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To date, investigations of carrier-envelope-phase (CEP)-dependent effects have been limited to optical pulses
with few cycles and high intensity and have not been reported for other types of pulses. Optomechanical systems
are shown to have the potential to go beyond these limits. We present an approach using optomechanics to
extend the concept of the traditional CEP in the few-cycle regime to mechanical pulses and develop a two-step
model to give a physical insight. By adding an auxiliary continuous optical field, we show that a CEP-dependent
effect appears even in the multicycle regime of mechanical pulses. We obtain the approximated analytical
solutions providing full understanding for these optomechanically induced CEP-dependent effects. In addition,
our findings show that one can draw on the optomechanical interaction to revive the CEP-dependent effects on
optical pulses with an arbitrary number of cycles and without specific intensity requirements. The effects of CEP,
broadly extended to encompass few- and multicycle optical and mechanical pulses, may stimulate a variety of
applications in the preparation of a CEP-stabilized pulse, the generation of ultrasonic pulses with a desired shape,
the linear manipulation of optical combs, and more.
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I. INTRODUCTION

The simple premises behind an optomechanical system
(OMS), where a mechanical resonator interacts with an optical
field via radiation pressure force, offer untold opportunities
that were even hard to imagine until recent years. The rapid
development of optical control in optomechanical devices
[1–4] brings applications of OMS to the cutting edge of
metrology, such as precision measurements of acceleration
[5], magnetic fields [6], weak forces [7], and electrical
charges [8]. New frontiers are also targeted for position
measurements, with pioneering research aiming to push the
precision towards the standard quantum limit [9]. In fact, the
applications of OMSs in the field of metrology are too many
to be listed comprehensively, and there is always potential
for further extension to other significant physical quantities.
The carrier-envelope phase (CEP) of a given pulse is one
example.

The CEP is the phase between the envelope of a pulse
and the carrier frequency at which the pulse is modulated.
In the field of ultrafast optics, the rapid progress of CEP
measurement techniques has made it possible to fully ma-
nipulate laser pulses, paving the way to numerous novel
physical phenomena and applications. Some of these include,
for example, super-high-resolution measurements on atomic
and molecular systems [10], efficient tomography of molecular
orbitals [11], and generation of intensive femtosecond electron
beams [12–14]. Despite their manifest popularity, so far
CEP-dependent effects have mostly been limited to pulses
with few oscillations within the envelope (few-cycle pulses),
and the measurement techniques involved result in impossible
for pulses whose intensity is too low to excite tunneling
ionization [15,16]. Sparked by the growing importance of
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CEP measurements, recent works extended the exploration of
CEP effects towards multicycle [17] and low-intensity [15]
regimes, finding interesting applications in the generation
of CEP-stabilized ultrashort laser pulses [18,19] and the
coherent control of molecular and electron collisions [20]. The
CEP-dependent effects of laser pulses with both an arbitrary
number of cycles and arbitrary intensity are, nevertheless, still
an open issue that needs to be explored.

It is also worth noting that almost all the current research on
CEPs is focused only on pulses of an optical nature, missing the
potential significance of CEPs for other types of pulses. The
generation and manipulation of ultrasonic pulses are currently
topics of intense research [21–24], accounting for a number of
recent achievements such as superresolution imaging [25,26],
control of microfluidics [27], and coherent magnetization
precession [28]. Remarkable advancements in the generation,
detection, and control of magnetic [29] and electric [30,31]
pulses are also pushing for the development of new appli-
cations [29,32,33]. In view of the compelling demand, an
extension of CEP measurement and control techniques to new
types of pulses is very appealing. From this perspective, the
diversity of experimental setups in optomechanics [34] makes
an OMS become an incredibly useful platform that can act
as a transducer between different types of pulses generated
in various systems. For example, ultrasonic pulses can be
transformed into mechanical pulses by the acoustic radiation
pressure force generated by the ultrasound [27], while electric
or magnetic pulses can be changed to mechanical actuation by
piezoelectric [35] or piezomagnetic effects. This indicates that,
in principle, one can focus the study of CEP measurements
and control of a pulse on a generic mechanical pulse while at
the same time benefiting from the profusion of applications
associated with pulses of different natures.

In this work, we present a model addressing the CEP-
dependent effects for both mechanical pulses and optical
pulses using optomechanics. Even though several theoretical
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pioneering works [36–39] in the field of ultrafast optics have
qualitatively and quantitatively described the CEP-dependent
effects appearing in atoms or molecules, the analytical descrip-
tion and physical insight of CEP-dependent effects emerging
in an optomechanical system are still not well understood. We
set down the approximated analytical results that are strongly
supported by accurate numerical simulations, leading us
towards a clear physical picture of optomechanically induced
CEP-dependent effects. In the resolved-sideband regime where
the resonance frequency of the mechanical oscillator is much
larger than the linewidth of the cavity, our analysis starts
from few-cycle mechanical pulses, showing that the plateau
width (PW) of the cavity output spectrum directly depends
on the CEP. In the multicycle regime of mechanical pulses,
where the traditional CEP-dependent effects are washed out,
we introduce an auxiliary continuous field to reveal a CEP-
dependent effect: the plateau height difference (PHD) between
the Stokes and the anti-Stokes sidebands in the spectrum. The
outcomes are easily adapted to the case of optical pulses with
an arbitrary number of cycles and without specific intensity
requirements. As a consequence, CEP measurements are
extended to the domain of ultraweak, multicycle optical pulses,
as well as all other types of pulses that an OMS can interact
with. Along lines similar to applications of the CEP of optical
pulses, the CEP measurement of mechanical pulses has the
potential to be applied to shape detection and manipulation of
ultrasonic, electric, or magnetic pulses.

II. CEP-DEPENDENT EFFECT
IN THE FEW-CYCLE REGIME

We consider a cavity OMS [see Fig. 1(a)] consisting of a
fixed mirror and a movable mirror (i.e., mechanical resonator),
with characteristics similar to a recent pioneering experimental
scheme [40]. The system is driven by a continuous optical
input with frequency ωl and an external mechanical pulse with
carrier frequency ωm, and its Hamiltonian in the rotating frame

FIG. 1. (a) Schematic diagram of the optomechanical system.
(b) Different shapes of pulsed mechanical forces depending on the
CEP. We set A = 1 μN and tp = 0.2 μs. (c) The dynamical evolution
of a mechanical pulse and the corresponding mechanical displace-
ment. The other relevant parameters used in this work are borrowed
from a recent state-of-the-art experiment [40]: γm = 2π × 140 Hz,
κ = 2π × 215 kHz, ωm = 2π × 947 kHz, m = 145 ng, g0 = 2π ×
2.7 Hz, G = −g0/

√
h̄/(mωm).

of ωl is

H =
(

p̂2

2m
+ mω2

mq̂2

2

)
− h̄�ĉ†ĉ + h̄Gq̂ĉ†ĉ + Hmd + Hod,

(1)

with Hmd and Hod being, respectively, the mechanical drive
and optical drive, which are chosen as in this section: Hmd =
A exp[−2 ln 2( t−t0

tp
)2] cos(ωmt + φCEP)q̂ and Hod = ih̄(εl ĉ

† −
H.c.). Here, q̂ and p̂ are, respectively, the position and
momentum operators of a mechanical resonator of mass m,
and ĉ (ĉ†) is the bosonic annihilation (creation) operator of
the optical mode. For simplicity, we consider the case that
the mechanical pulse matches the mode of the mechanical
resonator by assuming the mechanical eigenfrequency to be
ωm. The parameter � = ωl − ωc is the cavity detuning (where
ωc denotes the cavity resonant frequency), and κ is the cavity
decay rate. The input field inside the cavity εl is obtained using
εl = √

2κPl/(h̄ωl), with Pl being the input laser power. The
term h̄Gq̂ĉ†ĉ describes the optomechanical interaction, with
the coupling strength G. For the input pulse, we consider, in a
representative form, a Gaussian envelope such as the ultrasonic
pulse discussed in Ref. [41], with A being the amplitude,
tp being the FWHM, and t0 being the arrival time of the
center point, set to 20 μs in all the following simulations. The
parameter φCEP represents the carrier-envelope phase, whose
importance in determining the pulse shape [see Fig. 1(b)] is
essential for the control of a few-cycle pulse. In obtaining
the dynamics from the Hamiltonian we ignore the quantum
fluctuations [1,42,43] and consider the classical Langevin
equations as follows by adding the mechanical (γm) and optical
(κ) dissipation terms:

q̈ + γmq̇ + ω2
mq

= − h̄G

m
|c|2 + A

m
e−β2(t−t0)2

cos(ωmt + φCEP), (2)

ċ = −[κ + i(−� + Gq)]c + εl, (3)

where β = √
2 ln 2/tp. Since both differential equations are

nonlinear, an analytical solution to both is nontrivial. However,
we shall derive the approximated analytical solutions if
we consider a strong-drive approximation, where the drive
to the mechanical motion is typically much more intense than
the effect of the radiation pressure force, and thus we are
able to drop the term − h̄G

m
|c|2 from Eq. (2). Ignoring the

effects of light on the mechanics does not completely eliminate
the optomechanical interaction: the position of the mirror still
exerts its influence on the cavity field, acting as a “transducer”
for the mechanical pulse. For the subsequent analysis we focus
on two time windows, one during which the pulse is interacting
with the system and the other starting right after the end of
the mechanical pulse and ending before the damping of the
displacement becomes appreciable.

We start the analysis from the later time window, in which
strong-drive and negligible-damping approximations are con-
sidered. The relatively small impact of the approximations is
shown in the numerical results [see Fig. 1(c)] for the dynamics
of the system driven by a pulse of even a micronewton.
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FIG. 2. (a) and (b) The optical power spectrum obtained from
the analytical solution of Eq. (4) (crosses) compared with the
accurate numerical solution of Eqs. (2) and (3) (lines). The relevant
parameters are set to Pl = 10 mW, A = 200 μN, and tp = 20 ns.
(c) The plateau width (PW) as a function of CEP. The lines and the
crosses indicate the PW obtained from the numerical and analytical
solutions, respectively, as before. The circles are obtained from the
more concise definition of Eq. (5). (d) The CEP dependence of
maximum mechanical displacement. (e) The numerical results for
the linear relation of the PW to the amplitude of the input mechanical
pulse.

The spectrum for the cavity field is then given as follows
(detailed calculations are available in the Appendixes):

cN (ωm) = εle
iNφm

+∞∑
n=−∞

Jn(α)JN+n(α)

i(nωm − �) + κ
, (4)

where α = Gq0/ωm, N symbolizes the order of the optical
sidebands, and Jn(α) is the Bessel function of the first kind,
with n for its integer order. The parameters q0 and φm

are the amplitude and the initial phase of the mechanical
oscillation, respectively, and their values are extracted from
numerical results. Given the property of the Bessel function∑+∞

n=−∞ Jn(α)JN+n(α) = δN0 (where δN0 is the Kronecker
delta function), it is shown from Eq. (4) that cN (ωm)(N �= 0)
goes to zero when the cavity decay κ is much larger than the
mechanical frequency ωm. This means that the higher-order
sidebands and associated effects are absent in such a regime,
and thus our following work will be focused only on the
regime where κ � ωm, i.e., the resolved-sideband regime.
From now on we choose � = −ωm and consider the power
spectrum of the transmitted field to avoid the interference
between the output field and the input field by applying
the input-output relation: cout

N (ωm) = √
2κcN (ωm). The output

power spectrum is shown in Figs. 2(a) and 2(b), in which a
plateau is formed by the emergence of high-order sidebands
[44,45] that ends swiftly at a specific cutoff frequency. The
PW is a convenient quantity to consider for a characterization
of the system’s conditions. We define it from the difference
between the highest and lowest frequencies corresponding
to the sidebands whose amplitudes are greater than half of
the maximum value, determining the cutoff frequencies of
the anti-Stokes and Stokes sidebands, respectively. When the
mechanical pulse contains only a few cycles, the PW oscillates

periodically with period π as the value of CEP changes [see
Fig. 2(c)]. This is a clear CEP-dependent effect that can be
utilized to infer the shape of the pulse and prompt the necessary
actions for its control. Figure 2(c) shows in particular that the
CEP-dependent effect is weakened as the temporal width of the
pulse tp becomes larger (i.e., the pulse contains more cycles)
and ultimately vanishes when tp is large enough. We note that
the Bessel function Jn(α) decays very quickly when n > α.
Applying this property to Eq. (4), we see that higher-order
terms in the series reduce to zero rapidly once N > α. This
means that the cutoff frequencies in the output power spectrum
can be approximated to ±αωm. We can therefore redefine the
PW � in a more concise equation:

� = 2αωm = 2Gq0. (5)

As seen in the overlap of the PW traces in Fig. 2(c), this new
definition distinctly agrees with the previous one. Equation (5)
reminds us that it is essential to fully understand the behaviors
of the maximum displacement q0 for the sake of obtaining the
physical picture of the CEP-dependent effect. For this reason,
in the following discussions we focus on the analysis of the
mechanical spectrum in the time window during which the
pulse drives the system.

By dropping the radiation pressure term as in the previous
calculation and considering the Fourier transform of q(t)
[q(t) = ∫ +∞

−∞ q(ω)eiωtdω], we give the displacement spectrum
(see the Appendixes):

|q(ω)|2 =
∣∣∣∣ A

4β
√

π

∣∣∣∣
2 1

|χ (ω)|2
(
e
− (ω−ωm)2

2β2 + e
− (ω+ωm)2

2β2

+ 2e
− ω2+ω2

m

2β2 cos[2(ωmt0 + φCEP)]
)
, (6)

where χ (ω) = [m(ω2
m − ω2 + iγmω)]−1 is the susceptibility

of the mechanical oscillator. This spectrum shows that the
maximum values of the mechanical displacement are found
at the mechanical sidebands, i.e., ω ≈ ωm and ω ≈ −ωm.
The term including the CEP in Eq. (A15) reduces to
2 exp(−ω2

m/β2) cos[2(ωmt0 + φCEP)] if one looks at these two
mechanical sidebands. Since the PW is linearly related to
the maximum mechanical displacement [see Eq. (5)], such
a term indicates that both are modulated periodically by the
CEP with period π when the parameter β is much greater
than ωm (i.e., tp � √

2 ln 2/ωm). Moreover, the dependence
of the PW (and maximum displacement) on the CEP fades
with decreasing β (increasing tp), and such dependence
completely dies out when β � ωm. These features agree very
well with previous discussions about CEP-dependent effects
(see Fig. 2). Furthermore, we find that the numerical result
for the maximum mechanical displacement as a function
of CEP [see Fig. 2(d)] shows the same dynamics as the
analytical results. We therefore identify the regime where
β � ωm (pulse contains few cycles) as the few-cycle regime
and the regime where β � ωm (pulse contains many cycles)
as the multicycle regime. We note from Eq. (A15) that the
mechanical displacement linearly depends on the amplitude
of the mechanical pulse (i.e., A), implying that the PW is also
proportional to A [see Fig. 2(e)]. Such dependence provides
a potential and concise way to linearly manipulate the line
number of an optical comb. Since the line spacing of the optical
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comb observed in Figs. 2(a) and 2(b) is determined by the
mechanical frequency (the value is taken from an experiment
to be 2π × 947 kHz [40]), it is, in principle, possible to beat
the challenge of narrow-line spacing [46]. Current experiments
in optomechanics have achieved mechanical frequencies lower
than kilohertz [34,47], meaning that this technique would open
access to new regimes of optical comb manipulation.

Based upon the analysis above, we devise a two-step
interpretation of the appearance of high-order sidebands
induced in the OMS: (i) an intense mechanical pulse is
sent to the mechanical resonator to drive high-amplitude
oscillations; (ii) the strong oscillations of the mechanical
resonator induce Stokes and anti-Stokes scattering of the
cavity field. The requirement for the first step is embodied
in Eq. (A15), according to which the higher-order sidebands
forming the plateau can be excited only when α � 1, or,
equivalently, q0 � ωm/G. The second step is represented by
Eq. (4), describing how both the Stokes and anti-Stokes fields
build up the power spectrum. The two-step model can also
be used to obtain physical insight into the appearance of
CEP-dependent effects. The first step introduces an intense
mechanical pulse to drive the oscillations of the mechanical
resonator. Since the amplitude of the oscillations depends
on the CEP [see Eq. (A15) and Fig. 2(b)], one can thus
infer a similar dependence on the optical spectrum of the
cavity, thanks to Eq. (5). The second step relates to the
appearance of sidebands on the optical output spectrum due to
the impact of the modulation from the mechanical oscillation.
Observation of the PW of the output power spectrum will
therefore give, thanks to Eq. (5), a direct measurement of the
CEP.

III. CEP-DEPENDENT EFFECT
IN THE MULTICYCLE REGIME

As mentioned earlier, traditional CEP-dependent effects are
weakened in the presence of multiple cycles. In this section,
we demonstrate how the inclusion of an auxiliary continuous
optical field in the system lifts any requirement linked to
the number of cycles for observing CEP-dependent effects.
We consider the following inputs to the OMS: a mechanical
pulse containing a large number of cycles, one continuous red-
detuned laser, and another continuous auxiliary laser of a dif-
ferent wavelength. The Hamiltonian for the optical drives [see
Eq. (1)] reads Hod = ih̄[(εl + εae

−i�t−φo )ĉ† − H.c.], where
εa is determined by the input power of the auxiliary laser
using εa = √

2κPa/(h̄ωa); � is its optical frequency in the
rotating frame of ωl , i.e., � = ωa − ωl (from here, we choose
� = lωm, with l = ±0,1,2, . . . ); and φo is the phase difference
of the two lasers at t = 0. Considering approximations and
calculation methods similar to those in the previous section
(see the Appendixes), we obtain the cavity-field spectrum:

cN (ωm)

= eiNφm

+∞∑
n=−∞

[εlJn(α) + εae
−i(φa−lφm)Jn+l(α)]JN+n(α)

i(n + 1)ωm + κ
.

(7)

FIG. 3. (a) and (b) The output power spectrum from Eq. (7)
(crosses) compared with its numerical results (lines) under no
approximation. The parameters are set to Pl = 2 mW, Pa = 3 mW,
A = 6 μN, and β = 0.2ωm. (c) and (d) Dependence of the plateau
parameters (PW and PHD) on CEP. The input powers of the two
lasers are the same as in (a) and (b). (e) PHD as a function of the
CEP and the frequency of the auxiliary laser �. (f) For a pulsed
optical input in the multicycle regime, PHD is shown to depend on
its CEP. The parameters are Pl = 1 μW, Pa = 100 nW, A = 40 nN,
and β = 0.005ωm.

The output power spectrum [see Figs. 3(a) and 3(b) with
l = 1] for such a setup displays a striking asymmetric feature:
the sidebands from Stokes scattering differ in intensity from the
sidebands due to anti-Stokes processes. Such an effect cannot
be found in the absence of the auxiliary laser (see Fig. 2)
and has the very important quality of depending on the CEP.
Therefore, in this multicycle regime where the dependence
of PW on CEP vanishes [see Fig. 3(c)], we can still define a
parameter that identifies and characterizes the CEP: the plateau
height difference between the average height of the anti-Stokes
and Stokes sidebands in the output power spectrum. In contrast
to PW, which is periodic by π [see Fig. 2(e)], the PHD reveals
a dependence periodic by 2π [see Fig. 3(d) and Eq. (7)].
Equation (7) offers a clear physical picture for such an effect.
The origin of the PHD lies in the interference between the
two optical fields. As the auxiliary laser enters the cavity, it
acquires high-order sidebands due to the interaction with the
mechanical motion, similar to the original field with amplitude
εl . The Stokes and anti-Stokes sidebands from the two lasers
interfere unevenly, leading to the difference in amplitude
between the two. Furthermore, Eq. (7) also reveals that the
CEP dependence period would be 2π/l if the frequency of the
auxiliary laser were lωm, as demonstrated by the numerical
results shown in Fig. 3(e).

IV. FROM MECHANICAL TO OPTICAL PULSES

To complete our analysis we explore the effect of multicycle
optical pulses, as opposed to mechanical pulses, as considered
so far. We take, as inputs, a continuous high-amplitude
mechanical drive, a continuous red-detuned laser, and
an optical pulse. The Hamiltonians describing the drives
are Hod = ih̄[(εl + εae

−i�t−φCEPe−β2(t−t0)2
)ĉ† − H.c.] and

Hmd = A cos(ωmt + φ)q̂.
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Like in the scenario for the mechanical pulse, the output
power spectrum shows again the emergence of a dependence
of the power spectrum on the CEP in the form of a PHD
[see Fig. 3(f)], even in the regime where the optical pulse
contains many cycles and traditional CEP-dependent effects
are washed out. It should be noted that, additionally, traditional
CEP-dependent effects in an ion platform can be observed only
when the optical pulse is intense enough that the tunneling
ionization can take place [15]. In the OMS, this condition
is generally transferred onto the drive for the mechanical
resonator, which is required to be intense to generate a strong
mechanical oscillation leading to higher-order sidebands. In a
previous relevant work, the optical pulse was required to be
intense to meet such a requirement [44]. Here, it is the continu-
ous mechanical drive that takes the responsibility to intensely
drive the mechanical resonator. The new CEP measurement
for the optical pulse based upon an interferometric process is
therefore technically free from any intensity requirements.

V. CONCLUSION

We extended the observation of CEP-dependent effects
from ultrafast optics to the realm of mechanical pulses using
optomechanics. Approximated analytical solutions robustly
supported by accurate numerical solutions were delivered,
revealing a clear physical picture of the model. We developed
a two-step model to describe the physical processes linking
the optical spectrum to the CEP of few-cycle mechanical
pulses and then identified an effect that delivers information
on the CEP regardless of how many cycles the envelope of
the mechanical pulse contains. Importantly, such a method
functions even for ultraweak optical pulses. The method de-
scribed applies extensively to a variety of pulses: mechanical or
optical, in the few- or multicycle regime, and without specific
requisites for optical intensity. The diverse development of
an experimental optomechanical setup [34] may enable our
scheme to be implemented for the measurement of the CEP
and manipulation of optical combs in a very wide frequency
range, and the versatility of optomechanical platforms could be
used to stretch these advantages to unexplored grounds (such
as ultrasonic pulses [48]).
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APPENDIX A: MECHANICAL PULSES
IN THE FEW-CYCLE REGIME

We consider a cavity OMS driven by a continuous optical
input with frequency ωl and an external mechanical pulse with
carrier frequency ωm, and its Hamiltonian in the rotating frame
of ωl is written as

H =
(

p̂2

2m
+ mω2

mq̂2

2

)
+ h̄�ĉ†ĉ + h̄Gq̂ĉ†c + Hmd + Hod,

(A1)

with

Hmd = A exp

[
−2 ln 2

(
t − t0

tp

)2]
cos(ωmt + φ)q̂, (A2)

Hod = ih̄(εl ĉ
† − H.c.). (A3)

In this work, the classical Langevin equations are given as
follows:

q̈ + γmq̇ + ω2
mq = − h̄g

m
|c|2 + A

m
e−β2(t−t0)2

cos(ωmt + ϕ),

(A4)

ċ = −[κ + i(−� + gq)]c + εl. (A5)

The approximated analytical solution of the two nonlinear
differential equations can be calculated if we consider a strong-
drive approximation, where the drive to the mechanical motion
is typically much more intense than the effect of the radiation
pressure force, and thus we are able to drop the term − h̄G

m
|c|2

from Eq. (A4). If we focus on the time window that starts
right after the end of the mechanical pulse and ends before the
damping of the displacement becomes appreciable, Eq. (A4)
becomes q̈ + ω2

mq = 0, and its solution is easily obtained as
follows:

q(t) = q0 cos(ωmt + φm), (A6)

where q0 and φm are the amplitude and the initial phase of
the mechanical oscillation, respectively. We define h(t) =
−[κ + i(−� + Gq)] and suppose the solution of c(t) is as
follows:

c(t) = e
∫

h(t)dtg(t) = f (t)g(t), (A7)

with f (t) = e
∫

h(t)dt . Substituting this equation into Eq. (A5),
we have

f (t)g(t)h(t) + f (t)ġ(t) = h(t)f (t)g(t) + εl,

g(t) = εl

∫
f (t)−1dt. (A8)

We give f (t) as follows:

f (t) = e
∫

h(t)dt

= exp(−κt) exp(−iωmt) exp[−iα sin(ωmt + φm)],

where α = Gq0

ωm
. Then g(t) is calculated as

g(t) = εl

∫
f (t)−1dt

= εl

∫
exp(κt) exp(iωmt){cos[α sin(ωmt + φm)]

+ i sin[α sin(ωmt + φm)]}dt

= εl

∫
exp(κt + iωmt)

×
{

1

2

+∞∑
n=−∞

[Jn(α)ein(ωmt+φm) + Jn(α)e−in(ωmt+φm)]

− 1

2

+∞∑
n=−∞

[−Jn(α)ein(ωmt+φm) + Jn(α)e−in(ωmt+φm)]

}
dt

= εl

+∞∑
n=−∞

Jn(α)einφm
exp[i(n + 1)ωmt + κt]

i(n + 1)ωm + κ
. (A9)
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We thus obtain c(t):

c(t) = f (t)g(t)

= εl

+∞∑
k=−∞

+∞∑
n=−∞

Jn(α)Jk(α)ei(n−k)φm
exp[i(n − k)ωmt]

i(n + 1)ωm + κ

=
+∞∑

N=−∞
cN (ωm) exp[−iNωmt], (A10)

with

cN (ωm) = εle
iNφm

+∞∑
n=−∞

Jn(α)JN+n(α)

i(n + 1)ωm + κ
. (A11)

Subsequently, we calculate the spectrum of the mechanical
displacement for the time window during which the pulse is
interacting with the system. By dropping the radiation pressure
term like in the previous calculation, Eq. (A4) takes the form

q̈ + γmq̇ + ω2
mq = A

m
e−β2(t−t0)2

cos(ωmt + ϕ). (A12)

The right side of the equation above is expanded as follows:

q̈ + γmq̇ + ω2
mq

= A

m
e−β2(t−t0)2

cos (ωmt + ϕ)

= A

m

∫ +∞

−∞

1

2β
√

π
exp

(
− ω2

4β2

)
exp[iω(t − t0)]

×
[
eiωmt+iϕ + e−iωmt−iϕ

2

]
dω

= A

m

∫ +∞

−∞

1

4β
√

π
exp

[
− (ω−ωm)2

4β2

]
e−i(ωt0−ωmt0−ϕ)eiωtdω

+ A

m

∫ +∞

−∞

1

4β
√

π
exp

[
− (ω+ωm)2

4β2

]

× e−i(ωt0+ωmt0+ϕ)eiωtdω. (A13)

We substitute the ansatz q(t) = ∫ +∞
−∞ q(ω)eiωtdω into the left

side of the Eq. (A12) and obtain

mq̈ + mγmq̇ + mω2
mq

=
∫ +∞

−∞
q(ω)

(−ω2 + iγmω + ω2
m

)
eiωtdω. (A14)

Comparing Eqs. (A13) and (A14), q(ω) is easily given as
follows:

q(ω) = A

4mβ
√

π
e−iωt0

× e
− (ω−ωm)2

4β2 ei(ωmt0+ϕ) + e
− (ω+ωm)2

4β2 e−i(ωmt0+ϕ)

−ω2 + iγmω + ω2
m

,

|q(ω)|2 =
∣∣∣∣ A

4β
√

π

∣∣∣∣
2 1

|χ (ω)|2
(
e
− (ω−ωm)2

2β2 + e
− (ω+ωm)2

2β2

+ 2e
− ω2+ω2

m

2β2 cos[2(ωmt0 + φCEP)]
)
, (A15)

where χ (ω) = [m(ω2
m − ω2 + iγmω)]−1 is the susceptibility

of the mechanical oscillator.

APPENDIX B: MECHANICAL PULSES
IN THE MULTICYCLE REGIME

Here, we introduce another laser to release the few-cycle
restriction. Similarly, the Hamiltonian of the drives can be
written as

Hmd = A exp

[
−2 ln 2

(
t − t0

tp

)2]
cos(ωmt + φ)q̂, (B1)

Hod = ih̄[(εl + εae
−i�t−iφa )ĉ† − H.c.]. (B2)

We give the equations of motion as follows:

q̈ + γmq̇ + ω2
mq = − h̄g

m
|c|2 + A

m
e−β2(t−t0)2

cos(ωmt + φ),

(B3)

ċ = −[κ + i(−� + gq)]c + (εl + sae
−i�t−iφa ). (B4)

When the interaction between the pulse and the system
ends, Eq. (B3), under the strong-drive and negligible-damping
approximations, can be reduced to the following form as in
Appendix A:

q(t) = q0 cos(ωmt + φm). (B5)

Like in Appendix A, we define h(t) = −[κ+i(−�+Gq)]
and suppose the solution of c(t) is as follows:

c(t) = e
∫

h(t)dtg(t) = f (t)g(t). (B6)

Substituting this equation into Eq. (B4), we can obtain

f (t)g(t)h(t) + f (t)ġ(t)

= h(t)f (t)g(t) + √
ηcκ(εl + sae

−i�t−iφa ),

g(t) = g1(t) + g2(t),

where

g1(t) = εl

∫
f (t)−1dt,

g2(t) = sae
−iφa

∫
e−i�tf (t)−1dt.

We give f (t) and g1(t) as follows:

f (t) = e
∫

h(t)dt

= exp(−κt) exp(−iωmt) exp

[
− iGq0

ωm

sin(ωmt + φm)

]

= exp(−κt) exp(−iωmt)
+∞∑

n=−∞
Jn(α)e−in(ωmt+φm)dt,

g1(t) = εl

∫
f (t)−1dt

= εl

+∞∑
n=−∞

Jn(α)einφm
exp[i(n + 1)ωmt + κt]

i(n + 1)ωm + κ
,

where α = Gq0

ωm
.
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Similarly, g2(t) is obtained as

g2(t) = εae
−iφa

∫
e−ilωmtf (t)−1dt = εae

−iφa

+∞∑
n=−∞

Jn+l(α)ei(n+l)φm
exp[i(n+1)ωmt + κt]

i(n + 1)ωm + κ
.

As a result, we obtain c(t):

c(t) = f (t)[g1(t) + g2(t)],

with

cN (ωm) = eiNφm

+∞∑
n=−∞

[εlJn(α) + εae
−i(φa−lφm)Jn+l(α)]JN+n(α)

i(n + 1)ωm + κ
.
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