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In nonlinear fiber systems operating in pulsed regime, the pumping excitation is no longer time extended
(cw regime) but localized in time with a finite duration. In this case, standard linear stability analysis (often
called modulational instability), as it stands, fails to describe the linear time evolution inside the fiber and one
has to reformulate the problem as an initial value problem leading to convective and absolute instabilities. We
show, in normal dispersion regime, that the dynamical evolution of a localized probe in a highly birefringent
optical fiber results in a modulational instability splitting into convective and absolute instabilities. We have also
characterized the splitting in terms of coupling of the group-velocity mismatch between the two polarized states
and the total injected pump power. We evidenced a transition from absolute to convective regime and characterized
the qualitative difference of the dynamics in the two regimes. The results of the numerical integration of the
governing equations are in excellent agreement with our analytical findings and may contribute to understanding
the complex dynamics appearing in the time domain of the supercontinuum generation that plays a key role in

the formation of optical rogue waves.
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I. INTRODUCTION

Modulational instability (MI) is the process by which
a periodic state rises spontaneously from a homogeneous
state. This process was first reported more than 40 years ago
[1,2], and observed in numerous physical systems, including
hydrodynamics [3], plasma physics [4,5], nonlinear optics
[6,7], and Bose-Einstein condensation [8], just to cite a few.
Despite this long and important history, MI keeps attracting
a great interest from both a fundamental and a technological
point of view, particularly in nonlinear optics. Indeed, MI has
been identified to play a crucial role in the dynamics of rogue
wave [9,10] and supercontinuum (SC) generation [11].

Theoretically, MI mainly provides two quantities: the
growth rate—gain—and the periodicity—wave number or
pulsation. Gain and periodicity of the MI are obtained by
the standard linear stability analysis. In this analysis, the
solutions of the linearized equations of the system are assumed
to have a monochromatic wave form [12,13]. It is clear that
this analysis is convenient for instabilities seeded by extended
fluctuations, e.g., noise. Indeed, when the instability is seeded
by a localized perturbation, one has to characterize the growth
of this disturbance in both space and time. Therefore, the use of
the spatiotemporal theory in terms of convective and absolute
instability must be employed. Developed since the early 1950s
[14-16], this theory attempts to address the answer to the
following questions. How does one describe the dynamical
evolution of a localized pulse (wave packet) with both finite
duration and size (finite spectrum and finite wave number) that
emerges from fluctuations in unstable regime? What are the
career frequency und wave number of the merging pulse? And
more importantly what is the group velocity of the pulse? In the
course of its evolution, does it spread in all directions (absolute
unstable regime) or not (convective unstable regime)? And, if
any, is there any transition from one regime to another? The
answers to these questions are even more fundamental when
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the considered system exhibits a breaking of parity symmetry
(for fiber systems it is a time-reversal symmetry).

In the context of fiber optics, symmetry-breaking terms
have been shown to introduce a rich variety of phenomena
[17-22]. Examples include the harnessing of rogue wave
generation by the slope of the fiber dispersion curve and soliton
explosion under effects of the noninstantaneous response of the
fused-silica Raman effect [11,23]. In these aforementioned
examples, the symmetry breaking is coming from modal
effects due to the wave form of the light propagating in
the fiber. However, symmetry breaking can also be induced
geometrically when designing the fiber. In such a fiber, the
built-in birefringence can be made much larger than random
birefringence variation. Hence the vectorial nature of wave
propagation must be considered. In this case, the copropa-
gating orthogonally polarized fields are found to exhibit the
MI in both cases of normal and anomalous group-velocity
dispersion (GVD) [24-27], in contrast to scalar fibers where
the MI takes place only in anomalous GVD region. In terms
of convective and absolute instability, it is also known that
the nonlinear Schrodinger (NLS) equation that describes the
spatiotemporal dynamics of the wave envelope along the fiber
does not display a transition from one regime to another. The
same situation is encountered in weak birefringence regime
while considering the vectorial NLS equations. We emphasize
here that the existence of this transition is identified in the high
birefringence fiber systems.

In this paper we consider the dynamical evolution of
a localized probe in a highly birefringent optical fiber by
means of absolute and convective instabilities theory. We
were able to single out the existence of a transition between
the two regimes. The latter results from the splitting of MI
into absolute and convective ones. The dynamics and the
evolution of the solutions are drastically different in the two
regimes. More precisely, in a convectively unstable regime,
the system is strongly sensitive to noise sources and exhibits
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propagating noise-sustained solutions whereas, in absolutely
unstable regime, the dynamics is dominated by nonlinear
dynamical solutions. We have characterized the splitting, in
terms of nonlinear birefringent coupling, the group-velocity
mismatch between the two polarized states and the total
injected pump power. The results of the numerical integration
of the governing equations are in excellent agreement with our
analytical findings.

The paper is organized as follows. In Sec. II we give
the governing equations describing the evolution of a highly
birefringent optical fiber including nonlinear birefringent
coupling and the group-velocity mismatch between the two
polarized states of light propagating along the fiber. Standard
modulational stability is recalled with a new emphasis on
the role of the nonlinear birefringent coupling term in the
characteristics and thresholds of instabilities. In Sec. III we
analyze the response of the highly birefringent fiber to an
impulse perturbation by means of absolute and convective
instabilities analysis. The significant role of the group velocity
of the unstable emerging wave packet (or pulse) in the nature
of the instability is emphasized. Section IV is devoted to both
analytical and numerical demonstration of the existence and
the characterization of the transition between absolute and
convective instability and the dynamics of the solutions in
these regimes. Numerical solutions obtained by integrating
the governing equations of a highly birefringent fiber are in
excellent agreement with our predictions. Concluding remarks
are contained in the last section.

II. MODEL AND MODULATIONAL INSTABILITY
ANALYSIS

Let’s start with the coupled generalized NLS equations
satisfied by the orthogonally polarized components of a pulse
in a lossless and a highly birefringent optical fiber:
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where A,(Z,t) and A,(Z,t) stand for the two orthogonal
components of an arbitrary polarized optical field E(z,t) at
the carrier frequency wy, i.e.,

E(z.1) = HA(z.D% + Ay(z,0)9le' P + cc.,

where By = (Box + Poy)/2is the average propagation constant.
B2, B, and y are the GVD, nonlinear birefringent coupling (or
cross phase modulation) and Kerr nonlinearity parameters,
respectively [27]. Here we have set the moving frame variable
Z =z +t/Bix associated to the £ axis. by = (B1, — Bix)/2
accounts for the group-velocity mismatch between the two
polarization states.

Equations (1) have a continuous-wave (cw) solution which
reads A; = Ajoexp (ig;z), where ¢p; = )/(IAj()I2 + B|Aj/0|2)
with (j,j) = (x,y) and (y,x) for the x axis and y axis,
respectively. The standard stability analysis of this solution
against monochromatic perturbations of the form e/@—k2
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leads to the following dispersion relation:
D(k,w) = [(k — 2b(w))* — H()][k* — H(®)] — C(w)* =0,
2)

with k being the wave number and w the pulsation. In this
relation, H(w) = prw*(Brw’/4 + y P), C(w) = BBy Pw?,
and b(w) = byw, where we have set |Ao|*> = |Ay0|2 =P,
the pump power on each polarization state. Next, linear
stability analysis allows one to determine when the wave
number k possesses an imaginary part for some real values
of the pulsation w. Hence the cw is said unstable (stable) if
k; = Im(k) is positive (negative). In addition to this stability
condition, one may be interested in the most amplified
frequency and the associated gain if an instability band of
frequency exists. Hence it is obvious that this most amplified
frequency is obtained by solving the following equation:

ok;
w o

’

such that af)ki|w_ < 0, and the maximum gain spectrum is
given by g = 2k;(w,). From linear stability analysis, cumber-
some but straightforward calculations lead to the instability
frequency bands that are delimited by the following four
frequencies:

wf =%2,/(B— Dpay P+ bi/B. (3a)

wF = 42,/ ~(1 + B)Bay P + b3/ . (3b)

We focus here in the normal dispersion regime. In this case,
an examination of these expressions shows the crucial role of
the nonlinear birefringent parameter B in the dynamics. First,
let’s recall that B depends on the type of polarization and varies
from B =2/3 to B = 2 [27]. We have summarized in Fig. 1
the results of the linear stability analysis as a function of B. For
B > 1, it can be seen from Fig. 1 that MI exists for any power
pump value leading to two symmetrical unstable sidebands
connected to the zero frequency and limited by the frequencies
wf. By decreasing the pump power a transition is reached at
P=P = bg/(ﬂzy(l + B)) [see zone (4) in Fig. 1] where two

@)

FIG. 1. Curve P. is the instability threshold and P, is the transition
curve from two to four limiting sidebands frequencies as functions
of B. Their expressions are defined in the text. The parameters are
B, =0.06ps’m™!, by =02psm',and y = 15 Wkm™'.
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FIG. 2. Typical vector modulational instability gain curve pro-
files. Power gain [G =2Im(k)] with B, =0.06 ps’m™!, by =
02psm!, y =15Wkm™!, and B =2/3. « = P/P., where P, is
the critical power threshold of instability defined in the text.

new frequencies a)zi are generated giving rise to two separated
lobes of instability. On the other hand, when B < 1, the case we
are interested with, MI only exists below a critical pump power
P. = b} /[B2y(1 — B)] [see zones (1) and (2) in Fig. 1]. Note
that this result has already been observed in highly birefringent
optical fibers [24,27]. In this case and for more convenience,
we introduce o = P/ P, as a ratio between the pump power
and the critical power P., which will be used as a control
parameter. Hence the instability bands are well separated if
P < P, [zones (4) in Fig. 1] and continuous otherwise [zones
(2) on Fig. 1]. In what follows, we set B = 2/3 and show in
Fig. 2 a typical example of two instability lobes on both sides
of P, as indicated by the two solid circles in Fig. 1. Finally,
note that when B = 1, this is a particular and interesting
case when Egs. (1) reduce to an integrable coupled nonlinear
Schrodinger system known as the Manakov system [28] and
can be solved with the inverse scattering transform method
(IST). By contrast to the classical linear stability described
above, when the evolution of the system is initiated by a
localized perturbation, it is necessary to include a finite band
of modes in the dynamical description. This can be achieved
by reformulating the linear stability analysis as an initial-value
problem. This makes possible determining the main dynamical
characteristics of the wave packet on the basic state including
growth rate, instantaneous frequency, wave number, and, more
importantly, its velocity as we will show in the following.

III. CONVECTIVE AND ABSOLUTE INSTABILITY

Developed by Briggs [29], the study of the dynamics of
localized linear disturbances, i.e., absolute and convective
instabilities, of a given base solution is treated as a linear
initial-value problem. The key tool consists of the evaluation of
the asymptotic solution of the problem in both space and time,
using a combined Fourier-Laplace transform and a consistent
mathematical formalism (see also [30]). This theory has been
recently revisited in the framework of the scalar NLS [31] and
will not be detailed in this work.

Note that an important study of the nonlinear stage of the
modulation instability, in a scalar focusing (anomalous dis-
persion) nonlinear Schrédinger equation, has been performed
in [32] where a new class of solitonic (nonlinear) solutions,
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which can be generated from localized perturbations, has been
found. Later on, some of these solitonic solutions have been
experimentally evidenced in both water waves and optics [33].
Here, in contrast, we concentrate, in the normal dispersion
regime, on the impact of time-reversal symmetry breaking
introduced by the birefringence (group-velocity mismatch)
on the MI splitting into convective and absolute ones and
the evolution of localized perturbations of the cw stationary
solutions. The link between our localized solutions and
the solutions generated from localized perturbations in the
strongly nonlinear regime is out of the scope of this paper.

The main purpose here is to describe the dynamical behav-
ior of asymptotical solutions and their properties. Following
the method developed in [31], the solution can be evaluated by
the following Fourier-Laplace integrals:

io+o00 S (0) k) l(a)l‘
A(zt)—/ da)/w D(a)k)

kDak, @
where S;(w,k) and A;(z,t), with j =x or y, represent the
Fourier transform of the initial conditions and the solution
of the linear problem, respectively. D(w,k) is the dispersion-
relation function (2). Here o in the Laplace integral is assumed
greater than the maximum growth rate of any monochromatic
wave (for more details, see [31]).

In principle, the asymptotic behavior of integral (4) can be
evaluated using the steepest descent method in the framework
of the saddle-point approach [34]. However, it has been
demonstrated that the existence of a saddle point does not
guarantee the existence of a growing perturbation [35]. Indeed,
only the collision criterion—pinching condition—allows the
identification of the contributing saddle point. Hence, for a
contributing saddle point, tuning o from 400 to —oo, at least
two w roots of the dispersion relation have to originate from
opposite sides of the complex plane and move towards each
other, collide at a specific point, then move in the opposite
direction. At this specific pinching point, w and k have to hold
the following conditions:

9D(w.k + wV
Dwk+wvy=0, P@ktoV) s

Jw

where V is the velocity of the frame in which the integral
is evaluated, which corresponds here to the wave packet
group velocity (retarded time frame). Therefore, the transition
between convective and absolute instability is studied in the
laboratory frame, i.e., for V = 0. Indeed, in the convective
regime, only saddle points with the same sign of velocities
(pulses propagating in the same direction) contribute to the
instability, while in the absolute regime the saddle points
that contribute to the instability are those with both positive
and negative velocities (pulses propagating in the opposite
directions). In order to get more insight about the transition,
let us set V.. the velocity of the leading front (the fastest one)
of the pulse and V_ that of rear limiting front (the slowest one)
of the pulse. Therefore, the absolute and convective regimes
are characterized by V. V_ < 0 (the spreading of the pulse)
and V. V_ > 0 (pulse propagating in one direction without
spreading), respectively [36].
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FIG. 3. (a) Inset gives the separate evolution of the V. (yellow)
and V_ blue. (b) Evolution of the product V_V, vs the normalized
power control parameter o showing the transition point ¢, = 0.71
corresponding to V_V, = 0. The parameters are 8, = 0.06 ps>m™!,

bo=02psm~!,B=2/3,andy =6 Wkm™'.

IV. RESULTS

We start by checking the possibility of a transition between
absolute and convective instability through the dispersion
relation (2). For this purpose, we need to explicitly determine
the velocities V., mentioned above, by solving the following
system of equations:
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By substituting k(w) from (2) into the above equations and
after cumbersome but straightforward calculations, we end up
with an intractable polynomial equation in k and w, which is
of twelfth (third) degree in w (k). We have numerically solved
these polynomial equations in order to determine and follow
the product V, V_ with respect to the total pump power P.
The result of this resolution is summarized in Fig. 3 where
we have plotted the product V. V_ as a function of the control
parameter o« = P /P, introduced in Sec. II. As can be seen
from this figure, for a set of parameters, the transition from
convective to absolute instability is reached for a value of the
control parameter o, ~ 0.71 when the product V, V_ vanishes.
The transition point is indicated on the figure and the inset
displays the leading and the rear front velocities V. and V_,
respectively, and shows the lowest velocity V_ crossing zero,
which means that the necessary condition for the instability
transition holds. For the instability to actually occur in the
system the corresponding saddle point must verify the pinching
sufficient condition. Indeed, in the absolute regime the saddle
point should contribute to the instability with a positive gain,
while in the convective case it should contribute with a negative
or at best a zero gain. To demonstrate the existence of the
transition, to illustrate the dynamics of its emergence, and to
show how the pinching condition gives rise to the instability,
we have displayed the evolution in complex planes of the wave
numbers k and the frequencies w in Figs. 4, 5, and 6 for three
typical values of the control parameter «. Note that it is not
surprising that both the wave number and the frequency are
complex since Re(k) [Re(w)] accounts for the wave number
(the frequency), whereas Im(k) [Im(w)] corresponds to the
gain (the temporal decay) of the pulse.

First, let us focus on Fig. 4 where we have numerically
solved the dispersion relation (2) for the control parameter
o = 0.2 in the absolute regime (see Fig. 3). The left panel
gives the k path and the right one represents the trajectory
in the @ branches. In this figure, K, (w,) and K; (w;)
stand for the real and imaginary parts of the saddle-point

9k — V. 6)  wave number (frequency), respectively. We have adopted
ow ’ the following numerical approach. First, we fix K, = K,
92k K,_ =K, —0.01, and K, = K, +0.01 and second we
Py =0. (7 vary, for the three cases, K; in an appropriate range around Kj;,
0.1 T : : : - : : . : -
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FIG. 4. Illustration of pinching condition in the case of absolute instability regime. (a) Paths in the complex plane (k,,k;) and (b) the
corresponding trajectories in the complex plane (w,,w;) around the computed saddle point k; = —1.08 4+ 0.04i. The same parameters as in

Fig. 3 with o = 0.2.
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FIG. 5. Illustration of pinching condition in the case of convective instability regime. (a) Paths in the complex plane (K,,K;) and (b) the
corresponding trajectories in the complex plane (w,,w;). Note the computed real part of the saddle point K, = —0.52. The same parameters

asin Fig. 3and o = 0.9.

which is the growth rate of instability. For K, = K, — 0.01
fixed and by decreasing K;, the complex K plane shows a
vertical line (extreme left one) as it should be. As can be seen
from the right panel, two w branches appear from both sides
of the complex w plane (green curves) and their evolution
is indicated by the arrows. By fixing K,, = K, 4+ 0.01,
one observes, in the complex w plane, two new w-branches
(blue curves) associated with the blue vertical line but with
a different structure. Finally, for K, = K, (central line),
the two w branches collide giving rise to the saddle point
indicated by a red circle in the figure. The most important
is the whole dynamics around the emergence of the saddle
point that we summarize as follows: the green and blue paths
in Fig. 4 show the trajectories before and after the saddle
point, respectively. By varying K, two w branches appearing
from both sides of complex w (green curves) collide at the
saddle point (red curves) and separate after collision (blue
curves). The important result is that when the collision occurs
in the w plane the imaginary part of the corresponding saddle
point Kj; is positive, leading to an actual absolute instability.
It is worthy to note that the main difficulty to detect the
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Ky W

FIG. 6. Illustration of pinching condition at transition point ¢, =
0.71 between absolute and convective instability. (a) Paths in the
complex plane (k,,k;) and (b) the corresponding trajectories in the
complex plane (w,,w;). Note the presence of three branches showing
the collision of two saddle points. The parameters are the same as in
Fig. 3.

absolute and convective nature of the instability remains in
the fact that not all saddle points satisfy the pinching condition
(or the Bers collision criteria). One may refer to [35] where
several examples of saddle points not verifying the pinching
condition and, more importantly, do not lead to any instability
are reported. The same approach has been applied to produce
the results in Fig. 5 where the control parameter was fixed
to o = 0.9 to account for the convective instability. As can be
seen from this figure, the w-branch structures are less complex.
But the significant result remains in the imaginary part of the
saddle point, which is now null showing that the instability
is not absolute but convective. It is worthy to note that,
for these values of parameters, the system is modulationally
unstable. The transition between the two regimes is displayed
in Fig. 6 where we have set « = o; = 0.71. The collision of
two saddle points is clearly shown, which is the signature of a
such transition [36]. This is a critical situation characterizing
the complex behavior that may be exhibited in conservative
systems. This transition is detected in fiber systems and it
is mainly the consequence of the group-velocity mismatch
between the two polarization states. Moreover, the nonlinear
birefringence coefficient B may have a crucial role in the
dynamics of the instabilities since it may drastically impact
the transition between convective and absolute instabilities
and the characteristics (wave number, frequency, and velocity)
of the emerging solutions.

Therefore, we are able to conclude that highly birefrin-
gent fiber systems can exhibit an absolute and convective
instability transition. Moreover, our analytical predictions are
in excellent agreement with the solutions obtained from the
numerical integration of the master equations (1). The results
are depicted in Fig. 7, where we have fixed the control
parameter to o = 0.4, 0.9, and 0.71 to show the emerging
solutions in absolute and convective regimes together with the
transition between them, respectively. This figure displays the
spatiotemporal maps of the intensity (bottom panel) together
with the spatiotemporal gain (top panels) with respect to the
propagation velocity. The spatiotemporal (or global) gain is
the most significant gain that takes into account not only the
standard growth rate (K;, as may be obtained by MI) but
it also includes the propagative character that is crucial in
the instability of the pulse. We emphasize here that as far
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FIG. 7. Spatiotemporal evolutions (bottom panel) of the numerically computed intensities along the neutral axes of the birefringent fiber
fora = 0.4 [(a),(b)], 0.71 [(c),(d)], and 0.9 [(e),()]. Dash lines represent the limit of the wave packet. The top panel gives the gain profile with
respect to the velocity of an observer moving with the velocity V. The other parameters are the same as in Fig. 3.

as monochromatic (plane) waves are concerned the growth
rate K; is pertinent but fails to describe the instability to
localized perturbations. As can be seen in Fig. 7 (top panels)
there are two specific velocities denoted V_ and V, where the
global gain vanishes. These two velocities that are indicated
by dashed lines in the spatiotemporal maps (bottom panels),
delimit the cone of unstable solutions. We can observe in the
figure that the instability spreads with positive and negative
velocities in the absolute regime [Figs. 7(A), 7(a), and 7(b)],
only with a zero and a positive velocity at the transition
[Figs. 7(B), 7(c), and 7(d)] and with two positive velocities
in the convective regime [Figs. 7(C), 7(e), and 7(f)]. Note that

0.5

max

FIG. 8. Maximum gain vs the parameter o for B = 2/3. Note
that the transition point « = 0.71 lies in the descendent part of the
curve. The parameters are 8, = 0.06 ps>m~!, by = 0.2 psm~', and
y =6Wkm .

the maximum gain is drastically reduced after the transition
when o = 0.9 since this value of « is close to the extinction
of the instability (¢ = 1). Since the transition is sensitive
to the values of both the normalized injected power « and
the nonlinear birefringence parameter B, we have plotted
the maximum gain with respect to o and B in Fig. 8 and
Fig. 9, respectively. As can be seen from Fig. 8, the transition
point lies in the descendent part of the curve, which confirms
the gain reduction after the transition. Interestingly, Fig. 9
shows that the maximum gain increases with increasing B.
A striking feature appears at transition when V_ = 0. Indeed,
this case corresponds to zero global gain but according to
the steepest descent method, the asymptotic behavior of any
perturbation follows the 1/+/Z scaling law. This statement is
confirmed by the numerical integration of the master equations

10
x
]
ClE
0
0

FIG. 9. Maximum gain vs the parameter B. Note that the
maximum gain increases with increasing B. The parameters are
B, =0.06ps’m™!, by =04psm~',andy =6 Wkm™".
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FIG. 10. (a)Evolution of the intensity vs the propagation length Z
atthe location (¢ = 0) of initial localized perturbation (blue solid line).
The red dash line corresponds to the result of the fit of the envelop
with varying as ¢ + % The The other parameters are the same as in
Fig. 3 witha = 0.9. (b) Fourier spectrum of the evolution given in (a).

(1) where we have recorded the intensity of the field along
the x axis [solid line of Fig. 10(a)]. The evolution confirms
the decay of the intensity and the envelope evolution fits as
a/~Z + b showing a good agreement with the analytical
results. In addition, the wave number corresponding to the
oscillations of the intensity is also in good agreement with our
analytical predictions as can be seen from Fig. 10(b), where
we have plotted the Fourier spectrum of the aforementioned
record. This contrasts with the marginal (gain = 0) instability
in the standard MI where a monochromatic wave persists
asymptotically since it is neither attenuated nor amplified. This
apparent contrast can be explained as a standard result when
applying the steepest method to find the asymptotic stable
propagating waves in dispersive media. Modulation instability
as it stands fails to predict this asymptotic wave behavior
since it concerns monochromatic waves and, by the way,
ignores the propagation character of dispersive waves, which
needs to reformulate the instability problem as an initial-value
problem.
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V. CONCLUSION

In conclusion, we have shown that in the highly birefringent
fiber systems and in the normal dispersion regime, a transition
between convective and absolute unstable regimes exists. This
transition has been described by means of a control parameter
that measures the distance from the extinction of all the
instabilities in the system. Our analytical approach allows,
in terms of convective and absolute instabilities, determining
the main dynamical characteristics of the propagating pulse
in a form of a wave packet. This includes growth rate,
instantaneous frequency, wave number, and, more importantly,
its total group velocity resulting from both the mismatch and
the coupling between the two polarized states. Our findings are
in excellent agreement with numerical solutions obtained by
integrating the governing equations. The results are not specific
to nonlinear fiber systems since time-reversal or reflection
symmetry breaking (in spatially extended systems) are present
in such diverse fields as plasma physics, hydrodynamics, and
reaction diffusion systems. We thus believe that the results
obtained here can be of interest for a wide range of physical
areas. Further analysis of the nonlinear interaction between
the pulses together with the different dynamics occurring in
absolute and convective regimes is in progress.
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