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Nonlocal effects on the spontaneous emission near a plasmonic nanowire
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We calculate the radiative, nonradiative, and plasmonic decay rates of an individual optical emitter near a
metallic nanowire with a nonlocal dielectric response. The potential inside the cylindrical wire is obtained within
the random-phase approximation, which allows the nonlocal treatment of the electronic response. The induced
field at the site of the emitter is also found. Calculations are carried out using a hydrodynamic dielectric function
and the effects introduced by spatial dispersion through surface plasmons and reflection amplitudes are discussed.
Nonlocal corrections to the emission rates become more relevant for nanowires with radii in the range of a few
nanometers, at exciting frequencies close to the resonances of surface modes, and when the distance between the
source dipole and the wire edge is comparable to the wire radius or lies in the subnanometer scale.
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I. INTRODUCTION

The spatial nonlocality of the dielectric response means
that the induced polarization at a given position r depends
not only on the exciting electric field at the same point r but
also on the excitation at nearby points r′ [1]. Intrinsic surface
effects on dispersion relations, additional plasmon branches,
the anomalous skin effect, and surface sensitive contributions
to optical spectroscopies, among others, have been recognized
as manifestations of nonlocal behavior [1,2]. On the theoretical
side, the inclusion of spatial dispersion has to be accounted for
in order to achieve a precise comparison between theory and
experimental observations.

The advent of plasmonic nanostructures and the increasing
versatility and control in nanofabrication techniques have
inevitably prompted the investigation of the role of nonlocal
effects on the optical properties of such subwavelength
systems [3–5]. Dimers of metallic nanoparticles [6–9], narrow
gaps between metals with density profiles [10,11], ultrathin
films [10], and more complex geometries [12–14] are some
examples revealing the effects of spatial nonlocality within
a few nanometer distances, sizes, and separations or at a
subnanometer scale. Reduction of field enhancement and lim-
itation of confinement, modified shifts of resonances, and new
spectral features are typical consequences. At the same time,
numerical implementations that take into account the nonlocal
character of the dynamical response have been developed,
usually based on the phenomenological hydrodynamic model.

Given the characteristic strong confinement and large band-
width of electromagnetic fields in metallic nanostructures [15],
the surface plasmon polaritons have been proposed as an
alternative way to achieve strong coherent coupling between
individual emitters and evanescent fields [16,17]. In close
analogy to cavity QED, this enhanced interaction would be a
consequence of the small volume mode associated with the
evanescent plasmon field. On the experimental side, this type
of coupling was observed in a system of quantum dots near
a silver nanowire [18]. These studies have since motivated
a number of explorations involving single quantum emitters
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(atoms, quantum dots, molecules, and qubits) interacting with
photons at the nanoscale. Potential applications including
quantum information science, sensors, light-emitting diodes,
thermal radiation, and nanolasers, among others, are currently
being explored [19,20]. Localized plasmon resonances of
nanospheres and nanoshells are usually invoked to explore
nonlocal effects on the coupling with individual emitters.
Some examples are the dramatic reduction of the enhancement
of molecular fluorescence [21], the diminution and spectral
modification of the Förster energy transfer between two
molecules [22], and the substantial discrepancy between the
local and nonlocal spectra of the local optical density of states
(which is proportional to atomic spontaneous emission rate)
as a function of the probe-to-surface separation [23].

The purpose of the present paper is to introduce spatial
dispersion in the theory of Chang et al. [17] on the spontaneous
emission of a dipole located near a plasmonic nanowire. To this
end we use the random-phase approximation (RPA) approach
developed by Girard and co-workers [24,25] for small metal
spherical particles, but adapted to the cylindrical symmetry.
Boustimi et al. [26] applied it to study the van der Waals
interaction between an atom and a nanowire. We will follow
the cylindrical eigenmode treatment implemented in [26], but
taking a real frequency and a wire with complex dielectric
function immersed in a lossless positive dielectric. This
self-consistent approach allows us to introduce corrections in
the expressions for the emission rates due to coupling with
radiative modes, nonradiative losses, and surface plasmons,
which take into account spatial nonlocality of the electronic
response. The theory of Chang et al. uses a local description
of the metal response, which will become invalid for small
radii and if the dipole is within a few angstroms or nanometers
from the wire. For the metal wire, the hydrodynamic dielectric
function will be used. This is one of the simplest nonlocal
models for the electronic response of a metal [27]. As is
well known, in the presence of nonlocality, the induced
charge density at the metal surface is smeared out over a
screening length. The frequency-dependent position d⊥(ω) of
its centroid, measured from the nominal surface of the metal,
indicates whether the electric potential extends over a region
with lower (outside the metal) or higher (inside the metal)
average density. A lower (higher) density implies a lower
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FIG. 1. Oscillating point dipole in the vicinity of a metallic
nanowire of radius a with a nonlocal dielectric response ε2(k,ω).

(higher) plasmon energy [2]. As a consequence, the dispersion
relation of surface plasmons, reflection amplitudes, absorption
via electron-hole excitations, and other properties can be
significantly modified. Within the hydrodynamic model, we
find here that the spontaneous emission can also be notably
altered with respect to the local description results.

The paper is organized as follows. In Sec. II we present the
expressions for the self-consistent nonlocal potential inside the
cylinder and the amplitudes of potentials everywhere in space,
as obtained from the RPA approach employed in Ref. [26].
Details of the derivation are presented in the Appendices. The
dielectric function of the wire is that of the hydrodynamic
model. In particular, we focus on the coefficients giving the
potential reflected on the wire surface. In Sec. III we follow
the approach of Chang et al. [17] and write expressions for the
emission rates due to radiative, nonradiative, and plasmonic

channels, including spatial dispersion effects that enter
through the nonlocal corrections to the reflection coefficients.
Our results are discussed in Sec. IV and we summarize
in Sec. V.

II. NONLOCAL RESPONSE

We consider the inhomogeneous problem defined by an
oscillating point dipole p = p0e

−iωt located in the proximity
of an infinitely long metallic cylinder of radius a, which is
oriented along the z axis and imbedded in a lossless medium
with dielectric constant ε1 > 1 (Fig. 1). The distance d = a + �

between the dipole and the center of the wire is restricted to
be much smaller than the wavelength of light, so retardation
can be neglected [17,28].

The dipole can lose energy through several channels
and the corresponding spontaneous emission rates require
the evaluation of potentials and fields. As we mentioned
above, we will follow Ref. [26]. Thus we just display the
main expressions and leave some derivational steps for the
Appendices.

To obtain the charges and potentials induced by the dipole
source, we will consider first the problem of a single point
charge and then apply the operator p0 · ∇′ to derive the
expressions corresponding to the dipole. All charge and field
quantities have a common harmonic time dependence, which
we omit for simplicity.

Outside the cylinder (region 1), the potential is �1(r) =
�0(r) + �r (r), where �0 is the potential produced by a
unit point charge located at r′ = (ρ ′ > a,ϕ′,z′) and �r is
the potential due to the charge induced in the wire. The
usual cylindrical representation of the electrostatic free-space
Green’s function allows us to write, for ρ < ρ ′,

�0(r,r′) = 1

ε1

∞∑
n=−∞

∫ ∞

−∞
dk‖An(k‖,ρ ′,ϕ′,z′)In(k‖ρ)einϕeik‖z, (1)

where Kn(x) and In(x) are the modified Bessel functions and An(k‖,ρ ′,ϕ′,z′) = Kn(k‖ρ ′)e−inϕ′
e−ik‖z′

/π . The reflected potential,
which satisfies ∇2�r = 0, can be expanded in a similar fashion:

�r (r,r′) =
∞∑

n=−∞

∫ ∞

−∞
dk‖An(k‖,ρ ′,ϕ′,z′)Kn(k‖ρ)an(k‖)einϕeik‖z. (2)

Following [26], the effective or self-consistently screened potential inside the cylinder (region 2) can be written in the form
(see Appendix A)

�2(r,r′,ω) =
∞∑

n=−∞

∫ ∞

−∞
dk‖An(k‖,ρ ′,ϕ′,z′)Fn(k‖,ρ,ω)bn(k‖)einϕeik‖z, (3)

where

Fn(k‖,ρ,ω) = a
∑
k⊥

∑
k′
⊥

Bn(k⊥)Bn(k′
⊥)Jn(k′

⊥a)Jn(k⊥ρ)E−1
n (k‖,k⊥,k′

⊥,ω), (4)

Bn(k⊥) is a normalization factor, Jn(x) is the Bessel function
of integer order, and k⊥ is the radial wave-vector component.
The function En/(k2

‖ + k2
⊥) is the RPA dielectric constant

appropriate for this problem [26]. Thus, the function Fn

contains all the nonlocal and dynamical information of the
metal wire.
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At this point, the continuity of potentials and fields at ρ = a

allows us to find the coefficients an(k‖) and bn(k‖),

an(k‖,ω) = − 1

ε1

In(k‖a) − ε1k‖Fn(k‖,a,ω)I ′
n(k‖a)

Kn(k‖a) − ε1k‖Fn(k‖,a,ω)K ′
n(k‖a)

, (5)

bn(k‖,ω) = k‖
Kn(k‖a)I ′

n(k‖a) − K ′
n(k‖a)In(k‖a)

Kn(k‖a) − ε1k‖Fn(k‖,a,ω)K ′
n(k‖a)

. (6)

When ε1 = 1, the expression (5) reduces to that reported
in [26].

To evaluate Fn(k‖,ρ,ω) in (4), we first assume a homoge-
neous dielectric response of the free-electron metal, which
implies En(k‖,k⊥,k′

⊥,ω) = En(k,ω)δk′
⊥,k⊥ = k2ε(k,ω)δk′

⊥,k⊥ ,
where ε(k,ω) is the nonlocal bulk dielectric function of the
metal (see Appendix A). When the nonlocal response of the
free electrons in the metal is neglected, this function reduces to
a scalar En(k‖,k⊥,k′

⊥,ω) = (k2
‖ + k2

⊥)ε(ω)δk′
⊥,k⊥ , where ε(ω)

is the local dielectric function. The function Fn [Eq. (4)]
simplifies then to

Fn(k‖,ρ,ω) = a
∑
k⊥

B2
n(k⊥)Jn(k⊥a)Jn(k⊥ρ)

k2ε(k,ω)
. (7)

To describe the spatial dispersion [1] effects, we use the
hydrodynamic model [27] to express the longitudinal dielectric

constant of the cylinder

ε(k,ω) = 1 − ω2
p

ω(ω + iγ ) − β2(k2
‖ + k2

⊥)
, (8)

where ωp is the plasma frequency, γ −1 is a phenomenological
relaxation time, β2 = v2

F /3 is the spatial dispersion parameter
accounting for the pressure gradient of a free-electron gas, and
vF is the Fermi velocity.

The discrete sum in (7) can be evaluated analytically by
a procedure very similar to that employed in the eigenmode
treatment of the nonlocal response of small spheres [29] (see
Appendix B). The result is

Fn(k‖,ρ,ω) = 1

ε2(ω)

In(k‖ρ)

k‖I ′
n(k‖a)

+
(

ε2(ω) − 1

ε2(ω)

)
In(κρ)

κI ′
n(κa)

,

(9)

where

κ2 = k2
‖ − ω(ω + iγ ) − ω2

p

β2
(10)

and ε2(ω) = 1 − ω2
p/ω(ω + iγ ). In the local limit β → 0,

In(y)/yI ′
n(y) → 0, and Fn reduces to the first term in (9).

Using this F loc
n (k‖,a,ω) in (5), (6), (2), and (3), the same local

results reported in Ref. [17] are obtained. The factor (9) allows
us to write (5) as

an(k‖) = − 1

ε1

(ε2 − ε1)In(k‖a)I ′
n(k‖a) − ε1(ε2 − 1)ηn(κa)k‖aI ′2

n (k‖a)

ε2Kn(k‖a)I ′
n(k‖a) − ε1K ′

n(k‖a)In(k‖a) − ε1(ε2 − 1)ηn(κa)k‖aK ′
n(k‖a)I ′

n(k‖a)
, (11)

where

ηn(κa) = 1

κa

In(κa)

I ′
n(κa)

(12)

is the factor accounting for the nonlocal corrections to the reflections coefficients within the hydrodynamic model.
We will need the expressions in the limit k‖a � 1. For n = 0,

a0 ≈ − 1

ε1

ε2 − ε1 − ε1(ε2 − 1)k2
‖η0(κa)/2

ε1[2(k‖a)−2 − η0(κa)] − ε2[ln(k‖a/2) + γe − ε1η0(κa)]
, (13)

where γe = 0.5772 . . . is the Euler constant. For n 
= 0,

an ≈ − 1

ε1

2

(n − 1)!n!

(
k2
‖a

2

4

)n

gn(κa,ω), (14)

where

gn(κa,ω) = ε2(ω) − ε1[1 + n(ε2(ω) − 1)ηn(κa)]

ε2(ω) + ε1[1 + n(ε2(ω) − 1)ηn(κa)]
. (15)

When ηn → 0 (local limit), gn(κa,ω) → r0
p(ω) = [ε2(ω) − ε1]/[ε2(ω) + ε1], which coincides with the nonretarded limit of the

reflection amplitude for p-polarized light of a plane metallic surface [2].
The vanishing of the denominator of the coefficient an [Eq. (5)], for some value of k‖, means that a finite response can be

obtained from an infinitesimal excitation, i.e., the system may oscillate spontaneously, only when the reflection coefficient an

has a pole. The condition for this resonance is written as Kn(k‖a) = ε1k‖K ′
n(k‖a)Fn(k‖,a,ω), or from (11),

1

1 − ε2(ω)/ε1
= k‖a I ′

n(k‖a)Kn(k‖a)

[
1 − ε1

(
ε2(ω) − 1

ε2(ω) − ε1

)
k‖aK ′

n(k‖a)

Kn(k‖a)
ηn(κa)

]
. (16)

The roots of this transcendental equation provide the dis-
persion relation of the plasmons, including both surface and

volume plasmons; when ε1 = 1 and for real ε2(ω) (γ = 0) the
expression reduces to that obtained in [30]. The modes given
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by the dispersion relation (16) are consistent with those of a
careful implementation of the quasistatic approximation [5].

In the limit k‖a � 1, the dispersion relation for the axially
symmetric mode n = 0 is given by [see (13)]

ε2(ω)

ε1
= 1

(k‖a)2

2 − (k‖a)2η0(κa)

ln(k‖a/2) + γe − ε1η0(κa)
(17)

and for the higher-order modes n 
= 0 [see (14)],

ε2(ω) + ε1 = −nε1[ε2(ω) − 1]ηn(κa). (18)

The higher-order resonances present nonzero cutoff frequen-
cies [30], which in the local limit all converge to the same
frequency, to the solution of ε2(ω) = −ε1, as in a flat surface.
Equation (18) resembles the electrostatic dispersion relation
of the surface plasmon of a plane surface [2]. This suggests
that the quantity aηn(κa) can be interpreted as an effective
screening length at the cylindrical surface.

III. DECAY RATES

Within a local treatment, expressions for radiative, nonra-
diative, and plasmonic contributions to the total spontaneous
emission rate of a dipole close to a nanowire have been derived
by Klimov and Ducloy [28] and Chang et al. [17]. In our case,
the corrections due to spatial dispersion enter through the
reflection coefficients (11) and therefore the corresponding
expressions for the decay rates can be obtained along the
same lines. Here we just sketch the steps and present the final
expressions, emphasizing the differences with respect to the
local results.

A. Radiative channel

The radiative decay accounts for the energy radiated to
the far zone. Far away from the source, there would be a
dipolar contribution due to the source and reflected potentials,
�dip = (p0 · ∇′)(�0 + �r ). Given that the radiative decay rate
is proportional to the radiation power, the normalized radiative
spontaneous decay rate can be written as [28,31]

�rad

�0
= |p0 + δp|2

|p0|2 , (19)

where δp is the induced dipole moment in the cylinder,
�0 = √

ε1|p0|2k3
0/3h̄ is the decay rate of an excited dipole

in free space, and k0 = ω/c. The induced dipole can be
determined from the reflected potential �dip,r = (p0 · ∇′)�r

by extracting a contribution having the form δ� = δp · r/r3.
If δp = δpρ ρ̂

′ + δpϕϕ̂′ + δpzẑ, we look for a contribution in
�dip,r of the form

δ� = δpρ

ρ cos(ϕ − ϕ′)
(ρ2 + z2)3/2

+ δpϕ

ρ sin(ϕ − ϕ′)
(ρ2 + z2)3/2

+ δpz

z

(ρ2 + z2)3/2
.

It can be seen from (2) that only the terms with n = ±1 are
responsible for this contribution,

�|n|=1
r (r,r′) = �n=−1

r + �n=+1
r

= 2

π
cos(ϕ − ϕ′)

×
∫ ∞

−∞
dk‖K1(k‖ρ)K1(k‖ρ ′)a1(k‖)eik‖(z−z′)

≈ − 1

ε1
g1(κ0a,ω)

a2

ρ ′
ρ cos(ϕ − ϕ′)

[ρ2 + (z − z′)2]3/2
, (20)

where the last line has been obtained after noting that for
large ρ, the main contribution to the integral comes from a
small region around k‖ρ ≈ 1, which allows the replacement
of K1(k‖ρ ′) and a1(k‖) by their expansions around k‖ = 0
[see (14)] and to leading order in k‖. Here g1(κ0a,ω)
is obtained from (15), with κ2

0 = [ω2
p − ω(ω + iγ )]/β2

[see (10)].
Choosing the parameters ρ ′ = d and z′ = 0 and keep-

ing only terms ∼1/r3 = (ρ2 + z2)3/2, the corresponding
dipolelike contribution δ� is given by �

|n|=1
dip,r (r,r′) =

(p0 · ∇′)�|n|=1
r (r,r′), with δpρ = p0,ρg1(κ0a,ω)a2/d2, δpϕ =

−p0,ϕg1(κ0a,ω)a2/d2, and δpz = 0. Thus, for a dipole point-
ing along each direction, the corresponding radiative de-
cay (19) is given by

(
�rad

�0

)
ρ

=
∣∣∣∣1 + g1(�,u)

a2

d2

∣∣∣∣
2

, (21)

(
�rad

�0

)
ϕ

=
∣∣∣∣1 − g1(�,u)

a2

d2

∣∣∣∣
2

, (22)

(
�rad

�0

)
z

= 1, (23)

where we have rewritten the reflection factor g1(κ0a,ω) as
g1(�,u), given that (κ0a)2 = u2[1 − �(� + iγ̃ )], with � =
ω/ωp, γ̃ = γ /ωp, and u = aωp/β which is the parameter of
spatial nonlocality [30]. The local limit corresponds to u →
∞, g1(�,u → ∞) = r0

p(ω), as was noted previously.

B. Nonradiative channel

The nonradiative decay rate of the oscillating dipole is due
to losses inside the cylinder and it can be obtained from the
dissipated power P = ω

2 Im [p0 · Eloc], where Eloc is the field
acting at the position of the dipole after being scattered by the
cylinder [31]. Thus, we have, for the rate �nonrad = P/h̄ω,

�nonrad

�0
= 3

2
√

ε1k
3
0

Im

[
p0 · Er (r′,r′)

|p0|2
]

= − 3

2
√

ε1k
3
0

Im

[
p0

|p0|2 · ∇(p0 · ∇′)�r (r,r′)
∣∣∣∣
r=r′

]
.

For each orientation of the exciting dipole, this expression
leads to [28]

(
�nonrad

�0

)
ρ

= − 3

πk3
0
√

ε1

∞∑
n=0

(2 − δn,0)
∫ ∞

0
dk‖k2

‖[K ′
n(k‖d)]2Im[an(k‖)] (24)
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for p0 = p0,ρ ρ̂
′, (

�nonrad

�0

)
ϕ

= − 6

πk3
0
√

ε1

∞∑
n=0

n2

d2

∫ ∞

0
dk‖[Kn(k‖d)]2Im[an(k‖)] (25)

for p0 = p0,ϕϕ̂′, and (
�nonrad

�0

)
z

= − 3

πk3
0
√

ε1

∞∑
n=0

(2 − δn,0)
∫ ∞

0
dk‖k2

‖[Kn(k‖d)]2Im[an(k‖)] (26)

for p0 = p0,zẑ. Following Chang et al. [17], we will exclude
the term n = 0 in the evaluation of these sums in order
to consider separately the pole contribution from the factor
a0, which corresponds to the excitation of the fundamental
plasmon mode.

C. Plasmonic channel

It is well known that the n = 0 plasmon field becomes
strongly localized on a scale ∼a around the metal surface
for radius well below the diffraction limit. The small volume
associated with this mode suggests that it can interact strongly
with nearby emitters. The decay rate into this localized
plasmon is obtained from the expression(

�pl

�0

)
ρ

= − 3

πk3
0
√

ε1
Im

[∫ ∞

0
dk‖k2

‖K
2
1 (k‖d)a0(k‖)

]
pole

(27)

in the absence of losses, for the case of a radially oriented
dipole. From (11), the reflection coefficient a0(x) is given by
a0(x) = −N0(x)/ε1D0(x), where the numerator N0 is

N0(x) = (ε2 − ε1)I0(x)I1(x) − ε1(ε2 − 1)η0(κa)xI 2
1 (x) (28)

and the denominator D0 is

D0(x) = ε2K0(x)I1(x) + ε1K1(x)I0(x)

+ ε1(ε2 − 1)η0(κa)xK1(x)I1(x), (29)

with x = k‖a. The pole satisfies D0(x̃) = 0, with x̃ = k̃‖a=C.
In the vicinity of this pole, D0(x) ≈ (x − x̃)D′

0(x̃) and

a0(x) ≈ − 1

ε1

N0(x)

(x − x̃)D′
0(x̃)

,

where

D′
0(x) = (ε2 − ε1)[K0(x)I0(x) − K1(x)I1(x)]

− 1

x
[ε2K0(x)I1(x) + ε1K1(x)I0(x)]

+ ε1(ε2 − 1)

[
η0(κa){x[K1(x)I0(x) − K0(x)I1(x)]

−K1(x)I1(x)} + xK1(x)I1(x)
dη0(κa)

dx

]
, (30)

with

dη0(κa)

dx
= x

(κa)2

[
1 −

(
I0(κa)

I1(κa)

)2
]

.

Substitution into the integral (27) leads to(
�pl

�0

)
ρ

= αpl

K2
1 (Cd/a)

(k0a)3
, (31)

with

αpl = 6

ε
3/2
1

C2N0(C)

D′
0(C)

. (32)

Similarly,(
�pl

�0

)
ϕ

= 0,

(
�pl

�0

)
z

= αpl

K2
0 (Cd/a)

(k0a)3
. (33)

In these expressions the nonlocal factor η0(κa) be-
comes η0(κ̃a), where (κ̃a)2 = (k̃‖a)2 − (ω2 − ω2

p)a2/β2 =
C2 + u2(1 − �2). Although they have the same form as for
the local case, in the presence of spatial dispersion (β 
= 0) the
values of a0 and therefore of the roots C become modified as
can be seen from (17), the last term in N0 (28), and the last
line of (30).

IV. RESULTS

In the following we show results for a sodium nanowire [4]
embedded in a medium with dielectric constant ε1 = 2. The
parameters are h̄ωp = 6.04 eV, γ /ωp = 0.026, and vF /c =
3.5×10−3. The parameter of nonlocality is then given by u =
a×15 nm−1, which hints that the radius should be of a few
nanometers in order to have appreciable spatial dispersion
effects. We will consider two wire radii a = 1 nm (u = 15)
and a = 5 nm (u = 75).

We first consider the radiative contributions (21) and (22)
to the spontaneous decay rate, which we recast as(

�rad

�0

)
ρ

= 1 + |g1(�,u)|2 a4

(a + �)4

+ 2 Re[g1(�,u)]
a2

(a + �)2
, (34)(

�rad

�0

)
ϕ

= 1 + |g1(�,u)|2 a4

(a + �)4

− 2 Re[g1(�,u)]
a2

(a + �)2
, (35)

where � = d − a is the distance between the dipole and
the wire edge. Within a local description, this radiative
contribution is determined by the reflection amplitude r0

p of
a flat surface. However, when the curvature 1/a increases
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FIG. 2. Real (left) and imaginary (right) parts of the nonlocal reflection factor g1(�,u), which determines the induced dipole in a sodium
wire of radius a = 1 nm (u = 15). The local result corresponds to g1(�,u → ∞).

enough, spatial dispersion has to be accounted for. Nonlocal
hydrodynamic effects are expected to be important mostly
in a surface region of width 1/κ0 ∼ β/ωp (for frequencies
well below ωp). Thus, for small κ0a ∼ aωp/β and for dipoles
close to the screening region, the more significant nonlocal
corrections in �rad/�0 should appear.

In Fig. 2 we show the nonlocal reflection amplitude
g1(�,u) for a wire radius a = 1 nm (u = 15), in comparison
to the nondispersive (u → ∞) Fresnel amplitude r0

p(�). The
blueshift of the resonance is associated with the presence
of spatial dispersion. It is well known that within the
hydrodynamic model of a flat metal surface with an abrupt
density profile, the screening charge density occupies a finite
region inside the surface, having a centroid given by d⊥(ω) =
κ−1

0 = [(ω2
p − ω2)/β2]−1/2, and the induced potential extends

over a region of higher density. This means that most of
the screening takes place within the metal. By analogy,
in the case of a cylinder, the centroid would be d⊥(ω) =
{κ0[I ′

1(κ0a)/I1(κ0a)]}−1. Thus we can think of the wire as
having effectively a lesser radius and therefore supporting a
surface resonance with higher energy [Eq. (18)].

Figure 3 plots local and nonlocal (�rad/�0)ρ as a function
of the separation �, for two values of the wire radius, a = 1
and 5 nm. We investigate this function by varying � across
the resonance of the response function g1(�,u). Results are
shown for four different frequencies: (i) top left, � < �sp,
well below the poles of g1(�,u = 15) and g1(�,u → ∞) =
r0
p(ω), located at �∗ = 0.62 and �sp = 1/

√
ε1 + 1 = 0.57,

respectively; (ii) top right, � ≈ �sp; (iii) bottom left, � ≈ �∗;
and (iv) bottom right, � > �∗, well above any resonance.

At � = 0.20, it is found that the values of the decay rate
obtained within the nonlocal description are smaller than
those from the local theory, for the range of dipole-wire
separation � shown. This is because, at this frequency, the
spatial dispersion modifications to the reflection factors are
such that Re(r0

p) > Re(g1) > 0 [see Eq. (21) or (34)]. We also
note that (�rad/�0)ρ is larger for increasing wire radius for
a given �, although the contrast between local and nonlocal
results is more appreciable for decreasing radius and for closer

dipoles. As the wire becomes thinner, the decay rate drops
faster as a function of � and clear deviations from local theory
start at � � a. Qualitatively similar behavior can be seen at
� = 0.50. However, given that this frequency is closer to the
local resonance in r0

p while still separated from that of g1, the
magnitude of (�rad/�0)ρ is clearly enhanced and the difference
between the local and nonlocal results increases, particularly
for separations � < a. In contrast, at � = 0.65, lying closer
to the pole of g1 instead of the local resonance, (�rad/�0)ρ is
further enhanced and can take values above the local results.
For a = 1 nm it is strongly enhanced when � is within few
angstroms and diminishes rapidly again as a function of �,
with respect to the local result and also compared to the
a = 5 nm case. Given that both Re(g1) and Re(r0

p) become
negative at this frequency, the decay rate curve develops a
minimum at some � for each radius, as shown in the inset. On
the other hand, a dramatic change of the overall shape of �rad(�)
occurs at � = 0.80, away from any resonance. At this exciting
frequency, Re(g1) < Re(r0

p) < 0 and Eq. (34) implies that now
(�rad/�0)ρ < 1, which can exhibit a minimum for some value
of the distance �. Again, the local and nonlocal results are very
close, the differences being larger for the thinner wire when
the dipole is located at � � a.

The case of a dipole emitter pointing azimuthally is shown
in Fig. 4. Note that Eq. (22) differs only by a minus sign
from Eq. (21). This suggests that the results can be understood
qualitatively from the radial case with the change g1 → −g1.
For instance, at � = 0.20, Re(−r0

p) < Re(−g1) < 0 and the
results look similar to those of the radial case at � = 0.80
where both the local and nonlocal reflection factors are also
negative, with Re(g1) < Re(r0

p) < 0. The rate (�rad/�0)ϕ vs �

is then greater than that of the local model, each curve exhibits
a minimum, grows faster to unity for decreasing radius, and
decreases for increasing radius. On the other hand, the rate
(�rad/�0)ϕ at � = 0.80 resembles (�rad/�0)ρ at � = 0.20 for
similar reasons, given that now Re(−g1) > Re(−r0

p) > 0 like
before Re(r0

p) > Re(g1) > 0. In the proximity of �sp (Fig. 4,
top right) or �∗ (Fig. 4, bottom left), the rate (�rad/�0)ϕ can be
explained along the same lines. At distances smaller than � ∼ a
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FIG. 3. Local and nonlocal spontaneous radiative decay rate as a function of the distance � = d − a between a radially oriented dipole and
the edge of a Na nanowire, for frequencies � = ω/ωp well below (top left), close to (top right and bottom left), and well above (bottom right) the
pole of the nonlocal response function g1(�,u = 15), located at �∗ = 0.62. For a = 1 nm, the parameter of nonlocality is u = aωp/β = 15.

the rate is enhanced but the spatial dispersion reduces notably
its magnitude with respect to that within the nondispersive
model.

As a function of frequency, �rad/�0 has a dependence
determined by the reflection factor g1(�,u). Thus, the local
and nonlocal rates present the same spectral features, but
with the latter blueshifted. It turns out, however, that at their
respective resonances, the nonlocal values �rad(�,� = �∗) are
clearly below those of the local calculation �rad(�,� = �sp),
for �,a � 2 nm.

We now turn on the decay rate into the n = 0 surface
plasmon of the wire. Within a Fermi golden rule approach [17],
�pl = 2πg2(r,ω)D(ω), where g2(r,ω) ∼ K2

1 (Cd/a)/a2 is
the position-dependent emitter-field coupling strength and
D(ω) ∼ (dω/dk‖)−1 is the density of states of surface plas-
mons. As is well known, the fundamental surface mode of
a nanowire is strongly localized due to a large wave vector
k‖ ∼ 1/a and its (local) dispersion relation reveals that the
group velocity vg ∼ ωa is drastically reduced and the density
of states is enhanced. This fact, in addition to the small effective

mode area, leads to a strong coupling between the dipole and
the surface plasmons of the nanowire.

On the other hand, in the presence of spatial nonlocality, the
dispersion relation of the surface mode shows that the density
of states decreases with respect to the local case, notably for
increasing frequencies and decreasing radius. Thus, one could
anticipate that this fact will contribute to the reduction of
�pl/�0 when compared to the local result. Moreover, as a
function of the wire-dipole distance for fixed a and �, the
plasmonic decay rate within the local vs nonlocal comparison
will depend on the balance between αloc

pl (Cloc)K2
1 (Clocd/a)

and αnloc
pl (Cnloc)K2

1 (Cnlocd/a) [Eq. (31)]. This is illustrated
in Fig. 5, where we show (�pl/�0)ρ(�) for two frequencies
and a = 1 nm. We concentrate on separation � within a
few nanometers, where the highest values arise and where
the contrast between the local and nonlocal results is more
important. The inset in the left panel displays the dispersion
relation of the fundamental surface plasmon of the wire
for u = 15, 75, and ∞. It can be noted that Cloc > Cnloc,
which implies K2

1 (Clocd/a) < K2
1 (Cnlocd/a) (for a = 1 nm,
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FIG. 4. Radiative decay rate, as in Fig. 1, but for a dipole pointing in the azimuthal direction.

FIG. 5. Spontaneous emission rate into the fundamental surface plasmon of a Na nanowire, as a function of the distance between a radial
dipole and the wire edge, shown on the left for low frequency � = 0.20, with the inset showing the local (u = ∞) and nonlocal dispersion
relations of the surface mode for a = 1 nm (u = 15) and 5 nm (u = 75), and on the right for high frequency � = 0.50, close to the local
electrostatic resonance �sp = 0.57, with the inset showing the coefficient αpl of the plasmonic decay rate.
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FIG. 6. Nonradiative emission rate of a radial dipole as a function of its distance to a sodium nanowire.

Cloc = 0.36 and Cnloc = 0.33 at � = 0.20, and Cloc = 2.67
and Cnloc = 1.53 at � = 0.50). However, as a result, we find
αloc

pl (Cloc) > αnloc
pl (Cnloc), as can be seen in the inset in the right

panel. This causes the plasmonic decay rate obtained from the
nonlocal theory to be smaller than that of the local theory.
The difference between the local and nonlocal calculations,
relative to the local value, is about 20–25 % at � = 0.20 for
0.5 nm < � < 1 nm. At � = 0.50 the main difference takes
place for smaller values of �; it is ≈63% for � = 0.5 nm. We
note that for this frequency, the roots Cloc and Cnloc increase
and also its difference. Therefore, smaller values of � will be
needed to compensate for the drop of K2

1 (Cd/a). There is a
global decrease of the magnitude of the local and nonlocal
�pl(�), but the difference between them increases, due to the
relative values of the coefficients αpl at this frequency (see
the inset in the right panel). However, for frequencies close
enough to �sp, the corresponding values of Cloc become very
large and the difference Cloc − Cnloc further increases, leading
to such small values of K2

1 (Clocd/a) as to compensate for the
growing factor αpl(Cloc). As a consequence, now the overall
size of the function �loc

pl (�) is reduced and lies below �nloc
pl (�).

At even higher frequencies, beyond the local resonance �sp,

Cnloc gradually increases, K2
1 decay faster, and the rate �nloc

pl (�)
maintains its global drop tendency, despite the increasing
values of αnloc

pl .
We have also found that �pl(�) decreases monotonically

for moderate frequencies, for � and a ∼ 1 nm, with the local
values clearly above the nonlocal ones. However, when the
frequency is close to the local electrostatic limit, the strong
reduction of the group velocity of the fundamental local
mode (left inset in Fig. 5) leads to a drastic decay of the
plasmonic rate. The opposite situation can then occur, where
�loc

pl (�) < �nloc
pl (�), given the characteristics of the nonlocal

dispersion curves.
The behavior of (�pl/�0)z(�) for a dipole pointing along

the z direction (not shown) is qualitatively similar, with the
overall magnitude slightly reduced, due to the presence of the
factor K2

0 < K2
1 . Again, nonlocal effects on the emission rate

into plasmons are significant for small wire radii and dipoles
located at � ∼ a or at subnanometer distances. The difference
(positive or negative) between the local and nonlocal results
depends strongly on the frequency.

As for the nonradiative emission rate, we display in Fig. 6
(�nonrad/�0)ρ(�) as obtained from Eq. (24), excluding the
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FIG. 7. Nonradiative decay rate vs frequency �, for a radial
dipole at � = 1 nm from the edge of a Na nanowire with radius
a = 1 nm. The insets show the dispersion relation of higher-order
(n 
= 0) surface modes (left, local; right, nonlocal), characterized by
nonzero cutoff frequencies.

n = 0 term in the sum. We include in the figure the coupling
rate into the fundamental surface plasmon (n = 0). The
observed behavior is mainly controlled by the reflection factors
an(k‖) involved in the first terms in the sum (24). For a given
�, the pole structure of Im an(k‖) for each n 
= 0 determines
the magnitude of the nonradiating coupling rate. Again, for
frequencies close to �sp or below, the spatial dispersion
reduces the decay rate �nloc

nonrad(�) < �loc
nonrad(�) < �pl(�) for

� � a. The plasmonic contribution (local or nonlocal) lies
clearly above the nonradiative one. At � = 0.50, however, the
local nonradiative rate becomes greater than the rest because
of the proximity to the local resonance, where only Im aloc

n (k‖)
with n = 1 presents a resonant contribution. A sharper contrast
between the local and nonlocal nonradiative rate is clearly
visible. At � � �sp, �nloc

nonrad(�) < �pl(�) < �loc
nonrad(�). On the

other hand, an opposite situation arises at � = 0.65, where
only Im anloc

1 (k‖) displays a resonant behavior: The overall
size of nonradiative coupling in the dispersive case increases
above all, �nloc

nonrad(�) > �loc
nonrad(�) > �nloc

pl (�). At higher fre-
quencies, the resonant nature of terms with n > 1 enters,
but with smaller amplitude, leading to rates with smaller
overall magnitude. For other dipole orientations, the results
are qualitatively similar, slightly smaller in size.

Figure 7 shows (�nonrad/�0)ρ as a function of the relative
frequency for � = 1 nm and a = 1 nm. In contrast to the
decay rate through the radiative channel, we note that the
spectrum of the nonradiative rate in the nonlocal theory
displays not only a blueshift when compared to the local
result, but also well-separated peaks. As shown in the right
inset, the dispersion curves of higher-order (n 
= 0) surface
modes [30]1 lie above the local electrostatic resonance of a flat

1In the notation of Ref. [30], the dispersion curves of these surfaces
modes are written as ωm0(k) (first column in Fig. 12 therein). The
fundamental mode is ω00.

FIG. 8. Spontaneous emission efficiency factor β for a radial
dipole, as a function of its distance to the surface of a sodium
nanowire.

surface �sp [solution of ε2(�) = −ε1] and present nonzero
cutoff frequencies [Eq. (18)]. The first peak at � = 0.59
arises mainly from the contribution associated with the pole
structure of Ima1(k‖) in the sum (24), the second peak at
� = 0.67 comes from the poles in Ima2(k‖), the third peak
at � = 0.72 is due to Ima3(k‖), and so on. In contrast, the
local dispersion curves (left inset) all lie below �sp in a
narrower interval of frequencies. As a consequence, the local
spectrum consists of two main features only. The first peak at
� = 0.51 originates from the resonant structure of Ima1(k‖),
which involves a small interval of k‖ around the minimum of
the n = 1 local dispersion relation. The wider structure around
� = 0.56 involves all the functions Iman(k‖) in (24), the larger
contributions coming from the n = 2,3,4 terms.

In Fig. 8 we show the factor β(�) = �pl/�tot for � =
0.5–20 nm. This ratio quantifies the coupling efficiency into
the surface plasmons of the nanowire relative to the total
decay rate �tot = �rad + �nonrad + �pl . The emission rates just
discussed are combined to give a function β(�) whose values
in the nonlocal model are greater than those of the local
model. The plasmonic rate �pl takes the higher values at low
frequencies, with a magnitude lying clearly above the radiative
and nonradiative contributions. This implies a large value of
the β factor. The difference between the local and nonlocal
values comes from the respective values of the plasmonic
contribution. When the frequency increases (� = 0.40,0.50)
the magnitude of the plasmonic rates decreases while the
local nonradiative contribution remains larger than the rest.
This is reflected in the diminution of the local and nonlocal
β factors. At higher frequencies, above �sp where there is
no more local fundamental plasmon resonance to excite, the
ratio �nloc

nonrad(�)/�nloc
pl increases, implying further decreasing

of βnloc.
At low frequency (� = 0.20), βnloc(�) and β loc(�) are

comparable and reach almost 99% each, for a distance
about � ≈ 4.4 nm. When the frequency increases, the overall
magnitude of the factor clearly decreases and the maximum
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shifts toward lower distances. At � = 0.40, βnloc
max ≈ 92% and

β loc
max ≈ 84% at � = 1.4 and 1.3 nm, respectively. At � = 0.50,

approaching the local surface resonance at �sp, βnloc
max ≈ 71%

at � = 0.7 nm, but β loc reduces more drastically to 22% at
� = 0.5 nm. When � further increases across the nonlocal
resonances, the βnloc factor decreases to very small values.
Remarkably, in the presence of nonlocality the coupling of the
emitter with the fundamental surface plasmon of the wire is
still efficient, as a consequence of the characteristic frequency
dependence of the emission rate contributions.

Calculations have been presented for the case of a simple
metal, such as sodium, but this approach could also be applied
to noble metals by just introducing a background permit-
tivity in the dielectric function (8), which models interband
transitions or core polarization contributions [1,2,8,10,13].
As a result, we have found that the differences between the
local and nonlocal calculations of the decay rates become
increasingly important when the radius a and separation � are
�1–2 nm. Although the self-consistent method used to include
spatial dispersion partially accounts for quantum mechanical
effects (quantum electronic pressure), potentially important
effects derived from the atomistic nature of the wire should be
additionally taken into account for subnanometer sizes. As is
the case for many reported implementations of nonlocality in
metallic nanostructures [3,5,8,10,12–14], this aspect, related
to the discrete nature of the metal, clearly lies beyond the
semiclassical method we have used. One possible quantum
approach is to employ the time-dependent density-functional
theory within the local-density approximation (TDLDA)[2].
One might expect that deformation of wave functions in
the spill-out region of the density profile and contributions
to the short-range potential at the metal surface arising
from electrostatic and exchange-correlation interactions would
modify the surface electromagnetic field and correspondingly
the decay rates. An alternative framework recently proposed
to incorporate quantum effects is the generalized theory of the
nonlocal optical response of plasmonic nanostructures [3]. In a
hydrodynamiclike approach, the effect of diffusion of induced
charges has been incorporated in addition to the quantum elec-
tronic pressure. This theory captures size-dependent damping
of surface plasmons in small spherical particles (radius
2–6 nm) and reproduces the TDLDA absorption spectra of
nanowire (radius ∼5 nm) dimers with subnanometer gap,
without invoking quantum tunneling and showing that charge
diffusion can be a dominant mechanism behind the nonlocal
optical response [3]. It would be very interesting to apply
this generalized theory to further explore nonlocal effects on
the spontaneous emission of an individual emitter close to a
plasmonic nanowire.

V. CONCLUSION

In this paper we have followed a self-consistent approach
to include spatial dispersion effects on the spontaneous
emission rate of a single dipole source in the proximity of
a metallic nanowire with a hydrodynamic dielectric function.
We calculated separately nonlocal corrections to the decay
rates due to radiative modes, nonradiative losses, and surface
plasmons. The radiative channel for spontaneous emission is
controlled by the dipolar reflection amplitude g1(�,u) and

depends strongly on the frequency. At low frequencies, well
below the resonance of this amplitude, the spatial dispersion
slightly reduces the radiative rate function �rad(�), when
compared to the local result. However, this changes notably
when the frequency is varied across the nonlocal resonance:
The nonlocal rate may become of the order of 100% higher
with respect to the local calculation, at distances � ∼ 1 nm.
The main peak in �rad(�), due to the long-wavelength surface
mode n = 1, is blueshifted as compared to the peak in
the local model and at resonance �nloc

rad (�,�∗) is lower than
�loc

rad(�,�sp) and more so for smaller radii. The nonradiative
channel contribution is determined by the absorption factors
Im an(k‖), n � 1, and presents similar behavior for � � a,
although about four orders of magnitude larger. As a function
of frequency, this contribution displays a spectrum remarkably
different from that of the local theory, not only blueshifted
but with the magnitude and shape modified, with a series
of well-separated peaks related to the characteristics of the
nonlocal dispersion curves of the n 
= 0 surface modes. The
coupling rate into fundamental (n = 0), tightly confined,
surface plasmons displays a different behavior: The overall
size of �pl(�) decreases as frequency varies in the whole range
0 < � < 1, for � � a, with the nonlocal results being larger
than the local ones when the frequency approaches the local
electrostatic limit. On the other hand, for � and a ∼ 1 nm,
where the nonlocal effects are important, the function �pl(�)
decreases for moderate frequencies, but �nloc

pl (�) can be greater
than �loc

pl (�) when the frequency come closer to the local
electrostatic limit. The factor β(�) shows, however, that an
efficient coupling between the dipole and the surface plasmons
of the nanowire is still possible in the presence of spatial
dispersion and that it is manipulable through the frequency
dependence of the electronic response.

It is well known that within hydrodynamic model spill-out
density effects, electron-hole excitations, and surface local-
field effects are among the aspects not included. We hope our
work stimulates more realistic theoretical calculations.
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APPENDIX A: NONLOCAL CALCULATION
OF THE SELF-CONSISTENT POTENTIAL

To derive a self-consistent expression of the potential �2

inside the cylinder, the first step is to choose a complete basis
set of orthogonal functions convenient to the symmetry of the
problem, in terms of which any expandable function f (r) can
be written. For the cylindrical symmetry, a natural choice [26]
is the set of functions Bn(k⊥)Jn(k⊥ρ)einϕeik‖z, where n is an
integer, k‖,⊥ are the components of k = k⊥ρ̂ + k‖ẑ, and Bn is
a radial normalization factor such that B2

n

∫ a

0ρJ 2
n (k⊥ρ)dρ = 1.

At this point two choices are possible to produce an orthogonal
complete set of functions (see [32]). Following [26,29],
we choose [dJn(k⊥ρ)/dρ]ρ=a = 0, which implies a discrete
spectrum of transverse momentum k⊥. Thus, the coefficients
Bn are given by B−2

n (k⊥) = (a2/2)[1 − (n2/k2
⊥a2)]J 2

n (k⊥a).
Therefore, after a Fourier transform, any electromagnetic
quantity f (r,ω) at a specific frequency ω can be expanded
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as

f (ρ,ϕ,z; ω) =
∞∑

n=−∞

∫ ∞

−∞
dk‖

∑
k⊥

Bn(k⊥)fn(k‖,k⊥,ω)

× Jn(k⊥ρ)einϕeik‖z (A1)

with the inverse transformation

fn(k‖,k⊥,ω) = 1

(2π )2
Bn(k⊥)

∫
d3r f (r,ω)

× Jn(k⊥ρ)e−inϕe−ik‖z. (A2)

Accordingly, we write the potential inside the cylinder as

�2(r,ω) =
∞∑

n=−∞

∫ ∞

−∞
dk‖

∑
k⊥

Bn(k⊥)�2,n(k‖,k⊥,ω)

× Jn(k⊥ρ)einϕeik‖z. (A3)

Within the framework of the self-consistent method, the
induced charge density δρ is related to the self-consistent field
�2 through the nonlocal linear response equation

δρ(r,ω) =
∫

d3r ′χ (r,r′,ω)�2(r′,ω), (A4)

where χ is the independent-electron density-density correla-
tion function of the wire. The transformation to the (k‖,k⊥,ω)
representation (A2) leads to

δρn(k,ω) =
∞∑

m=−∞

∫ ∞

−∞
dk′

‖
∑
k′
⊥

χnm(k,k′,ω)�2,m(k′
‖,k

′
⊥,ω),

(A5)
where, assuming cylindrical and translational symmetry,
χnm(k,k′,ω) = χn(k⊥,k′

⊥,ω)δnmδ(k‖ − k′
‖), with

χn(k⊥,k′
⊥,ω) = Bn(k⊥)Bn(k′

⊥)
∫

dρ ρJn(k⊥ρ)

×
∫

dρ ′ρ ′χ (ρ,ρ ′,ω)Jn(k′
⊥ρ ′).

Equation (A5) reduces to

δρn(k‖,k⊥,ω) =
∑
k′
⊥

χn(k⊥,k′
⊥,ω)�2,n(k‖,k′

⊥,ω). (A6)

The self-consistency of the problem is obtained after taking
into account the electron-electron interaction through the
Poisson equation ∇2�2(r,ω) = −4πδρ(r,ω), which becomes,
in the (k,ω) representation (A2),

− 4πδρn(k‖,k⊥,ω) = −(k2
‖ + k2

⊥)�2,n(k‖,k⊥,ω)

+ aBn(k⊥)Jn(k⊥a)�′
2,n(k‖,a,ω), (A7)

where we have used the second Green’s identity and the
Laplacian in cylindrical coordinates; here �2,n(k‖,k⊥,ω) is
the inverse of (A3) [see (A2)],

�2,n(k‖,k⊥,ω)

= 1

(2π )2
Bn(k⊥)

∫
d3r �2(r,ω)Jn(k⊥ρ)e−inϕe−ik‖z (A8)

and

�′
2,n(k‖,a,ω)= 1

(2π )2

∫ 2π

0
dϕ

∫ ∞

−∞
dz

(
∂�2

∂ρ

)
ρ=a

e−inϕe−ik‖z.

(A9)

Combining (A6) and (A7), we obtain∑
k′
⊥

En(k‖,k⊥,k′
⊥,ω)�2,n(k‖,k′

⊥,ω)

= aBn(k⊥)Jn(k⊥a)�′
2,n(k‖,a,ω) (A10)

after introducing the quantity En(k‖,k⊥,k′
⊥,ω) = (k2

‖ +
k2
⊥)δk′

⊥,k⊥ − 4πχn(k⊥,k′
⊥,ω) [24,33].

The expression (A10) allows us to obtain �2,n(k‖,k′
⊥,ω)

and rewrite the self-consistent potential inside the cylinder
[Eq. (A3)] in the form

�2(r,ω) =
∞∑

n=−∞

∫ ∞

−∞
dk‖Fn(k‖,ρ,ω)�′

2,n(k‖,a,ω)einϕeik‖z.

(A11)
Writing �′

2,n(k‖,a,ω) ≡ A(k‖,r′)bn(k‖), the expression (3) is
recovered.

APPENDIX B: EVALUATION
OF THE FUNCTION Fn(k‖,ρ,ω)

The factor [k2ε(k,ω)]−1 in (7) can be written as the sum of
two contributions

1

k2ε(k,ω)
=

(
Q2

Q2 −Q2
p

)
1

k2
−

(
Q2

p

Q2 − Q2
p

)
1

k2 − (
Q2 − Q2

p

) ,

where Q2 = ω(ω + iγ )/β2 and Q2
p = ω2

p/β2. The function
Fn(k‖,ρ,ω) becomes

Fn(k‖,ρ,ω) = a

(
Q2

Q2 − Q2
p

) ∑
k⊥

Bn(k⊥)Jn(k⊥ρ)f1,n(k,ω)

− a

(
Q2

p

Q2 − Q2
p

) ∑
k⊥

Bn(k⊥)Jn(k⊥ρ)f2,n(k,ω)

≡ a

ε2(ω)
f1,n(k‖,ρ,ω)

+ a

ε2(ω)
[ε2(ω) − 1]f2,n(k‖,ρ,ω), (B1)

where

f1,n(k,ω) = Bn(k⊥)Jn(k⊥a)

k2
‖ + k2

⊥
, f2,n(k,ω) = Bn(k⊥)Jn(k⊥a)

κ2 + k2
⊥

,

with κ2 = k2
‖ − (Q2 − Q2

p) and ε2(ω) = 1 − Q2
p/Q2. For a

given value of k‖, there is a (k⊥ − ρ)-transformation relation
between fi,n(k‖,k⊥,ω) and fi,n(k‖,ρ,ω),

fi,n(k‖,k⊥,ω) = Bn(k⊥)
∫ a

0
dρ ρJn(k⊥ρ)fi,n(k‖,ρ,ω),

i = 1,2.
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Thus,

Jn(k⊥a)

p2
i + k2

⊥
=

∫ a

0
dρ ρJn(k⊥ρ)fi,n(ρ,k‖,ω), (B2)

with p1 = k‖ and p2 = κ . To find fi,n(k‖,ρ,ω) we use the
integral∫

dρ ρJn(k⊥ρ)In(piρ)

= piρJn(k⊥ρ)I ′
n(piρ) − k⊥ρIn(piρ)J ′

n(k⊥ρ)

p2
i + k2

⊥
.

Using the fact that k⊥ is such that [J ′
n(k⊥ρ)]ρ=a = 0 holds,∫ a

0
dρ ρJn(k⊥ρ)

(
In(piρ)

piaI ′
n(pia)

)
= Jn(k⊥a)

p2
i + k2

⊥
.

Therefore, according to (B2),

fi,n(k‖,ρ,ω) = In(piρ)

piaI ′
n(pia)

,

which through (B1) leads to the expression (9).
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