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When measuring a time-varying phase, the standard quantum limit and Heisenberg limit as usually defined, for
a constant phase, do not apply. If the phase has Gaussian statistics and a power-law spectrum 1/|ω|p with p > 1,
then the generalized standard quantum limit and Heisenberg limit have recently been found to have scalings of
1/N (p−1)/p and 1/N 2(p−1)/(p+1), respectively, where N is the mean photon flux. We show that this Heisenberg
scaling can be achieved via adaptive measurements on squeezed states. We predict the experimental parameters
analytically, and test them with numerical simulations. Previous work had considered the special case of p = 2.
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I. INTRODUCTION

Estimating a phase imposed on an optical beam is
an important task in quantum metrology, particularly for
accurate distance measurement (for example gravitational
wave detection). Typically the performance of these mea-
surements is quantified in terms of the photon number,
because increasing the strength of the beam will improve
the accuracy. Standard techniques use coherent states, and
have accuracy that is limited due to the statistics of coherent
states. Alternatively one may use squeezed states or more
advanced states to improve the accuracy, which was originally
proposed by Caves in 1981 [1]. The ultimate limit to the
accuracy using arbitrary states is often called the Heisenberg
limit.

There are two scenarios for phase measurement that can be
considered [2]. One is an interferometer with a phase shift in
one arm, where both modes are treated quantum mechanically,
and the total photon number is considered as a resource. The
other is the phase shift on a single mode, which is estimated
via quadrature measurements. That is, the phase is measured
relative to a strong local oscillator, which is treated classically,
and only the photon number in the mode with the phase shift
is considered as the resource. In this paper we consider the
second scenario.

Phase measurements are most easily analyzed when the
phase is constant. In that case, the resource is just the average
photon number n̄. The standard quantum limit (SQL) on
the mean-square error (MSE) becomes 1/(4n̄) [3], and the
Heisenberg limit becomes 1.89/n̄2 [4]. (These are asymptotic
scalings ignoring higher-order terms.) There was much debate
over the ultimate limits to phase measurement [5–14], but the
bounds have recently been proven [15–21]. In the case of a
constant phase, the analysis is simplified by the fact that there
is an ideal canonical measurement which will yield the highest
accuracy [3].

In many applications, the quantity which one would wish
to measure is varying in time, so the analysis for a constant
phase no longer holds. Some examples are the following.

(1) For gravitational wave detection the signal of course
varies in time.

(2) Interferometers are being developed for inertial sensors,
with applications in seismology [22].

(3) The Gravity Recovery and Climate Experiment
(GRACE) Follow-On mission is planned to include a laser
interferometer for distance measurement [23].

(4) Real-time phase measurement can be used to lock an
interferometer that is being used for another purpose (such as
photonic quantum logic).

For some applications, such as gravitational wave detection,
a particular type of signal is expected, so matched filtering can
be used. For more general measurement problems, the shape of
the signal is not known in advance. Instead, measurements may
be performed with the only assumption on the signal being its
spectrum. A common assumption is that the spectrum scales as
1/|ω|p for p > 1 [24–28]. That is the case for binary inspiral
gravitational waves [29]. There are also many other situations
that result in a power-law spectrum [30]. For example, a
random walk in frequency will result in a phase varying
with p = 4.

Because the photon number depends on the total time,
and will go up indefinitely for a continuous measurement,
it is better to quantify the resource by the average photon
flux, N . To analyze this problem, it is necessary to choose a
particular form of variation for the phase. An early analysis
considered phase that is varying as a Wiener process, and
analyzed adaptive measurements using a squeezed state [24].
In that work a broadband analysis of the squeezing was used
without taking into account the photon flux resulting from the
squeezing and found 1/N 2/3 scaling for the MSE. However,
the photon flux for broadband squeezing is unbounded. A more
advanced analysis in [25] rectified this by treating the more
difficult problem of narrow-band squeezing, and found slightly
poorer scaling of 1/N 5/8. This analysis was further refined in
[26], which found that the original scaling of 1/N 2/3 could in
fact be obtained when the narrow-band nature of the squeezing
was properly taken into account.

Up to this point these were just examples of measurements,
and it was unknown what an equivalent of the Heisenberg limit
for a varying phase would be. This question was addressed
in Ref. [27], which showed that for squeezed states no
better scaling of the MSE could be obtained regardless of
the measurement technique. In fact, it showed for a general
power-law spectrum with p > 1, the bound is scaling as
1/N 2(p−1)/(p+1). This scaling can therefore be regarded as
a Heisenberg limit. In the case of a Wiener process, p = 2,
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this result yields the scaling found for adaptive measurements.
Reference [27] also found scaling of 1/N (p−1)/p for coherent
states, which can be regarded as a SQL for a varying phase.
These results were made more general in Ref. [28], which
showed that not only for squeezed states, but all possible
quantum states, the lower bound on the MSE is scaling as
1/N 2(p−1)/(p+1).

Reference [28] also considered a simplified measurement
scheme in order to show that the scaling can, in principle,
be achieved. The scheme involved sampling the phase at
a sequence of times using pulses of squeezed light and
interpolating the phase in between those samples. Although
it was possible to analytically prove results for that technique,
it would not be practical, because it would require ideal
phase measurements, or at least extremely fast adaptive
measurements. In addition, it can be expected to be suboptimal
because it only samples the phase, rather than measuring it at
all times. In that work there was a significant difference in
the constant for the scaling between the lower bound and the
measurement technique. It is desirable to close this gap and
find the best possible measurement.

In this paper we theoretically consider adaptive measure-
ments on a continuous-mode squeezed state (rather than
a pulsed squeezed state), and show that the scaling of
1/N 2(p−1)/(p+1) can still be obtained. We analytically predict
how the measurement performs, and verify the prediction
via numerical simulations. We obtain an improvement in the
scaling constant over that of the pulsed measurement scheme
in [28] for values of p up to about 1.5. In addition, we describe
a technique to more accurately simulate the measurements
by integrating the stochastic differential equations over short
intervals. Using this technique we recalculate the results of
[26], and give more accurate corrected results.

We start by giving the details of the time variation of
the phase. In Sec. III we explain the adaptive measurement
scheme. This is followed by the details of the feedback
phase in Sec. IV. We then analytically find the scaling of
the experimental parameters in Sec. V. These scalings are
confirmed through numerical simulations in Sec. VI.

II. SYSTEM PHASE TIME VARIATION

We consider a time-varying system phase ϕ(t) which
has statistics that are Gaussian and stationary. Therefore
the mean value of the phase 〈ϕ(t)〉 is independent of time,
and its autocorrelation function �(t1,t2) = 〈ϕ(t1)ϕ(t2)〉 is a
function of only t1 − t2. In the following we will express �

as a function of only a single argument, which is the time
difference. Moreover, we assume the spectral density of the
process, defined as the Fourier transform of the autocorrelation
function,

�̃(ω) =
∫ ∞

−∞
�(t) e−iωt dt , (1)

has power-law scaling for large ω, i.e., �̃(ω) ∼ κp−1/|ω|p. The
multiplicative factor κ is a constant with units of frequency,
and is the inverse of the characteristic time of the spreading of
the process. To ensure that the spectrum is limited at ω = 0,

we consider the spectral density to be [28,31]

�̃(ω) = κp−1

|ω|p + �p
. (2)

Here � is a constant and is the characteristic time for the
relaxation of the phase towards zero [28].

For p = 2, the phase varies as an Ornstein-Uhlenbeck
process, and is easy to generate [32,33]. For general p, a
time-varying phase can be generated via a Fourier transform
[34,35]. Here we describe the technique we used. Taking
the Fourier transform of the phase ϕ(t) and calculating the
two-frequency expectation value gives

〈ϕ̃(ω1)ϕ̃∗(ω2)〉

=
∫ ∞

−∞

∫ ∞

−∞
dt1 dt2〈ϕ(t1)ϕ(t2)〉e−i(ω1t1−ω2t2)

=
∫ ∞

−∞

∫ ∞

−∞
dT d��(�)e−i[ 1

2 (ω1+ω2)�+(ω1−ω2)T ]

= 2π δ(ω1 − ω2)
∫ ∞

−∞
d��(�)e−i[ 1

2 (ω1+ω2)�]

= 2π δ(ω1 − ω2)�̃(ω1) . (3)

Here, we have used the change of variables � = t1 − t2, T =
(t1 + t2)/2, and in the last line we have replaced (ω1 + ω2)/2
by ω1 because of the delta function δ(ω1 − ω2). Note also that,
because the phase ϕ(t) is real, ϕ̃(−ω) = ϕ̃∗(ω). As a result, we
can write the Fourier transform of the phase in the form

ϕ̃(ω) =
√

2π�̃(ω) ζ (ω) , (4)

where ζ (ω) has the correlations

〈ζ (ω1)ζ ∗(ω2)〉 = 〈ζ (ω1)ζ (−ω2)〉 = δ(ω1 − ω2) . (5)

Taking the inverse Fourier transform of ϕ̃(ω) we obtain

ϕ(t) = 1

2π

∫ ∞

−∞
dω

√
2π�̃(ω)ζ (ω)eiωt . (6)

Calculating the correlation function we obtain

〈ϕ(t + τ )ϕ(t)〉 = 1

2π

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2

√
�̃(ω1)�̃(ω2)

× 〈ζ (ω1)ζ (ω2)〉eiω1(t+τ )eiω2t

= 1

2π

∫ ∞

−∞
dω �̃(ω)eiωτ . (7)

This confirms that ϕ(t) has power spectral density �̃(ω).
To generate this phase in our simulations we generate

discretized complex white noise and use a discretized Fourier
transform. We take ζ (ω) to be approximated by

ζ (ωk) ≈ (zk,1 + izk,2)/
√

2δω , (8)

where zk,1 and zk,2 are normally distributed random numbers
with mean zero and variance 1, that are independent except
for zk,1 = z−k,1, zk,2 = −z−k,2. We approximate the integral
in Eq. (6) by

ϕ(tn) ≈ 1√
4π

∑
k

√
δω

√
�̃(ωk)(zk,1 + izk,2)eiωktn . (9)
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FIG. 1. A Gaussian random process with power-law spectral
density κp−1/(ωp + �p), with p = 2, �/κ = 10−3, and κ δt = 10−3.

Taking tn = n δt , ωk = k δω, and δω δt = 2π/N the above
equation becomes

ϕ(tn) ≈ 1√
2Nδt

∑
k

√
�̃(ωk)(zk,1 + izk,2)ei2πnk/N

≈ 1√
2Nδt

[
N−1∑
k=0

√
�̃(ωk)(z′

k,1 + izk,2)ei2πnk/N

+
N−1∑
k=0

√
�̃(ωk)(z′

k,1 − izk,2)e−i2πnk/N

]

=
√

2

Nδt

[
Re

(
N−1∑
k=0

√
�̃(ωk)(z′

k,1)e−i2πnk/N

)

− Im

(
N−1∑
k=0

√
�̃(ωk)(zk,2)e−i2πnk/N

)]
, (10)

where z′
k,1 = zk,1 for k 
= 0 and z′

0,1 = z0,1/2. This phase can
be efficiently calculated via a fast Fourier transform.

Figure 1 shows the generated phase using the above
equation for p = 2 and �/κ = 10−3. As p is increased the
phase has less high-frequency variation. In the next section,
we give details of the measurement scheme for estimating such
a varying phase.

III. ADAPTIVE MEASUREMENT
WITH SQUEEZED STATES

We start by describing the form of the measurement, as
depicted in Fig. 2, and provide a method to simulate the
measurement that is improved over the one proposed in
Ref. [25]. The time-varying system phase ϕ is probed by
a continuous-mode squeezed coherent beam. This beam is
produced in an optical parametric oscillator [36], where a
nonlinear medium inside a cavity is pumped with a coherent
beam. The cavity has a decay constant γ , and the light
leaking out of the cavity provides the continuous beam.
Quadratures of the beam may be measured by combining it

processor

D

D

2

1

LO

cavity

( )I t

BS

FIG. 2. The scheme for adaptive homodyne measurement of the
phase ϕ imposed on a squeezed coherent state generated by a cavity
with decay constant γ . D1 and D2 are the photodetectors. I (t) is the
difference photocurrent between the two outputs of the 50/50 beam
splitter (BS). The processor adjusts the phase of the local oscillator
(LO) labeled by θ based on I (t).

with a strong local oscillator (LO) on a 50/50 beam splitter.
The difference photocurrent in the outputs of the beam splitter
then yields a measurement of the quadrature. The LO also
has a phase shift θ which may be controlled. In a homodyne
measurement the phase θ would be chosen to be close to ϕ. In
adaptive measurements, there is no prior knowledge of ϕ, but
instead θ may be varied during the measurement based on the
difference photocurrent [37,38] to approximate a homodyne
measurement.

Let X̂ and Ŷ denote quadrature operators for the field just
outside the cavity but before the phase shift, and let x̂ and
ŷ denote quadrature operators inside the cavity. The output
photon flux from the cavity can be written in terms of the
quadrature operators as [26]

4N = 〈X̂〉2 + 〈Ŷ 〉2 + 〈: �X̂2 + �Ŷ 2 :〉 . (11)

Here, 〈X̂〉 = 0 and 〈Ŷ 〉 = E, where E is the coherent am-
plitude of the field. The normally ordered variances of the
quadratures are [39,40]

〈: �X̂2 :〉 = 〈: X̂2 :〉 − 〈: X̂ :〉2 = − γ ε

1 + ε
,

〈: �Ŷ 2 :〉 = γ ε

1 − ε
, (12)

where ε is a parameter related to the squeezing parameter r

according to

ε = er − 1

er + 1
. (13)

This gives

N = E2

4
+ γ

2
sinh2

( r

2

)
. (14)

The Heisenberg equation of motion for the quadrature
operators inside the cavity can be written as [25,41]

dx̂

dt
= −x̂γ (1 + ε)/2 + √

γ ξ̂ , (15)

dŷ

dt
= −ŷγ (1 − ε)/2 + √

γ η̂ . (16)
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Here, ξ̂ and η̂ are the quadrature noise operators, and we
have considered the squeezed quadrature to be x̂. The phase
ϕ is imposed on the squeezed state before it combines on a
50/50 beam splitter with a LO which has phase θ . The output
quadrature at angle θ − ϕ is obtained as [25,41]

Î = cos(θ − ϕ)(
√

γ x̂ − ξ̂ ) + sin (θ − ϕ)(
√

γ ŷ + E − η̂) .

(17)

This corresponds to the measured difference photocurrent in
the output modes.

Because Eqs. (15)–(17) are linear in the cavity quadratures
x̂ and ŷ, and the bath quadrature inputs ξ̂ and η̂, they can be
simulated exactly using classical variables [25]. That is, we
can replace these operators, and Î , by real-valued variables
with the same statistics, as determined by the Wigner function
for the quantum fields [39]. We can write

dx

dt
= −xγ (1 + ε)/2 + √

γ ξ , (18)

dy

dt
= −yγ (1 − ε)/2 + √

γ η , (19)

I = cos (θ − ϕ)(
√

γ x − ξ ) + sin (θ − ϕ)(
√

γ y + E − η).

(20)

Here, ξ and η are Gaussian increments satisfying 〈ξ (t)ξ (t ′)〉 =
〈η(t)η(t ′)〉 = δ(t − t ′). One way to numerically integrate these
equations is to directly discretize the equations over time
steps of length �t [25]. The method we describe here is to
instead integrate the differential equations over a time step of
length �t . This method is still not exact because we assume
that the system and controlled phases are constant over these
time intervals. That is, the remaining approximation in the
discretization is now in taking the phases to be constant over
the time intervals. Provided the time intervals are short, the
approximation will be accurate, and it will be more accurate
than the approximation without the integrals.

Integrating Eqs. (18) and (19) we obtain

x(t) = eγ (1+ε)(t0−t)/2x0 + √
γ

∫ t

t0

du eγ (1+ε)(u−t)/2ξ (u) , (21)

y(t) = eγ (1−ε)(t0−t)/2y0 + √
γ

∫ t

t0

du eγ (1−ε)(u−t)/2η(u) , (22)

where x0 and y0 are the values of x and y at t = t0. To obtain
the effect of a step from time t0 to t1 = t0 + �t we integrate
I over this interval. Therefore, we need to integrate

√
γ x − ξ

and
√

γ y − η. We obtain

∫ t1

t0

dt [
√

γ x − ξ (t)] = x0
e−r + 1√

γ
(1 − e−γ (1+ε)�t/2)

− (e−r + 1)
∫ t1

t0

du ξ (u)eγ (1+ε)(u−t1)/2

+
∫ t1

t0

du ξ (u)e−r . (23)

Similarly for
√

γ y − η we obtain∫ t1

t0

dt [
√

γ y − η(t)] = y0
er + 1√

γ
(1 − e−γ (1−ε)�t/2)

− (er + 1)
∫ t1

t0

du η(u)eγ (1−ε)(u−t1)/2

+
∫ t1

t0

du η(u)er . (24)

We define

χx :=
∫ t1

t0

du ξ (u)eγ (1+ε)(u−t1)/2 , (25)

χy :=
∫ t1

t0

du η(u)eγ (1−ε)(u−t1)/2 , (26)

and

ψx :=
∫ t1

t0

du ξ (u)e−r , ψy :=
∫ t1

t0

du η(u)er . (27)

In terms of these new variables the integral of I can be written
as ∫ t1

t0

dt I = cos(θ − ϕ)

[
x0

e−r + 1√
γ

(1 − e−γ (1+ε)�t/2)

− (e−r + 1)χx + ψx

]

+ sin (θ − ϕ)

[
y0

er + 1√
γ

(1 − e−γ (1−ε)�t/2)

− (er + 1)χy + ψy + E�t

]
. (28)

The expectation values of χ� and ψ� for both � = x,y are zero
because ξ and η both have mean zero. Therefore the variances
are

〈
χ2

x

〉 =
∫ t1

t0

du eγ (1+ε)(u−t1)

= (e−r + 1)(1 − e−γ (1+ε)�t )/2γ , (29)

〈
χ2

y

〉 =
∫ t1

t0

du eγ (1−ε)(u−t1)

= (er + 1)(1 − e−γ (1−ε)�t )/2γ , (30)〈
ψ2

x

〉 = e−2r�t ,
〈
ψ2

y

〉 = e2r�t , (31)

and the covariances are

〈χxψx〉 =
∫ t1

t0

du eγ (1+ε)(u−t1)/2e−r

= e−r (e−r + 1)(1 − e−γ (1+ε)�t/2)/γ , (32)

〈
χyψy

〉 =
∫ t1

t0

du eγ (1+ε)(u−t1)/2er

= er (er + 1)(1 − e−γ (1−ε)�t/2)/γ . (33)
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We also define

m(1)
x := (e−r + 1)(1 − e−γ (1+ε)�t/2)/

√
γ , (34)

m(1)
y := (er + 1)(1 − e−γ (1−ε)�t/2)/

√
γ , (35)

�x = ψx − λxχx , and �y = ψy − λyχy in such a way that
the covariances 〈�xχx〉 and 〈�yχy〉 are zero. The appropriate
values of λx and λy are

λx = 〈χxψx〉〈
χ2

x

〉 , λy = 〈χyψy〉〈
χ2

y

〉 . (36)

In terms of these scaling factors we can write

x(t1) = e−γ (1+ε)�t/2x0 + √
γχx , (37)

y(t1) = e−γ (1−ε)�t/2y0 + √
γχy , (38)

I (t1) = I (t0) + cos (θ − ϕ)
(
m(1)

x x0 + �x + m(2)
x χx

)
+ sin (θ − ϕ)

(
m(1)

y y0 + E�t + �y + m(2)
y χy

)
, (39)

where m(2)
x = λx − e−r − 1, and m(2)

y = λy − er − 1.
In our numerical simulations we used Eqs. (37)–(39) to

improve the accuracy. Next we explain how the controlled
phase θ is determined from the difference photocurrent.

IV. FEEDBACK PHASE

To estimate the time-varying phase ϕ we change the LO
phase θ based on the difference photocurrent given in Eq. (39)
during the course of the measurement. The LO phase could
be updated by Bayesian updating [42–44] or based on the
functions of the photocurrent record A and B described in
Refs. [24,25]. The Bayesian updating is highly numerically
intensive for this problem. Moreover, it is shown in Ref. [25]
that Bayesian updating gives only a few percent enhancement
over the other method. Therefore, we follow the method of
Refs. [24,25].

The relevant information from the measurement record can
be formulated in the following quantities [24,25]:

A(t) =
∫ t

−∞
eχ(u−t)eiθ I (u) du , (40)

B(t) = −
∫ t

−∞
eχ(u−t)e2iθ du , (41)

where 1/χ is a time constant for the weight eχ(u−t) given to the
difference photocurrent at time u, I (u). The phase estimate at
time t , ϕ̆(t), is obtained from A(t) and B(t) via

ϕ̆(t) = arg [C(t)] , C(t) = A(t) + χB(t)A∗(t) . (42)

However, it is found that using this phase estimate as the
LO phase gives poor results [24,25]. This is because for very
good estimates of the phase in the feedback, the results do
not distinguish easily between the system phase and system
phase plus π . Therefore, many of the results are out by π ,
which results in a large MSE. Thus, following the technique

of previous works [24,25] we set the LO phase to

θ (t) = arg [C1−δ(t)Aδ(t)] (43)

and find the optimal value of δ numerically.
Note that changing the controlled phase by π does not

make any difference to the final MSE. If we were only
attempting to measure the phase at a final time, then it would
not matter if there were errors of π in the phase estimate
at intermediate times, because errors of π in the controlled
phase do not adversely affect the results. This means that it
would be reasonable to use arg [C(t)] as the phase estimate
at intermediate times, and use larger values of δ close to the
final time. That is the approach used in Ref. [45]. However,
because we require accurate estimates of the phase at all times,
we must be able to resolve the π ambiguity at all times, and it
is better to use the LO phase given in Eq. (43).

The parameters that we can vary to obtain the minimum
MSE are the squeezing parameter r , the cavity decay γ ,
the time scale over which previous measurement results are
used 1/χ , and the parameter δ. If we scale the time by
κ , we obtain the dimensionless parameters N /κ , γ /κ , and
χ/κ . The parameters r and δ are already dimensionless.
We consider arbitrary squeezing; in other words, we do not
consider any limitations for the squeezing parameter r . This
is because we want to find the ultimate scaling obtained with
this scheme regardless of the current technological status of
sources of squeezing. Except for the parameter δ, it is possible
to analytically find the scaling of the parameters with N /κ as
we derive in the next section.

V. ANALYTICAL SCALING

First we note that for the given photon flux N , the average
number of photons in the time scale 1/χ is N /χ . For the
coherent state, the MSE scales with the inverse of the average
number of photons, i.e., χ/N [25]. In adaptive measurements
the MSE obtained with a squeezed state is reduced by a factor
of e−2r , so scales as χe−2r/N [25].

To find the scalings of the parameters and MSE in terms of
N /κ the following conditions should hold:
Condition 1. The mean-square variation of the system phase
in the time scale over which previous measurement results are
used, 1/χ , should be on the order of the MSE obtained with
squeezing.
Condition 2. The squeezing parameter should be chosen in
such a way that the noise from the antisqueezing component
is not larger than the noise from the squeezed quadrature.
Condition 3. To observe the effect of squeezing the time scale
over which previous measurement results are used, 1/χ , needs
to be on the order of or longer than er/γ [25].
Condition 4. The parameters γ and r should not correspond to
a photon flux due to squeezing larger than N .

For spectral density ∼κp−1/|ω|p the mean-square variation
in the system phase after time t , 〈(ϕ(t) − ϕ(0))2〉, is ∼(κt)p−1

[28]. For Condition 1 to hold we therefore need

χe−2r/N ∼ (κ/χ)p−1 . (44)

This gives

χ ∼ κ1−1/p(N e2r )
1/p

, (45)
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and therefore for the MSE with squeezing we obtain

MSE ∼ (κe−2r/N )
1−1/p

. (46)

The difference photocurrent in the output for the adaptive
homodyne measurement can be written as [24]

I (t)dt = 2E sin [ϕ(t) − ϕ̆(t)]dt + √
Rsq(t)dW (t) , (47)

Rsq(t) = sin2[ϕ(t) − ϕ̆(t)]e2r + cos2[ϕ(t) − ϕ̆(t)]e−2r , (48)

where dW (t) is an infinitesimal Wiener increment which sat-
isfies 〈dW (t)dW (t ′)〉 = δ(t − t ′)(dt)2. The amplitude of the
Wiener noise, Rsq, consists of the squeezing and antisqueezing
components.

If the estimated phase ϕ̆ is close to the system phase ϕ,
we can approximate Rsq by e2rMSE + e−2r . If we were to
increase r without limit for any nonzero value of MSE, then
the first term for antisqueezing would eventually dominate.
Condition 2 above means that r is sufficiently small and
the phase estimate is sufficiently accurate that the first term
in Eq. (48) is not dominating. When e−2r ∼ e2rMSE the
antisqueezed component starts to give significant noise, and
increased squeezing will only increase the error. To not have
the squeezing beyond this point, the strongest squeezing we
can have is such that e−4r ∼ MSE. Using Eq. (46), we obtain

e−4r ∼ (κe−2r/N )
1−1/p

. (49)

Solving for er gives

er ∼ (N /κ)(p−1)/(2p+2) . (50)

That enables us to obtain the scaling for the MSE as

MSE ∼ (κ/N )2(p−1)/(p+1) , (51)

which is the Heisenberg scaling from Ref. [28]. Similarly,
using Eq. (45) we obtain the scaling for χ/κ as

χ/κ ∼ (N /κ)2/(p+1) . (52)

This equation also shows the relation between the time
scale at which the local oscillator should be updated to the
time scale of the phase variation. The local oscillator phase
should be updated in such a way that its variation is not much
more than the MSE. According to Condition 1, the system
phase varies over time 1/χ by an amount comparable to the
MSE. This means that the local oscillator should be updated
in shorter time intervals than 1/χ in order to keep the local
oscillator phase sufficiently close to the system phase. From
Eq. (52) we see that as N /κ (the number of photons in the
time scale of the system phase variation) increases, the local
oscillator should be updated more rapidly as compared to the
variation of the system phase.

So far, it is not guaranteed that this scaling can be reached,
because there are also Conditions 3 and 4. Condition 3, which
is justified in Ref. [25], gives us the inequality

χer/κ < γ/κ . (53)

The smallest γ this inequality can be satisfied with is

γ /κ ∼ (N /κ)(p+3)/(2p+2) . (54)

This scaling of γ will be acceptable provided it is not so large
that it violates Condition 4. Condition 4 implies that, using

the equation for the photon flux Eq. (11), we should have
N > γer . It turns out that, using the scalings in Eq. (54) and
(50), we obtain γ er ∼ N , which does not violate Condition 4.

Note that for p = 2 the scalings found here reproduce the
scalings found in Ref. [26]. We have not found an analytical
way to determine the scaling of the parameter δ. In the next
section we numerically find the scaling of δ and confirm the
scalings of the other parameters we found in this section.

VI. NUMERICAL RESULTS

For each value of N /κ we have found the minimum MSE
by a numerical search for the four parameters γ /κ , χ/κ , δ,
and er . In order to do this, we systematically incremented the
value of each parameter in turn to find the values that give the
minimum MSE.

ForN /κ < 5 × 107 we used a modified form of MSE based
on the Holevo variance [46]:

Re

⎡
⎣ 1

M

M∑
j=1

ei(ϕ̆j −ϕj )

⎤
⎦

−2

− 1 , (55)

where M is the number of samples of the phase estimate.
The Holevo variance is a measure of variance that is naturally
modulo 2π , and so is appropriate for phase. This form of the
Holevo variance is analogous to the MSE, because it compares
the estimates to the actual values of the phase. For N /κ �
5 × 107, we just used the formula for the standard MSE:

1

M

M∑
j=1

(ϕ̆j − ϕj )2 . (56)

In this parameter regime, the Holevo MSE is very close to the
standard MSE, but performing calculations with Eq. (55) is
less accurate due to roundoff error. In the following, we just
call both forms the MSE for simplicity.

To calculate the integrals (40) and (41), one can approxi-
mate I and θ as being constant in each interval [t,t + �t), and
use the difference equations

A(t + �t) ≈ e−χ�tA(t) + 1

χ
(1 − e−χ�t )I (t)eiθ , (57)

B(t + �t) ≈ e−χ�tB(t) − 1

χ
(1 − e−χ�t )e2iθ . (58)

In our calculations we made the further approximation that
e−χδt ≈ 1 − χδt , which simplifies the difference equations to

A(t + �t) ≈ (1 − χ�t)A(t) + I (t)eiθ�t , (59)

B(t + �t) ≈ (1 − χ�t)B(t) − e2iθ�t . (60)

We use time steps of �t = 1/(103χ ), in which case the
approximation e−χ�t ≈ 1 − χ�t is accurate. Any inaccuracy
in the calculation of A and B does not introduce inaccuracy
into the simulation as a whole; instead it means that we
are accurately simulating measurements where A and B are
calculated in that way. To give the system of equations time to
reach its steady state, we ran the simulations up to time 100/χ

without sampling the error. We then calculated the MSE by
sampling the error for every time step up to 300/χ . Even
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FIG. 3. The optimal values of the parameters er , χ , δ, and γ vs N /κ for a range of values of p. Black line with �, p = 1.25; green line
with �, p = 1.5; red line with �, p = 2; yellow line with ×, p = 2.5; purple line with •, p = 3; and blue line with +, p = 4.

though the error was sampled every time step, the samples are
strongly correlated for times below 1/χ . Therefore the number
of independent samples is effectively the multiple of 1/χ

used for the time. We performed 64 independent integrations
from time zero to 300/χ . Therefore, the effective number of
independent samples of the error was 12 800. This includes
those from different times within one integration.

We found the values of the parameters er , χ , γ , and δ that
give the minimum MSE for a range of values of p. For the
case of δ, we performed a linear regression of log δ versus
log(κ/N ) to find the power in the scaling for each value of p.
It was found that the powers were consistent with

δ ∼ (κ/N )(p−1)/(p+2) . (61)

For p = 2 the scaling corresponds to that found in Ref. [26].
The ratio of δ to (κ/N )(p−1)/(p+2), as well as the ratios of

er , χ/κ , and γ /κ to their predicted scalings in Eqs. (50), (52),
and (54), are shown in Fig. 3. The ratio of the minimum MSE
to the scaling in Eq. (51) is shown in Fig. 4. In each case the
results are plotted for a range of values of p. For the case of
p = 4, it was not possible to push N /κ to large values. This
is due to the rapid decrease of the MSE for large values of p

and the resulting roundoff error in the simulations.
As these results are shown as a ratio to the predicted

scalings, if these predicted scalings were exact then the results
would all be horizontal lines. The horizontal lines need not
coincide, because the multiplicative constants will be functions
of p. It can be seen from these figures that the results are
consistent with these scalings, although the scalings are not
exact. The most important results are those shown in Fig. 4,

which demonstrate that the Heisenberg scaling is obtained for
the MSE, with multiplying factors in the range 1 to 3.

There are some discrepancies from straight lines in Fig. 4,
particularly with the point for N /κ = 100 and p = 4. The
reason for the discrepancy with that point is likely that it takes
larger values of N /κ for the scaling law to be accurate. There
are some smaller discrepancies for N /κ = 106 for p = 3 and
4, where the points are noticeably above the neighboring
points. This variation is likely due to chance, because these
are Monte Carlo simulations. These discrepancies are small

FIG. 4. The scaled MSE vs N /κ for a range of values of p. Black
line with �, p = 1.25; green line with �, p = 1.5; red line with �,
p = 2; yellow line with ×, p = 2.5; purple line with •, p = 3; and
blue line with +, p = 4.
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FIG. 5. System phase (black line) and the estimated phase (orange
line) for N /κ = 108. The values of p are (a) p = 1.5 and (b) p = 3.

compared to the overall range of the MSE, which is many
orders of magnitude.

In practice it is not possible to use arbitrarily large
squeezing; the current record for squeezing is 15 dB [47].
Due to the scaling for er given in Eq. (50), the optimal amount
of squeezing increases with p. For the smallest value of p

considered, p = 1.25, 15 dB is reached for the maximum value
of N /κ shown in Fig. 3, so the entire range could be accessed
experimentally. For the other values of p, the maximum values
of N /κ would be around 108 (p = 1.5), 105 (p = 2), 2 × 104

(p = 2.5), 8 × 103 (p = 3), and 4 × 103 (p = 4).
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FIG. 6. The scaling constant of the MSE for the Heisenberg limit
(green line with �), Eq. (62), the pulsed measurement (black line with
•), Eq. (63), and the homodyne scheme with a continuous squeezed
state (red line with �).

FIG. 7. The optimal values of various parameters for the Wiener
process, i.e., p = 2. Black line with �, σ 2/(κ/N )2/3; green line with
�, (γ /κ)/(N /κ)5/6; red line with �, (χ/κ)/(N /κ)2/3; yellow line
with ×, er/(N /κ); and purple line with •, δ/(κ/N )1/4.

In Fig. 5 we have plotted the system phase and the estimated
phase obtained based on Eq. (42) for p = 1.5 and 3. The initial
period of transience of the phase estimate can be seen in this
figure. The phase estimate is initially far from the system phase
but as we obtain more information from the measurements it
locks onto the system phase and follows its variation quite
well.

In Fig. 6 we have compared the scaling constant of the
proposed scheme in this paper with the Heisenberg limit, and
the pulsed measurement proposed in Ref. [28]. For large values
of N the scaling constant of the Heisenberg limit of Ref. [28]
is

cZ = 11

420

(p3

4

)2/(p+1)
(

1

4πλ

)2(p−1)/(p+1)

, (62)

with λ ≈ 0.7246 and p3 = (p + 1)(p + 2)(p + 3). The scal-
ing constant for the MSE achievable by the pulsed method
of [28] is

cA = p + 1

p − 1
(4|zA|3/27)

(p−1)/(p+1)
π2p/(p+1) , (63)

with zA ≈ −2.338. As can be seen from this figure, the pulsed
method (with assumed ideal phase measurements) performs
better than the continuous squeezing method (with adaptive
homodyne measurements) for larger p.

We have also compared our results using the improved
numerical techniques to those in Ref. [26] for the case of
the Wiener process, i.e., p = 2. Our new results are slightly
different, although they are qualitatively similar in that they
follow the predicted scalings. The results are plotted together
in a single graph in Fig. 7. This figure shows the same quantities
as Fig. 3 in Ref. [26].

VII. CONCLUSION

In this paper we investigated estimation of a time-varying
phase in an adaptive homodyne scheme using a continuous
squeezed state. We considered a phase with time-invariant
Gaussian statistics and power-law spectral density. We showed
that assuming it is possible to achieve arbitrarily high
squeezing, this scheme gives Heisenberg scaling for the MSE
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in the phase estimate. Moreover, we found that for p � 1.5 the
scaling constant obtained with the adaptive method is smaller
than the scaling obtained with the sampling method proposed
in Ref. [28]. For larger values of p the scaling constant is
larger than that for the method of [28]. We also recalculated
the optimal values of the parameters for the Wiener process
and gave more accurate results for this case.

Although we have obtained Heisenberg scaling for the
MSE, there is still the possibility of improvements in the
scaling constant. An obvious way to obtain an improvement
in the scaling constant is to use smoothing, where data from
before and after a particular time are used to estimate the phase
at that time. It can be expected that the reduction in the MSE
from smoothing is about a factor of 2, provided there are not

significant correlations between the errors before and after the
time of interest. There is also the potential for obtaining better
results using a different analysis of the data better taking into
account its correlations, for example Kalman filtering [48]. It is
also possible that an approach using the Bayesian probability
distribution might give improved results.
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