
PHYSICAL REVIEW A 95, 063803 (2017)

Frequency-renormalized multipolaron expansion for the quantum Rabi model

Lei Cong,1 Xi-Mei Sun,1 Maoxin Liu,2 Zu-Jian Ying,2,3,* and Hong-Gang Luo1,2,†
1Center for Interdisciplinary Studies and Key Laboratory for Magnetism and Magnetic Materials of the MoE,

Lanzhou University, Lanzhou 730000, China
2Beijing Computational Science Research Center, Beijing 100084, China

3CNR-SPIN, I-84084 Fisciano (Salerno), Italy and Dipartimento di Fisica “E. R. Caianiello,”
Università di Salerno, I-84084 Fisciano (Salerno), Italy

(Received 1 March 2017; published 1 June 2017)

We present a frequency-renormalized multipolaron expansion method to explore the ground state of the
quantum Rabi model (QRM). The main idea is to take polaron as starting point to expand the ground state
of QRM. The polarons are deformed and displaced oscillator states with variationally determined frequency-
renormalization and displacement parameters. This method is an extension of the previously proposed polaron
concept and the coherent state expansion used in the literature, which shows high efficiency in describing
the physics of the QRM. The proposed method is expected to be useful for solving other more complicated
light-matter interaction models.
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I. INTRODUCTION

The quantum Rabi model (QRM) describes a two-level
system interacting with a single-mode bosonic field [1,2].
It plays a fundamental role in many fields of physics, such
as superconducting circuit quantum electrodynamics (QED)
[3–5], quantum optics [6,7], quantum information [8–10],
quantum computation [11], and condensed matter physics [12].

Experimentally, the model has been first realized in the cav-
ity QED systems [13], in which the coupling strength is quite
weak, corresponding to the so-called weak coupling regime.
In this regime, the rotating-wave approximation (RWA) has
been widely employed, which leads to an analytically solvable
model, namely, the Jaynes-Cummings (JC) model [14]. The JC
model is a basic model in quantum optics which is successful
in understanding a range of experimental phenomena, such
as the well-known quantum Rabi oscillation [15] and vacuum
Rabi mode splitting [16].

Recently, with the advancement of quantum technology
[17,18], the so-called strong coupling [4], ultrastrong coupling
[3,19–21], and even the deep strong coupling [22] regimes
have been experimentally realized in many devices. As a
result, the RWA widely used in the literature is no longer
valid in these strongly coupling regimes, and thus a full QRM
has to be reconsidered in order to describe well the physics
observed in these strongly coupling regimes.

It turns out that, despite its simple form, it is not an
easy task to fully solve and understand the QRM. Therefore,
many approximate methods including adiabatic approximation
[23], general rotating-wave approximation (GRWA) [24] and
its extensions [25–27], unitary transformation [28], and the
variational technique [29], to name just a few, have been
proposed. However, it has been shown that each of these
approximate methods may be valid in certain limited regime,
and an approximate method which is valid in whole parameter
regime of the model is still favorable and deserves efforts
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to develop and improve. In 2011, a remarkable mathematical
progress on the integrability of the QRM has been obtained
by Braak [30] and thus the exact spectra of the QRM have
been determined in an analytical way. The exact spectra of the
QRM has also been formulated by using Bogoliubov operator
technique [31]. However, in order to explore the full physics
of the QRM, it is obviously not enough to only know the
spectra of the model; one still needs to know exactly the
wave function of the model. Therefore, it is still important
to explore a simple and straightforward method to study the
QRM. On the one hand, this method should be valid in the
whole parameter regime of the QRM; on the other hand, it
should also be convenient to formulate the wave function of
the QRM. This is our motivation of the present work.

Very recently, we have introduced a trial wave function
based on the concept of polaron and antipolaron picture in
order to explore the phase diagram of the QRM [32]. An
important feature of this trial wave function is that it provides
a unified framework to accurately describe the physics of the
QRM both in the weak and strong coupling regimes. However,
in the crossover regime, some errors relatively are still not
negligible, particularly at a low oscillator frequency, as shown
in Fig. 1. Therefore, some improvements are still desirable
in order to capture more accurate physics in the crossover
regime.

How to further improve the calculation accuracy in the
crossover regime, particularly, in the low oscillator frequency
case? One notes that a variational coherent-state expansion
method has been proposed by Bera et al. [33,34] in the study
of the spin-boson model. It was shown that as more polarons
are used, the result becomes more accurate. Following the idea
of the multipolaron expansion, here we propose a variational
frequency-renormalized multipolaron expansion method to
improve the performance of the trial wave function based on
the polaron and antipolaron picture. The key difference is that
in contrast to Bera et al.’s multipolaron expansion, we intro-
duce the frequency renormalization feature. As shown later, the
frequency renormalization introduced shows a high efficiency
in calculating the energy and wave function of the QRM.
Therefore, it is expected that our frequency-renormalized
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FIG. 1. Discrepancy of the ground-state energy obtained by the
polaron and antipolaron trial wave function Egs [32] in comparison
to the exact diagonalization (ED) results EED, which is given by

�E/ω = (Egs − EED)/ω. Here gc =
√

ω2 +
√

ω4 + g4
c0

[32] and
gc0 = √

ω�/2.

multipolaron expansion method is useful in solving more
complicated models related to light-matter interaction.

The paper is organized as follows. In Sec. II, the QRM is
introduced. In Sec. III, we construct our variational method
based on the frequency-renormalized multipolaron expansion
as the trial ground-state wave function. In Sec. IV, we present
the results based on the proposed method, and compare
them with those obtained by the multipolaron expansion
without introducing frequency-renormalized feature. Section
V is devoted to a brief conclusion.

II. THE QRM MODEL

Following the notation in Refs. [8,25,35–38], the Hamilto-
nian of the QRM model reads (h̄ = m = 1)

H = �

2
σx + ωâ†â + gσz(â

† + â), (1)

where � is the qubit energy level splitting, σx,z is the Pauli
matrix to describe the qubit, â† and â are the bosonic creation
and annihilation operators, respectively, of the bosonic mode
with frequency ω, and g denotes the coupling strength between
the qubit and the bosonic mode.

In terms of the quantum harmonic oscillator with dimen-
sionless formalism â† = (x̂ − ip̂)/

√
2, â = (x̂ + ip̂)/

√
2,

where x̂ = x and p̂ = −i ∂
∂x

are the position and momentum
operators respectively, the model can be rewritten as [36]

H =
∑
Sz=±

(
hSz |Sz〉〈Sz| + �

2
|Sz〉〈S̄z|

)
+ ε0, (2)

where +(−) labels the up (down) level, corresponding to the
spin up (down) in the z direction, S̄z = −Sz.h

± = ω(p̂2 +
v±)/2, with v± = (x̂ ± g′)2 which defines the bare potential,
ε0 = −ω(g′2 + 1)/2 is a constant, and g′ = √

2g/ω. For
simplicity, we take � = 1 as the units of energy here and
hereafter.

III. FREQUENCY-RENORMALIZED MULTIPOLARON
EXPANSION METHOD

Consider the parity operator �= σxe
a†a; one has [H,�]=0.

Such aZ2 symmetry leads to a decomposition of the state space
into just two subspaces with odd and even parity, respectively.
Since the ground state has an odd parity, one takes the trial
wave function of the QRM in the position representation as

|G〉 = 1√
2

(	+(x)|+z〉 − 	−(x)|−z〉), (3)

where 	± is the wave function associated with the spin state
|±z〉, and we have

	+(x) = 	−(−x). (4)

With the ground-state wave function |G〉, the Schrödinger
equation becomes 1

2ω(p̂2 + v± + δv±)	± = E	±, where

δv± = −�
ω

	∓
	± is an additional potential induced by the tunnel-

ing between two levels, and E is the ground-state energy. The
additional potential will deform the bare potential and most
importantly it will create a subwell in the opposite direction of
the bare potential v±. As a result, such an effective potential
exhibits a double-well structure for appropriate parameter
regimes [32,39]. Based on the polaron picture [32–34], the
wave functions 	± are expanded as

	±(x) =
N∑

n=1

Cnϕ
±
n (x), (5)

where Cn is the coefficient and N is the number of polaron
used. Here ϕ±

n (x) = φ0(ξnω,x±ζng
′) denotes the nth polaron

which is given by deforming oscillator ground-state wave func-
tion φ0(ω,x) with the frequency renormalization parameter ξn

and shifted position parameter ζn. As a result, one obtains

ϕ±
n (x) = ( ξn

π
)

1
4 e− (x±ζng′)2ξn

2 .
Thus, Eq. (3) can be rewritten as

|G〉 = 1√
2

N∑
n=1

Cn(φ0(ξnω,x + ζng
′)|+z〉

−φ0(ξnω,x − ζng
′)|−z〉), (6)

which is the starting point of the present work. Due to the
deformed polaron introduced, we call Eq. (6) as frequency-
renormalized multipolaron expansion (FR-MPE). Actually, if
one takes N = 2, Eq. (6) recovers the previous polaron and
antipolaron wave function which has been used to explore
the ground-state phase diagram of the Rabi model [32].
On the other hand, if one takes ξn = 1, i.e., the frequency-
renormalization factor is not considered, Eq. (6) is the single-
mode version of the coherent state expansion used in the study
of the spin-boson model [33,34], since a coherent state is a
displaced oscillator state in the x̂ representation.

The variational parameters introduced in Eq. (6), i.e., Cn, ξn

and ζn (n = 1, . . . ,N), can be determined by minimizing
the ground-state energy EG = 〈G|H |G〉 (see the appendix
for a detailed derivation), subject to the constraint of wave-
function normalization 〈G|G〉 = 1, under which the number of
variational parameters will be 3×N − 1. In order to determine
the variational parameters, we first adopt simulated annealing
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FIG. 2. Ground-state physical quantities as functions of the
coupling strength g/gc. (a) The ground-state energy. (b) The spin
polarization 〈σx〉. (c) The correlation function 〈σz(a+ + a)〉. (d)
The mean photon number 〈a+a〉. The red lines are the exact
diagonalization results taken as benchmarks, and the blue circles
are our results obtained by our frequency-renormalized multipolaron
expansion given by Eq. (6). Here we take ω = 0.01 and N = 4.

algorithm [40,41] to search the rough values of the variational
parameters. Then we use pattern search algorithm [42,43] to
refine these variational parameter values in order to further
minimize the ground-state energy. The combination of these
two algorithms is found to be sufficient to determine the
variational parameters with high efficiency and high precision.

IV. NUMERICAL RESULTS AND DISCUSSION

A. The result with N = 4

First of all, we present some results to show the high
precision of our method. As shown in Fig. 1, as the oscillator
frequency is lower, the error near gc is larger. Moreover, the

main error is located around gc. Here gc =
√

ω2 +
√

ω4 + g4
c0

,
denoting a coupling strength separating the quadpolaron and
bipolaron regimes [32] for finite oscillator frequency. In the
low-frequency limit, namely, ω/� → 0, gc approaches gc0,
a commonly used value in the literature [8,44]. Therefore,
here we consider the case of ω = 0.01 and take N = 4.
Meanwhile, we compare the obtained results with those with
numerical exact diagonalization. In Fig. 2 we show various
physical quantities including (a) the ground-state energy, (b)
the spin polarization 〈σx〉, (c) the correlation 〈σz(a† + a)〉,
and (d) the mean photon number 〈a†a〉 as a function of the
coupling strength. Due to the aforementioned reason, hereafter
we limit ourself to the region around gc. It is found that the
agreement is quite good, which will be further discussed in
the next subsection. This result confirms the high precision
of our method, even in the low-oscillator-frequency regime.
In addition, our method also exhibits high efficiency since
only two pairs of polaron and antipolaron (N = 4) have been
considered here, which indicates that the deformed polaron
picture [32] is a good starting point to capture the physics of
the QRM.
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FIG. 3. Comparison of errors of various physical quantities
between N = 4 and N = 2. The yellow lines are the result of
N = 2 and the dash-dotted lines represent the result of N = 4.
(a) Error in the ground-state energy with respect to the ED result
�E/ω = (E − EED)/ω. (b) Error in the tunneling strength �〈σx〉 =
〈σx〉 − 〈σx〉ED. (c) Error in the correlation function �〈σz(a+ + a)〉 =
〈σz(a+ + a)〉 − 〈σz(a+ + a)〉ED. (d) Error in the mean photon number
�〈a+a〉 = 〈a+a〉 − 〈a+a〉ED. Here we take ω = 0.01.

B. The high efficiency of the frequency-renormalized
multipolaron expansion

In order to confirm the high efficiency of the frequency-
renormalized multipolaron expansion method, we compare
the result with N = 4 with that of N = 2 with ω = 0.01 in
Fig. 3. As also mentioned above, the case of N = 2 recovers
the previous polaron and antipolaron picture [32]. From Fig. 3
it is noted that the results for N = 4 have a vanishingly small
error in comparison to that of N = 2. Technically, we just
increase an additional pair of polaron and antipolaron beyond
that of N = 2, leading to a dramatic improvement, which
shows the high efficiency of the polaron and antipolaron basis.
Physically, it is not difficult to understand why the polaron
and antipolaron basis is so high efficient. This is because the
polaron and antipolaron, as basic ingredients in describing the
ground-state wave function of the QRM, are able to capture
the essential physics of the model. The antipolaron component
originates naturally from the tunneling feature [32,36] of the
QRM. By the same reason, the additional pair of polaron and
antipolaron also originate from the high-order effect of the
tunneling feature. This point is more clear in the discussion of
the ground-state wave function below.

Figure 4 shows the ground-state wave function of the QRM
for N = 4 and its polaron components. As a comparison, we
also present the result for N = 2. For simplicity, we only
provide the 	+ component, and the 	− has a similar behavior
due to the odd parity. From Fig. 4(a), although the case of N =
2 captures the nature of the wave-packet separation for g/gc =
1.05, the error from the numerical exact result is still obvious,
as shown in Fig. 4(c) as yellow dashed line. In particular, in
the region around x = 0, the error is more obvious. This is
because that after the wave packet becomes separated, a pair
of polaron and antipolaron is not sufficient to describe the
region away from the positions of the polaron and antipolaron,
for example, the region of x = 0. Therefore, according to the
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expansion with N = 2 and N = 4. The numerical exact result is taken
as the benchmark. (a) NFR−MPE = 2. (b) NFR−MPE = 4. (c) Error of 	+

in comparison to the numerical exact one. �	+ = 	+
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ED.
The other parameters are g/gc = 1.05 and ω = 0.01.

idea of the frequency-renormalized multipolaron expansion,
one increases an additional pair of polaron and antipolaron,
and not only the region away from the positions of the polaron
and antipolaron but the whole wave function has a vanishing
small error in comparison with the exact one, as shown in
Fig. 4(c) by the blue dash-dotted line. This result indicates that
the frequency-renormalized multipolaron expansion is highly
efficient in calculating the wave function of the QRM and as a
result is able to calculate accurately the physical observables,
as shown in Fig. 3.

C. The importance of the frequency renormalization

Based on the scheme of multipolaron expansion introduced
by Bera et al. in their coherent-state expansion (CSE) method
[33,34], one of the important features of our method is
introduction of the frequency renormalization feature. The
physical background of the introduction of the frequency
renormalization is the change of the effective potentials
induced by the tunneling between these two energy levels,
which is the origin of the antipolaron. The existence of the
effective potentials would, of course, modify the frequency
of the oscillator states in the QRM. In order to show the
importance of the frequency renormalization, in the following
we compare our method with the frequency renormalization
with the simple multipolaron expansion without the frequency
renormalization. The latter is called the CSE method below,
which has been used to study the spin-boson model. Here we
employ it to the QRM.
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FIG. 5. Comparison of the ground-state wave functions obtained
by the multipolaron expansion with and without frequency renor-
malization with the numerical exact result for N = 2. The other
parameters are g/gc = 1.05 and ω = 0.01.

First, we consider the ground-state wave function for the
	+ component obtained by these two methods, as shown in
Fig. 5, and also present the numerical exact wave function
for comparison. It is quite obvious that the result with the
frequency renormalization agrees much better with the exact
one than that without the frequency renormalization. The
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FIG. 6. Comparison of the ground-state energy and the other
physical observables obtained by the multipolaron expansion method
with and without frequency renormalization. Left column: compari-
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comparison indicates that the frequency renormalization is
indeed an important feature in describing the ground-state
physics of the QRM. This feature is even more important than
simply increasing the number of the polaron and antipolaron.
This can be clearly seen from Fig. 6, showing the comparison
of the ground-state energy and the other physical observ-
ables between the results with frequency renormalization for
NFR−MPE = 2,4 and without frequency renormalization for
NCSE = 4,6, respectively. Obviously, our method has much
higher efficiency than that without the frequency renormaliza-
tion. Moreover, the corresponding variational parameters in
our scheme are less than or equal to those of the CSE.

V. CONCLUSIONS

Based on the polaron and antipolaron picture, we proposed
a frequency renormalization multipolaron expansion method
to improve significantly the ground-state wave function of
QRM, as a result, the ground-state energy and other physical
quantities have also been significantly improved, in particular,
near the crossover region. In comparison to the coherent state
expansion given by Bera et al. [33,34], our method shows
higher efficiency, in which the frequency renormalization
plays an important role. Physical origin of the frequency
renormalization is due to the additional potential induced
by the tunneling between two energy levels. This method
can be applied to other more complicated quantum models
like the spin-boson model [33,34], multiqubit QRM [45,46],
anisotropic QRM [47], and biased or asymmetric Rabi model
[48], and so on. Further works are in progress.
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APPENDIX: THE GROUND STATE ENERGY OF FR-MPE

In this appendix, we present the main steps to get the
ground-state energy. The ground state |G〉 of FR-MPE is

|G〉 = 1√
2

N∑
n=1

Cn(ϕ+
n |+z〉 − ϕ−

n |−z〉). (A1)

The ground-state energy of FR-MPE is given by

EFR−MPE = 〈G|H |G〉

= 1

2

N∑
n,m

CnCm

[
(〈ϕ+

n |h+|ϕ+
m〉 + 〈ϕ−

n |h−|ϕ−
m〉)

− �

2
(〈ϕ+

n |ϕ−
m〉 + 〈ϕ−

n |ϕ+
m〉)

]
− 1

2
ω(g′2 + 1)

=
N∑

n,m

CnCm〈ϕ+
n |h+|ϕ+

m〉 − �

2

N∑
n,m

〈ϕ+
n |ϕ−

m〉

− 1

2
ω(g′2 + 1). (A2)

1. Calculation of each term

For the first term in Eq. (A2)

h+
nm = 〈ϕ+

n |h+|ϕ+
m〉

= 1

2
ω〈ϕ+

n |[p̂2 + (x̂ + g′)2]|ϕ+
m〉

= 1

2
ω〈ϕ+

n |
(
− ∂2

∂x2
+x2+ 2xg′ + g′2

)
|ϕ+

m〉. (A3)

For simplicity, we have assumed the unit h̄ = m = 1.
We first give the first term in Eq. (A3):

〈ϕ+
n |

(
− ∂2

∂x2

)
|ϕ+

m〉 = −〈ϕ+
n |(4D2x2 + 4DEx

+E2 + 2 D)|ϕ+
m〉, (A4)

where the coefficients D and E are introduced for the
simplicity of the formulation; they are defined as

D = − 1
2ξm; E = −g′ξmζm. (A5)

So, the expression of Eq. (A3) is

h+
nm = 1

2ω〈ϕ+
n |[(1 − 4D2)x2 + (2g′ − 4DE)x

−E2 − 2D + g′2]|ϕ+
m〉, (A6)

in which

Snm = 〈ϕ+
n (x)|ϕ+

m(x)〉

=
√

2

[
ξnξm

(ξn + ξm)2

] 1
4

e
(− (ζn−ζm )2g′2ξnξm

2(ξn+ξm) )
, (A7)

〈x̂〉nm = 〈ϕ+
n (x)|x̂|ϕ+

m(x)〉

= Snm

−ξmζm − ξnζn

ξn + ξm

g′, (A8)

and

〈x̂2〉nm = 〈ϕ+
n |x̂2|ϕ+

m〉

= Snm

{
1

ξn + ξm

+
[

(ξmζm + ξnζn)g′

ξn + ξm

]2}
. (A9)

Now, we can get the first term in Eq. (A2) completely.
For the second term in Eq. (A2),

Snm = 〈ϕ+
n |ϕ−

m〉 = 〈ϕ+
n (x)|ϕ+

m(−x)〉

=
√

2

[
ξnξm

(ξn + ξm)2

] 1
4

e
(− (ζn+ζm)2g′2ξnξm

2(ξn+ξm) )
, (A10)

so we finally can get the ground-state energy.

2. Normalization condition

Besides the above formulation, we still have the normaliza-
tion condition which describes the relationships between the
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parameters:

〈G|H |G〉 = 1

2

N∑
n,m

CnCm(〈ϕ+
n |ϕ+

m〉 + 〈ϕ−
n |ϕ−

m〉)

=
N∑

n,m

CnCm(〈ϕ+
n |ϕ+

m〉) = 1. (A11)

The derivations of the ground-state energies of CSE and
FR-MPE are nearly the same, since in the x̂ representation, a
coherent state is a displaced ground state of the oscillator.
We can get the CSE result by simply setting frequency
renormalization factor ξ = 1 in FR-MPE. So here we present
the derivation of FR-MPE result only.
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