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Hybrid anapole modes of high-index dielectric nanoparticles
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We investigate the peculiarities of light scattering from subwavelength particles made of high-refractive-index
materials caused by the coexistence of particular anapole modes of both electric and magnetic character. The
similarities and differences of such anapole modes are discussed in detail. We also show that these two types of
anapole modes can be supported simultaneously by subwavelength high-index spherical dielectric particles.
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I. INTRODUCTION

Nonradiating charge-current configurations involving
toroidal dipoles have attracted attention in a wide range of
different fields of physics [1]. In such mode configurations,
the electric and toroidal dipole modes, the so-called anapoles,
cancel each other in the far field [2–4] as a consequence of
both dipole modes sharing the same radiation pattern. Such
anapoles were first experimentally observed in configurations
involving several particles having magnetic dipole moment,
such as split-ring resonators [2]. Interestingly, it has also been
recently predicted that these modes may exist in the much
simpler case of a single, isolated, high-index particle [3,4].
This prediction has been experimentally verified at optical
frequencies with silicon nanodisks [3]. The excitation of
anapole modes in small particles with high refractive index
allows a dramatic reduction of their scattering cross section,
which may reach values well below the Rayleigh limit for
nonresonant excitation of a single electrical dipole mode [5].
So far, anapole modes have been discussed in the context
of suppression of the electric dipole radiation, that is, as an
interference effect due to the simultaneous excitation of the
electric dipole and the electric toroidal dipole moments. The
electric dipole is associated with the oscillating charges, while
the toroidal dipole is associated with the poloidal current flow
on the surface of a torus. However, one can imagine also the
dual situation, in which magnetization currents flowing on the
surface of a torus would generate a magnetic toroidal dipole
mode. Under some circumstances, this magnetic toroidal
moment, which would share the radiation characteristics with
the conventional magnetic dipole, could also lead to the total
suppression of radiation from the system (a so-called magnetic
anapole).

In the present paper, we discuss the basic properties of such
magnetic anapoles together with hybrid situations for which
both electric and magnetic anapole modes are excited at the
same frequency. We study the realization of these effects in
light scattering by a spherical particle, when one can employ
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the exact Mie solution. Although the spherical geometry is not
optimal for experimental realization of these hybrid resonances
due to simultaneous excitation of higher-order multipoles, it
enables understanding of the basic physics connected to these
resonances.

II. MIE RESONANCES IN PARTICLES WITH HIGH
REFRACTIVE INDEX

The Mie theory [6–8] represents the exact solution of
Maxwell’s equations for the scattering of a plane wave by a
spherical particle, and it allows writing the scattering efficiency
of the particle in the following simple form:

Qsca = 2

q2

∞∑
�=1

(2� + 1)[|a�|2 + |b�|2], (1)

where Qsca represents the ratio between the scattering cross
section and the geometrical cross section of the particle,
σgeom = πR2, where R is its radius. The scattering amplitudes
a� (electric) and b� (magnetic) are defined by the following
formulas:

a� = F
(a)
�

F
(a)
� + iG

(a)
�

, b� = F
(b)
�

F
(b)
� + iG

(b)
�

, (2)

and the quantities F
(a,b)
� and G

(a,b)
� are expressed by

F
(a)
� = nψ ′

�(q)ψ�(nq) − ψ�(q)ψ ′
�(nq),

G
(a)
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�(nq)χ�(q),
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G
(b)
� = nχ�(q)ψ ′

�(nq) − ψ�(nq)χ ′
�(q). (3)

Here ψ�(q) =
√

πq

2 J�+ 1
2
(q), χ�(q) =

√
πq

2 N�+ 1
2
(q), where

Jn(x) and Nn(x) are the Bessel and Neumann functions;
ψ ′

�(q) = dψ�(q)/dq, χ ′
�(q) = dχ�(q)/dq, and q = 2 π R/λ

is the so-called size parameter, with λ being the radiation wave-
length. The particle is considered to be of an ideal spherical
shape made of an isotropic, homogeneous, and nonmagnetic
(μ = 1) material. In addition, we consider nondissipative,
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FIG. 1. Partial scattering efficiencies Q
(e)
� and Q

(m)
� for elec-

tric dipole (ed), quadrupole (eq), magnetic dipole (md), magnetic
quadrupole (mq), and magnetic octupole (mo) modes for spherical
particle with refractive index n = 25. The arrows indicate the
positions where the electric (q ≈ 0.18) and magnetic (q ≈ 0.23)
dipole scattering vanishes.

Imε = 0, dielectric materials with high positive refractive
index n = √

ε � 1.
Inside the particle, one can find the internal field amplitudes

d� (electric) and c� (magnetic) which are defined as

d� = − in

F
(a)
� + iG

(a)
�

, c� = in

F
(b)
� + iG

(b)
�

. (4)

The internal amplitudes d� and c� never vanish, in contrast
to what may happen with the scattering amplitudes a� and
b�. It is convenient to represent the total scattering efficiency
in (1) as a sum of partial electric, Q

(e)
� , and magnetic, Q

(m)
� ,

scattering efficiencies

Qsca =
∞∑

�=1

(
Q

(e)
� + Q

(m)
�

)
, Q

(e)
� = 2

q2
(2� + 1)|a�|2,

Q
(m)
� = 2

q2
(2� + 1)|b�|2, (5)

which allows identification of different contributions from the
modes excited in the particle.

In Fig. 1 we show the scattering efficiencies Q
(e)
� and Q

(m)
�

for a spherical dielectric particle with refractive index n = 25.
In the whole range represented, the size parameter of the
particle is q < 0.25; i.e., the particle is very small as compared
to the wavelength in the ambient medium (R < 0.04λ). These
partial resonances repeat periodically; e.g., magnetic dipole
resonance takes place at qn/π = 1,2,3 · · ·. We show in Fig. 1
a few first partial scattering efficiencies. The full picture
with a larger number of scattering efficiencies is presented in
Appendix A. One can see that the magnetic dipole resonance
(green curve) plays the dominant role in scattering. This
effect is usual in nanoparticles made of high-refractive-index
dielectrics [9–13]. However, the electric dipole scattering is
dominant between the resonances, due to the conditions [14]
a� ∝ q2�+1 and b� ∝ q2�+3. Both the electric and the magnetic
resonances have the typical Fano profile [5,15–17]. The only

FIG. 2. Total scattering Qsca (black triangles) and partial scatter-
ing efficiencies Q

(e)
� and Q

(m)
� for a particle with refractive index

n = 25 in the range of the first electric (a) and magnetic (b)
anapole modes. (a) At the point Q

(e)
1 = 0 (electric anapole) the main

contribution to scattering comes from the magnetic dipole Q
(m)
1 . The

effect of the electric quadrupole Q
(e)
2 is negligible. (b) At the point

Q
(m)
1 = 0 (magnetic anapole) the main contribution to the scattering

comes from the electric dipole Q
(e)
1 , which practically coincides with

the total scattering Qsca under Rayleigh scattering. Nearby this point,
there are two closely situated resonances, corresponding to electric
quadrupole Q

(e)
2 and magnetic octupole Q

(m)
3 .

difference is that the Fano resonances associated with electrical
modes are very sharp [15], while the ones associated with
magnetic resonances are very broad.

Point 1 in Fig. 1 refers to the so-called Kerker’s first
condition, for which the particle presents near-zero back
scattering. Point 2 indicates the second Kerker condition and
corresponds to minimal forward scattering. This directional
scattering behavior has already been discussed in a number
of papers [13]. The arrows in the figure indicate the positions
where electric and magnetic dipole scattering tend to zero.
In Fig. 2 we show the fine structure of partial scattering
efficiencies Q

(e)
� and Q

(m)
� in the vicinity of these zeros of

electric dipole scattering 2qn/π ≈ 2.86 and magnetic dipole
scattering 2qn/π ≈ 3.67.

Let us first discuss the zeros of the electric dipole scattering
Q

(e)
1 = 0. This condition is fulfilled along a trajectory on

the plane of {q,n} parameters. The equation describing this
trajectory is given by F

(a)
1 = 0, which can be recast as

1 − n2 + q(n2 − 1 + n2q2) cot(q) + nq(n2 − 1 − n2q2)

× cot(nq) + nq2(1 − n2) cot(q) cot(nq) = 0, (6)

where we should consider only those solutions with cos(q) �= 0
and cos(nq) �= 0.

In a similar way, the zeros of magnetic dipole amplitude,
F

(b)
1 = 0, follow some trajectory in the {q,n} space of

parameters, in this case given by the following equation:

n2 − 1 + nq[cot (nq) − n cot (n)] = 0. (7)

Equations (6) and (7) are valid for arbitrary values of
n and q. They have an infinite number of solutions. That
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FIG. 3. Trajectories of F
(a)
1 (n,q) = 0 (red) and F

(b)
1 (n,q) = 0

(blue), corresponding to vanishing electric and magnetic dipole
contributions, on the plane of n and q parameters for refractive index
n < 5 (a) and n > 5 (b).

is, for each value of refractive index there is an infinite
set of solutions with corresponding size parameter q. The
first three roots of the solutions of Eqs. (6) and (7) are
shown in Fig. 3. For moderate values of the refractive index

(n < 5) one can see an intertwining braid structure for the
corresponding trajectories in Fig. 3(a), crossing each other
several times. However, for larger values of the refractive
index (n > 5) these braids untwine [see Fig. 3(b)] and the
trajectories stop crossing each other. From Fig. 3(a) it can be
seen that there is a discrete set of values of the size parameter
(q = 2.7437, 4.4934, 6.1168 · · · ) for which Eqs. (6) and (7)
are fulfilled simultaneously, that is, for which electric and
magnetic dipoles are simultaneously zero. Moreover, for each
q value there is a discrete set of appropriate n values [for
example, q = 2.7437 yields n = 2.2294, 3.3956, and 4.5508,
as seen in Fig. 3(a)]. One can see a similar discrete set of n

values at q = 4.4934 and higher values.

III. ELECTRIC AND MAGNETIC ANAPOLE MODES

In order to have a deeper insight into the origin of excited
anapole modes, in Fig. 4 we show the distribution of electric
and magnetic fields and the Poynting vector around and
inside a spherical particle at the electric anapole frequency
corresponding to n = 25 and q = 0.179 88. The upper row in
Figs. 4 [panels (a–c)] shows two-dimensional (2D) maps of
the field distribution inside the particle and in the near-field
area outside the particle, while the lower row [panels (d–f)]
shows the three-dimensional (3D) field distribution inside
the particle. In particular, Fig. 4(a) represents the electric

FIG. 4. Distribution of electric and magnetic fields and Poynting vector for a spherical particle with q = 0.179 88 and n = 25. The upper
row (a–c) shows the 2D distributions and the lower row (d–f) shows the 3D distributions. (a) Map of the distribution of electric field intensity E2

in the {x,z} plane. The white lines represent the electric field lines. (b) Map of the modulus of Poynting vector |S| in the {x,z} plane. The white
lines represent the vector field lines. (c) Distribution of the z component of the Poynting vector in the {x,y} plane through the particle diameter.
The red dashed line indicates diffraction limit size, π/2qn ≈ 0.35, and the blue line indicates the full width at half maximum (FWHM).
(d) Electric field lines in the {x,z} plane (blue) and magnetic field lines in the perpendicular {y,z} plane (red). (e) Singular line (green) with
zero Poynting vector S(x,y,z) = 0 passing through the particle. This line enters into unstable focal points at the {x,z} plane. Unstable phase
trajectories starting at these focal points fill the whole region indicated by green areas. It refers to zero field regions. (f) Intensity distribution
in the {x,y} plane through the particle diameter. The level |S| ≈ 3.5 (red line) corresponds to FWHM.
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field intensity distribution (E2) within the {x,z} plane, with
the corresponding white lines represent the lines of electric
field vector E. One can easily identify the poloidal current
distribution of the electric vector inside the nanoparticle. The
red lines in the figure represent the calculated separatrices.
There are four singular points in the field distribution, points
1 and 2 corresponding to saddles, and points 3 and 4
corresponding to field zeros. In the 3D picture in Fig. 4(d)
we show the electric field lines within the {x,z} plane (blue
lines) and the magnetic field lines within the perpendicular
{y,z} plane (red lines).

In Fig. 4(b) we show the distribution of the Poynting vector
within the {x,z} plane. Note that there is almost no energy flow
in the region inside the loops of separatrices around the focal
points 3 and 4. It is interesting to view the electric anapole as an
equivalent to a confocal system of two lenses with numerical
aperture (NA) close to unity. Although the full number of
modes [18] is taken into account, the calculations show a
minimal distortion of the Poynting vector outside the particle.
In the 3D plot in Fig. 4(e), the Poynting vector in the {x,z}
plane is shown by blue lines. The green, 3D line presents a
singularity characterized by a zero Poynting vector. The green
areas—large in the {x,z} plane and small in the perpendicular
{y,z} plane—show the region with almost no energy flow [one
can see in Fig. 4(c) that the field compression is stronger along
the x axes].

A. Toroidal dipole moments in a Cartesian basis

The contribution of electric toroidal dipole moment to
the electric anapole can be clearly seen if one performs
a multipolar decomposition using a Cartesian basis (see
Appendix B), similar to what has been shown previously in
Fig. 2(c) of Ref. [3] for n = 4. The scattering at the electric
anapole mode (n = 25 and q = 0.179 88) reaches a value as
low as Qsca ≈ 8.5 × 10−4 [see Fig. 2(a)] suppressed even
compared to the Rayleigh limit given by Q(Ra)

sca = 8
3 ( ε−1

ε+2 )2q4 ≈
2.8 × 10−3.

By performing a similar analysis at the magnetic anapole
frequency (shown in Fig. 9) it can be seen that the zero
in the b1 coefficient arises as a result of the destructive
interference of the radiation from the Cartesian magnetic
dipole, with the usual definition in terms of the particle
internal fields, m = −iπc

λ

∫
ε0(n2 − 1)[r × E]dr (note that this

expression holds for a particle in vacuum) and the so-called
mean radii distribution of the magnetic dipole, defined [19] as
R̄2

m = −iπc
10λ

∫
ε0(n2 − 1)[r × E]r2dr. This contribution can be

obtained as a third-order term in the expansion of the exact
magnetic dipole moment [20] and share the same radiation
pattern as the Cartesian magnetic dipole, thus being able to
interfere with it. To get proper insight into the physics of the
magnetic anapole, in Fig. 5 we show the field distributions for a
particle with q = 0.230 62 and n = 25. The upper row [panels
(a–c)] shows the 2D field distributions inside the particle and
in the near-field area outside the particle, while the lower

FIG. 5. Distribution of magnetic and electric fields and Poynting vector for a spherical particle with q = 0.230 62 and n = 25. The upper
row (a–c) shows the 2D distributions and the lower row (d–f) shows the 3D distributions. (a) Distribution of magnetic field intensity (H2) in the
{y,z} plane passing through the particle diameter. The white lines represent the magnetic field lines. (b) Map of the modulus of the Poynting
vector |S| in the {y,z} plane. The white lines represent the vector field lines. (c) Distribution of the Sz component of the Poynting vector in the
{x,y} plane passing through the particle diameter. (d) 3D representation of the electric field lines (blue) in the {x,z} plane and magnetic field
lines (red) in the perpendicular {y,z} plane. (e) Poynting vector lines through the particle cross sections in the {x,z} plane (blue) and the {y,z}
plane (red). (f) Distribution of the z component of the Poynting vector in the {x,y} plane passing through the particle diameter.

063820-4



HYBRID ANAPOLE MODES OF HIGH-INDEX DIELECTRIC . . . PHYSICAL REVIEW A 95, 063820 (2017)

row [panels (d–f)] shows the 3D field distributions inside the
particle. In this case, Fig. 5(a) represents the distribution of
magnetic field intensity H2 in the {y,z} plane and the white
lines represent the lines of magnetic field vector H. From
this plot, it is possible to identify the poloidal distribution
of the magnetic vector field inside the nanoparticle. The red
lines again represent the separatrices. Analogously to the
electric anapole, there are four singular points, points 1 and 2
corresponding to saddles, and points 3 and 4 corresponding to
field zeros. In the 3D picture of Fig. 5(d) we show the electric
field lines within the {x,z} plane as blue lines and the magnetic
field lines within the perpendicular {y,z} plane as red lines. In
general, this picture is quite similar to that of Fig. 4(d). The
saddle points 1 and 2 in Fig. 5(a) are outside the particle. As
a result the magnetic toroidal field also can be outside the
particle while the electrical toroidal field is confined inside the
particle.

In Fig. 5(b) we show distribution of the Poynting vector in
the {y,z} plane. The distribution of the Poynting vector in the
plane of magnetic polarization {y,z} at the magnetic anapole
frequency looks qualitatively similar to the distribution of the
Poynting vector in the plane of electric polarization {x,z} at
the electric anapole [see Fig. 4(b)]. Both distributions have two
saddle points (indicated by 1 and 2 in the figure) and two loops
of separatrices around the focal points (indicated by 3 and 4
in the figure). As in the case of the electrical anapole, there
is almost no energy flow within the region inside the loops of
the separatrices around the focal points 3 and 4. However, in
contrast to the electric anapole, in which the energy is “pulled”
inside the particle, in the case of the magnetic anapole the
energy is “pushed” outside the particle, and creates near-field
enhancement similar to the plasmonic particle. It can be clearly
seen in Figs. 5(c) and 5(f), which show the energy distribution
(z component of the Poynting vector) within the {x,y} plane
passing through the particle diameter. The diffraction limit
diameter with π/2qn ≈ 0.27 is presented in Fig. 5(c) by the
cyan dashed line.
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FIG. 6. (a) Total scattering efficiency and partial scattering
amplitudes Q

(e)
� and Q

(m)
� as a function of the refractive index n

along the trajectory of zero electric dipole (electric anapole mode) in
the parameter space {q,n}; i.e., the size parameter, q = q(n), follows
the first root of the equation F

(a)
1 (n,q) = 0 [see Fig. 3(a)]. (b) Total

scattering efficiency and partial scattering amplitudes Q
(e)
� and Q

(m)
�

as a function of the refractive index n along the trajectory of the
magnetic anapole mode; i.e., the size parameter, q = q(n), follows
the first root of the equation F

(b)
1 (n,q) = 0 [see Fig. 3(a)].

FIG. 7. (a) Poynting vector distribution calculated for a spherical
particle with q = 2.7437 and n = 2.2294 under the dipole approxi-
mation, � = 1. The color map represents the modulus of the Poynting
vector |S| and the white lines the vector field lines. The separatrices
are shown by red lines and the singular points are indicated by
numbers. (b) The same as in (a) but the full number of modes
[18] �max = |q + 4.05q1/3 + 2| is taken into account. There are seven
singular points inside the particle in this case, including three saddles
and four focal points. Two additional saddle points can be seen near
the surface, outside the particle.

IV. EFFECT OF HIGHER-ORDER MODES

Note that, thanks to the large refractive index chosen, it is
possible to visualize the field distributions corresponding to
the anapole modes without much distortion coming from the
higher-order multipolar contributions. In fact, for refractive
indices n > 5 and for the first root of vanishing dipole
contributions the corresponding size parameters are less than
unity. Thus in this range of values of the refractive index

FIG. 8. Partial scattering efficiencies for spherical particle with
refractive index n = 25. Electric efficiencies Q

(e)
� are shown for

electric dipole (ed), quadrupole (eq), octupole (eo), hexadecapole
(eh), and higher-order modes. Magnetic scattering efficiencies Q

(m)
�

marked by “m”—magnetic dipole (md), magnetic quadrupole (mq),
etc. Left panels show, correspondingly, pairs of electric and magnetic
scattering efficiencies for dipole (a), quadrupole (b), and octupole
(o) modes. Variation of the electric Fano resonances is very sharp
and appears to be like vertical lines. More precisely the structure of
the electric Fano resonance is shown in Fig. 9(a). The right panel
(d) presents all modes together. It shows characteristic clusters of
modes for high refractive index, e.g., electric dipole almost coin-
cides with magnetic quadrupole, electric quadrupole with magnetic
octupole, etc.
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only the electric and magnetic dipole scattering amplitudes
Q

(e)
1 and Q

(m)
1 contribute significantly in the vicinity of

magnetic and electric anapoles, respectively. However, for
n < 5 the scattering amplitudes of the higher-order modes
yield important contributions to the total efficiency, as shown
in Fig. 6. Figure 6(a) shows the total scattering and partial
scattering contributions as a function of the index of refraction
along the trajectory of zero electric dipole, a1 = 0 (electric
anapole) in the parameter space {q,n}. From this plot it is seen
that the magnetic dipole yields the dominant contribution, e.g.,
for n > 3.5. A similar behavior is found when analyzing the
contributions along the trajectory of zero magnetic dipole,
b1 = 0 (magnetic anapole), shown in Fig. 6(b).

From the results presented in Fig. 6 it is clear that, due to the
contribution of the higher-order modes, field distributions at
the anapole modes for n < 3.5 will mainly be determined by
the higher-order modes. A particularly interesting example

is the one given by n = 2.2294 and q = 2.7437, when
both amplitudes a1 and b1 tend to zero simultaneously [see
Fig. 3(a)]. In this situation, the field distribution of the “ideal
double anapole” [obtained within the dipole approximation;
see Fig. 7(a)] is strongly distorted by the contributions of
higher-order modes, as shown in Fig. 7(b). In particular, the
nonradiating currents forming a loop around the singular points
3 and 4 in Fig. 7(a) (and whose number increases with the
order of the anapole; see Appendix C) transform into radiating
currents around the singular points 3 and 4 in Fig. 7(b). While
the spherical geometry allows suppressing the electric and
magnetic dipole moments, it does not allow doing the same
with the quadrupole and octupole modes simultaneously, as
seen in Fig. 6. Nevertheless, by using nonspherical geometries,
e.g., disks or spheroids, or layered structures, it could be
possible in principle to simultaneously suppress higher-order
multipolar contributions.

FIG. 9. Cartesian multipole analysis of the n = 25 sphere and the correspondence with the spherical (Mie) multipoles. Panels (a–c) represent
the electric anapole mode (a1 = 0) and panels (d–f) represent the magnetic anapole mode (b1 = 0). Panel (a) shows the scattering efficiency
Qsca and partial electric dipole scattering efficiency from the Mie theory (indicated as a1). The other two curves represent the amplitudes of
the Cartesian electric dipole p and the electric toroidal dipole Te. A similar analysis, and the corresponding expressions for these terms, can be
found in Ref. [3]. These two amplitudes have the opposite phases and their sum coincides with the scattering of the spherical electric dipole a1.
These modes p and Te exactly compensate each other at the point a1 = 0. Panels (b,c) show the electric field maps in the {x,z} and the {y,z}
planes at the position of vanishing Cartesian (b) and Mie theory (c) electrical dipoles. Here we present the internal fields and scattered fields
only. Panel (d) shows the scattering efficiency Qsca and partial magnetic dipole scattering efficiency from the Mie theory (indicated as b1). The
other two curves represent the amplitudes of Cartesian magnetic dipole m and what we refer to as the toroidal magnetic dipole Tm, which has
been previously named the mean radii correction [19]. Once again these two amplitudes have opposite phases and their sum coincides with
the scattering of the spherical magnetic dipole b1. These two modes m and Tm exactly compensate each other at the point b1 = 0. Panels (e,f)
show the magnetic field maps in the {x,z} and the {y,z} planes at the position of vanishing Cartesian (e) and Mie theory (f) magnetic dipoles.
Here we present the internal fields and scattered fields only.
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V. OUTLOOK

To conclude, we have shown that two types of anapole
modes, namely, electric and magnetic, can be observed in
the light scattering from a single spherical particle with high
refractive index, with important differences between them.
First, the excitation of the magnetic toroidal mode can only
be realized for larger size parameters, which typically yields
higher contributions from the rest of the modes excited. Sec-
ond, these two types of anapoles have significant differences
in the energy flow. While the electric anapole concentrates the
energy inside the particle, the magnetic anapole concentrates
the energy outside the particle, in some way similar to
plasmonic particles. This is a generic effect which is repeatedly
found for all subsequent zeros of the dipolar scattering in
a sphere with fixed refractive index. For example, for a
sphere with n = 25, the second zeros of dipole scattering (for
increasing size parameter) is found for the electric dipole at
q = 0.309 26, and the magnetic dipole at q = 0.353 92 [see
Fig. 3(b)], which shows qualitatively the same behavior as that
of Figs. 4(c), 4(f), 5(c), and 5(f).

Finally, we have also shown that both types of anapole
modes can be excited simultaneously, resulting in the for-
mation of hybrid anapole modes. However, for spherical
particles this effect is hindered by the partial contributions from
higher-order modes, which lead to the formation of nontrivial
field configurations with vortices and singularities inside
and outside the particle. We foresee, nevertheless, that this

limitation could be overcome exploring other geometrical
shapes (such as disks or spheroids) or multilayered con-
figurations. Using the same approach, the anapole concept
(nontrivial, nonradiating current distributions) can further be
generalized to any higher order in Mie theory (e.g., a zero
in the a2 coefficient, the electric quadrupolar anapole, is
achieved when the Cartesian electric quadrupole compensates
the toroidal quadrupole and the mean radii of the toroidal
distribution).
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APPENDIX A: PARTIAL SCATTERING EFFICIENCIES

The partial scattering efficiencies corresponding to the elec-
tric dipole (ed), quadrupole (eq), octupole (eo), hexadecapole
(eh) and higher order contributions are plotted in a broad range
of {q,n} parameteres in Fig. 8.

FIG. 10. Poynting vector distribution in the {x,z} plane calculated under dipole approximation, � = 1, with q = 2.7437, n = 3.3956 (a),
and n = 4.5508 (b). Color panel presents the modulus of the Poynting vector |S|. Coordinates x and z are normalized to the particle radius.
(c,d) show distribution of the Poynting vector in the {x,y} plane. Blue dashed lines indicate diffraction limit sizes.
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FIG. 11. Fragment of the Poynting vector distribution for n =
4.5508, q = 2.7437 under dipole approximation, � = 1.

APPENDIX B: DECOMPOSITION OF THE SCATTERING
IN SPHERICAL AND CARTESIAN MULTIPOLES

An analysis of the scattering contributions for the sphere
with refractive index n = 25 based on a Cartesian multipolar
decomposition can be found in Fig. 9, together with the
corresponding spherical (Mie) multipoles.

APPENDIX C: MULTIPLE TOROIDAL VORTICES
FOR HIGHER-ORDER DIPOLE MODES

The hybrid anapole modes are solutions of the equations
yielding a1 = 0 and b1 = 0. These equations have several
roots. In Fig. 10, we present two roots along the size parameter
q = 2.7437, namely, those corresponding to the refractive
indices n = 3.3956 and n = 4.5508. We show the distribution
of the Poynting vector at these hybrid anapole modes. Red
lines show the separatrices. Note that the number of separatrix
loops increases for larger refractive index values. Figures 10(a)
and 10(b) show the distribution of the Poynting vector in the
{x,z} plane and Figs. 10(c) and 10(d) in the {x,y} plane.

We show in Fig. 11 the closeup for the energy flow within
the region of separatrix loops at n = 4.5507. With n � 1 it
is possible to reach extrahigh intensity in the center of the
sphere. High refractive index permits keeping the dominant
role of dipole resonances for small size parameter together
with conditions necessary for resonant behavior of scattering;
i.e., π/n < q 	1. Although it is highly complicated to fulfill
such conditions at the visible range of the spectrum it is
possible to reach in the microwave regime, where the dielectric
permittivity of some weakly dissipating ceramics reaches
values of ε ≈ 1000 [21].
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