerate hyperfine structure to achieve
perfect transparency. The reason is the same as that we have
mentioned at the end of Sec. IIA2.

III. PROPAGATION EFFECT

In this section we discuss the propagation effect of the pump
pulse under the presence of the two Stark pulses by solving
the density-matrix equations together with the propagation
equation to see whether the two-level system with degenerate
or nondegenerate hyperfine structure is transparent for the
pump pulse.

A. Double D-STIRAP induced transparency

The propagation equation of the near-resonant pump pulse
in the general four-level system can be written in the form of

d

dz
E(z,t) + 1

c

d

dt
E(z,t) = iω

2ε0c
P (z,t), (4)

in which c is the speed of light in vacuum, ε0 is the vacuum
permittivity, and ω is the central frequency of the pump pulse.
P (z,t) is the macroscopic polarization of the system, and it
is directly connected to the off-diagonal elements of density
matrix, i.e.,

P (z,t) = N
∑
j,i

ηjiμjiρji(z,t) (i,j = 1,2,3, or 4), (5)
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with N being the atomic number density. For the Stark pulses,
they will propagate in the system with the speed of light in
vacuum, since they are far-off resonant.

Equation (4) can be rewritten, with the aid of Eqs. (2)
and (5), as(

d

dz
+ 1

c

d

dt

)
�eff(z,t) = iNω|μeff|2

4h̄ε0c

∑
j,i

ηj,iAj,iρj,i(z,t),

(6)
which becomes the propagation equation in terms of the
effective Rabi frequency. Thus the equations we have to
simultaneously solve are Eqs. (1) and (6), for the atom and
field, respectively.

For the convenience of numerical calculations, we can write
the density-matrix equations (1) and the propagation equation
(6) in the local frame. By introducing ξ = z, and τ = t − z/c,
Eq. (6) becomes

d

dξ
�eff(ξ,τ ) = iNω|μeff|2

4h̄ε0c

∑
j,i

ηj,iAj,iρj,i(ξ,τ ). (7)

Correspondingly, the time derivative of ρij in Eqs. (1) changes
from ∂/∂t to ∂/∂τ .

The calculation detail for the propagation of the pump
pulse in all kinds of the subsystems with degenerate or
nondegenerate hyperfine structure under double D-STIRAP is
given in Fig. 10. In the calculations, the parameters used in the
density-matrix equations are the same as those in Figs. 6–8,
for which we have already seen the perfect recovery of all
subsystems within the framework of single-atom response
after the pulse sequence has been applied. The multiplication
factor Nω|μeff|2/4h̄ε0c in Eq. (7) is a constant and for
simplicity it has been set to unity throughout this paper. From
Fig. 10 we see that the temporal pump pulse profile in the local
frame remains identical at any propagation depth, for example,
ξ = 0 and 30. Note that the product of ξ and Nω|μeff|2/4h̄ε0c

is in units of 1/τS. First this figure means that the pump pulse
undergoes no distortion during the propagation. Secondly,
since the relative time delay between the Stark and pump
pulses does not change at all, the speed of the pump pulse in
the system is found to be the speed of light in vacuum. The

0 5 10 15 20
0

50

100

150

200

τ (in units of τS)

Δω32 Δω32
ξ=0

Ωeff
ξ=30

FIG. 10. Shape of the near-resonant pump pulse and the relative
time delay with respect to the far-off resonant Stark pulse at different
distances of ξ = 0 and ξ = 30 in the local frame. For all kinds of
subsystems with degenerate or nondegenerate hyperfine structure,
the calculation results are the same. Note that �ω32 and �eff are in
units of 1/τS, while the product of ξ and Nω|μeff |2/4h̄ε0c is also in
units of 1/τS.

fact that the pulse timing in the local frame does not change
during the propagation implies that the adiabatic condition is
well-maintained during the propagation. Hence we can say
that double D-STIRAP can induce perfect transparency for
the near-resonant pump pulse in the two-level system with
hyperfine structure.

Further calculations reveal (the results not shown here)
that the different choice of time delay and intensities for the
pulses hardly influences the transparency if these parameters
are chosen appropriately according to Fig. 9. From all the
above facts, we can say that double D-STIRAP is a robust
method to induce transparency.

B. SIT in two-state system with hyperfine structure

SIT is a very well-known mechanism to induce trans-
parency in the ideal two-level system. In order to highlight
the significance of double D-STIRAP to induce transparency,
we now study the behavior of the pump pulse without the Stark
pulse in the two-level system with hyperfine structure.

One of the properties of SIT in the ideal two-level system
is that, in the steady state, resonant hyperbolic scent pulse
with an area of 2π becomes transparent through the medium
of such atoms. This, however, does not necessarily mean that
SIT is also guaranteed for the generalized two-level system
with hyperfine structure. We now introduce a hyperbolic secant
pulse with an area of 2π . It reads

�′
eff = �′0

effsech

(
1.76t

τ ′
p

)
, (8)

where the pulse duration is chosen as τ ′
p = τS, and the effective

Rabi frequency is �′0
eff = 1.76Ap/2πτ ′

p with the area Ap equal
to 2π .

To start with we let the above pump pulse propagate in
the atomic medium which consists of subsystems described
by the two-level, V, �, and double-� type subsystems with
degenerate hyperfine structure. Calculation results based on
Eqs. (1) and (7) after neglecting the terms associated with
the Stark pulse are shown in Fig. 11. From Figs. 11(a) and
11(b), we can see that SIT is still realized in the two-level, V,
�, and double-� type subsystems with B = 0. However, the
propagation speed in the two-level, V type subsystem is faster
than that in the � and double-� type subsystem with B = 0.
As for the double-� type subsystem with B �= 0, it is apparent
from Fig. 11(c) that the pulse undergoes distortion during the
propagation and consequently SIT is not realized. Clearly, SIT
cannot be realized in the generalized two-level system with
degenerate hyperfine structure.

Similar investigation for the propagation of a 2π pulse in all
kinds of subsystems with nondegenerate hyperfine structure is
shown in Fig. 12. The hyperfine splitting is set to ω21 = 0.5/τS

and ω43 = 0.05/τS, and we choose the detuning of the pulse
with respect to the |2〉 − |3〉 transition as δ0 = − 1

2 (ω21 +
ω43) = −0.275/τS for all subsystems. Compared with Fig. 11
for the generalized two-level subsystems with degenerate
hyperfine structure, the attenuation and distortion of the pump
pulse is even worse for those with nondegenerate hyperfine
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FIG. 11. Propagation of resonant pulse with an area of 2π and
steady hyperbolic scent shape in subsystems of (a) two-level and V,
(b) � and double-� type with B = 0, and (c) double-� type
subsystems with B �= 0, which are all the possible subsystems in
the two-level system with degenerate hyperfine structure.

structure. SIT can only be realized in a nondegenerate V type
subsystem, as shown in Fig. 12(a). This is because the upper
level splitting is quite small compared with the bandwidth
of the pulse we have chosen. For other kinds of nondegen-
erate subsystems such as nondegenerate �, double-� type
subsystems, SIT does not come up. Our results are consistent
with the experiment reported in Ref. [28]. In the experiment
[28], nanosecond pulse is employed for SIT. Thus only one
ground level |3 2S1/2 F = 2〉 is coupled to the two upper levels
|3 2P1/2 F = 1〉 and |3 2P1/2 F = 2〉. The three levels consist of
two-level and nondegenerate V type subsystems, depending on
the detuning. Hence the experiments confirm the area theorem.
In contrast, in this work the other ground level |3 2S1/2 F = 1〉
is also coupled to the two upper levels. From the results
in Fig. 12 we can say that SIT cannot be realized in the
generalized two-level system with nondegenerate hyperfine
structure.

The results in Figs. 11 and 12 show that the per-
fect transparency cannot be realized if the pump pulse
alone propagates in the generalized two-level system with
hyperfine structure whether it is degenerate or nondegenerate,
while double D-STIRAP can lead to perfect transparency, as
we have shown in Fig. 10.
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FIG. 12. Propagation of pulse with area of 2π and steady
hyperbolic scent shape in subsystems of (a) V, (b) �, (c) double-�
type with B = 0, and (d) double-� type with B �= 0 in two-level
system with nondegenerate hyperfine structure.

IV. CONCLUSIONS

In conclusion, we have studied the double D-STIRAP
induced transparency beyond the ideal two-level system,
i.e., generalized two-level systems with degenerate and non-
degenerate hyperfine structures. Not only from the viewpoint
of single-atom response but macroscopic response which
includes propagation effects we have carried out the detailed
study by simultaneously solving the density-matrix and prop-
agation equations. From the calculation results we have found
that the SIT cannot be achieved in the generalized two-level
system with hyperfine structure. Using double D-STIRAP,
however, we can obtain perfect transparency. Unlike the ideal
two-level system, the transparency in the generalized two-level
system with hyperfine structure has more stringent require-
ments. That is, in order to satisfy the adiabatic condition,
the Stark and pump pulses should have stronger intensities
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and similar amplitude-to-time ratio between the effective Rabi
frequency of the pump pulse and the detuning induced by
the Stark pulse. During the propagation, the near-resonant
pump pulse has the speed of light in vacuum, which ensures
that the adiabatic condition is well preserved and the pulse
remains transparent in the system. We close this paper by
emphasizing that double D-STIRAP induced transparency is
a robust method and it is not very sensitive to the specific
choice of pulse intensities, time delay, and initial detuning of
the pump pulse.
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