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Within the renormalization-group framework we study the stability of superfluid density wave states, known as
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phases, with respect to thermal order-parameter fluctuations in two-
and three-dimensional (d ∈ {2,3}) systems. We analyze the renormalization-group flow of the relevant ordering
wave vector �Q0. The calculation indicates an instability of the FFLO-type states towards either a uniform
superfluid or the normal state in d ∈ {2,3} and T > 0. In d = 2 this is signaled by �Q0 being renormalized
towards zero, corresponding to the flow being attracted either to the usual Kosterlitz-Thouless fixed point or to
the normal phase. We supplement a solution of the RG flow equations by a simple scaling argument, supporting
the generality of the result. The tendency to reduce the magnitude of �Q0 by thermal fluctuations persists in d = 3,
where the very presence of long-range order is immune to thermal fluctuations, but the effect of attracting �Q0

towards zero by the flow remains observed at T > 0.
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I. INTRODUCTION

The recent progress in manipulating cold atomic gases
triggered the renaissance of interest in the Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) [1,2] phases. Such states may
occur when a number (and/or mass) imbalance between
the distinct fermion species forming the Cooper pairs is
imposed. This gives rise to a mismatch between the Fermi
surfaces of the two relevant particle species. For a sufficiently
large imbalance pairing is suppressed and the superfluid
phase becomes completely expelled from the phase diagram.
The imbalance provides therefore an experimentally accessible
nonthermal control parameter allowing for tuning the system
across a quantum phase transition. A number of phases
were proposed as candidates for intermediate stable states
at the edge of the transition to the normal state. In the
FFLO scenario (see, e.g., Refs. [1–23]) pairing occurs at a
finite momentum �Q0 giving rise to a spatially nonuniform
superfluid. Such a possibility was first discussed in the solid-
state physics setup, where the imbalance is introduced by
a magnetic field splitting the spin-up and spin-down bands.
Potential realizations were later proposed in a diversity of
contexts such as ultracold gases (e.g. [14,15,17,19,20,22]),
high-Tc superconductors (e.g. [13]), organic superconductors
(e.g. [21]), or quantum chromodynamics (e.g. [4,5]).

Most of these studies relied on mean-field-type treatments,
and until recently considerably less attention was paid to
the question of stability of the FFLO phases to thermal and
quantum fluctuations. As was presumably for the first time
noticed in Ref. [24] for the case of d = 2, the FFLO states
are fragile due to the presence of the Goldstone modes. The
structure of the Goldstone modes’ spectra in the FFLO states
was somewhat later investigated in more detail in Ref. [25].
The remarkable contribution of Refs. [26,27] predicted the
instability of true long-range order in the Larkin-Ovchinnikov
state in d = 3 caused by an additional Goldstone mode
related to translational symmetry breaking. It also pointed
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out enlightening connections to the physics of classical liquid
crystals. Reference [28] addressed the stability of the Fulde-
Ferrell state to Gaussian fluctuations in d = 2, also pointing
at a possible instability at T > 0, while Ref. [29] found in
d = 3 only small corrections to the region of stability of the
FFLO states from phase fluctuations. A very recent study [30]
suggests a generic instability of the FFLO states at any T > 0
due to pairing fluctuations both in d = 2 and d = 3.

In this paper we address the problem of stability of the
nonuniform FFLO-like superfluids to order-parameter fluctu-
ations at T > 0 applying a renormalization-group framework.
Using an effective order-parameter action as a starting point,
we follow the renormalization-group (RG) flow of the ordering
wave vector �Q0. We find a tendency to reduce the magnitude
of �Q0 to zero by fluctuations. For two-dimensional systems
we give a simple and rather general analytical argument for
the instability of the FFLO-type states. A detailed analysis
of the RG flow equations, which are derived under certain
assumptions, leads to the conclusion that the effect of reducing
�Q0 to zero persists also in d = 3. This is supported by a

direct numerical solution of the analyzed RG flow equations.
The emergent mechanism for destruction of the FFLO states
is distinct from that discussed in Ref. [27]. In particular,
it does not invoke the specific anisotropic features of the
Goldstone propagator. It also assumes the presence of only one
(superfluid) Goldstone mode. We believe the conclusion of our
study holds for a set of superfluid density wave states, which
is broader than the Fulde-Ferrell and Larkin-Ovchinnikov
classes. We however restrict our present study to the effects of
thermal fluctuations, leading aside quantum effects. Our study
therefore does not apply to T = 0. Importantly, the paper is
restricted to neutral superfluids, such as those realized in cold
atomic gases. We make here no claim concerning charged
systems, where the presence of the electromagnetic field leads
to gapping the Goldstone mode and stabilizes the FFLO state.
We make also the observation that the experimental evidence
supporting the FFLO states seems to be available exclusively
for charged systems, such as organic superconductors (see,
e.g., Refs. [31–34]).
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The paper is organized as follows. In Sec. II we introduce
the relevant order-parameter action. We review the mean-field
theory and the effective action for Goldstone fluctuations.
The cases of Fulde-Ferrell (FF) and Larkin-Ovchinnikov (LO)
states lead to fluctuation spectra of distinct nature and require
separate treatments. In Sec. III we introduce a simplified
model encompassing the important features of both the FF and
LO states, but characterized by weaker fluctuation properties.
In the subsequent Sec. IV we present the RG framework
employed to tackle the problem of the renormalization of
the ordering wave vector due to order-parameter fluctuations.
Section V contains the technical details of the derivation of the
RG flow equations, while in Sec. VI we present their numerical
solution in d ∈ {2,3}. We give our final conclusion in Sec. VII.

II. EFFECTIVE ACTION

As a starting point to address the FFLO states at β−1 = T >

0, we consider the scalar complex order-parameter field φ(�x) =
�(�x)eiθ(�x) and the corresponding Ginzburg-Landau action:

S[φ] = β

∫
�x

[
U (|φ|2) + 1

2
Z|∇φ|2 + 1

2
Y |∇2φ|2

+ 1

2
X|φ|4(∇θ )2

]
. (1)

This form retains the effective potential U (|φ|2) together with
the relevant gradient terms. The coefficient Z is assumed
negative, enforcing instability of the uniform order-parameter
configuration towards a density-wave-like phase. The system
is stabilized by the term ∼|∇2φ|2 with Y > 0. The last term
allows for distinguishing between the phase and amplitude
stiffness and may be given the interpretation in terms of a
current-current interaction [27]. The system is d dimensional,
i.e.,

∫
�x = ∫

V
ddx and we consider the thermodynamic limit

V → ∞. Note that the action involves exclusively thermal
fluctuations, restricting the analysis to T > 0. In what follows
we will parametrize the effective potential with the quartic
form

U (|φ|2|) = m2|φ|2 + u|φ|4, (2)

with m2 < 0 and u > 0. Truncating higher-order terms is not
expected to influence our major conclusions. A connection
between the action of Eq. (1) and microscopic models may be
made along the recognized track (see, e.g., Refs. [10,14,27]).
We refer to the previous works for a detailed discussion.

We proceed by analyzing the two families of candi-
date ground states known as the Fulde-Ferrell and Larkin-
Ovchinnikov phases. We note, however, that this list is far
from complete and more complex superfluid wave states
(e.g., involving superpositions of noncollinear waves [6])
may well be more stable at mean-field (MF) level. The RG
theory developed, under certain assumptions, in the subsequent
sections is not restricted to the FF and LO classes.

A. FF states

The Fulde-Ferrell ansatz proposes the superfluid order
parameter in the plane-wave form

φFF (�x) = �(�x)ei �Q�xeiθ(�x). (3)

In the MF picture the amplitude � and phase θ are assumed
constant. Plugging φFF (�x) into Eq. (1) one obtains

SMF
FF (�, �Q) = β

∫
�x

[(
m2 + 1

2
Z �Q2 + 1

2
Y �Q4

)
�2

+
(

u + 1

2
X �Q2

)
�4

]
. (4)

The ordering wave vector �Q = �Q0 may now be related to the
system parameters by extracting the minimum of SMF

FF (�, �Q)
with respect to �Q. This yields

�Q0
2 = −Z + X�2

2Y
�[−(Z + X�2)], (5)

where � denotes the Heaviside function. The MF order
parameter �0 follows from the minimum of SMF

FF (�, �Q = �Q0)
with respect to �. We restrict here to situations where the
system is ordered (�2

0 > 0) at mean-field level.
We proceed by analyzing the effective action for phase

fluctuations around the MF introduced above

SFl
FF [θ ] = S[φ(�x) = �0e

i �Q0 �xeiθ(�x)]. (6)

The amplitude remains fixed, but the phase degree of freedom θ

(corresponding to the Goldstone mode) is allowed to fluctuate.
Working out the derivatives, we obtain

SFl
FF [θ ] = β

∫
�x

[(
m2 + 1

2
�Q0

2
(

Z − 1

2

(
Z + X�2

0

)))
�2

0

+
(

u + 1

2
X �Q0

2
)

�4
0 − (

Z + X�2
0

)
�2

0(∂x1θ )2

+ 1

2
Y�2

0(∇2θ )2 + R
]
, (7)

where we chose

�Q0 =
√

−Z + X�2
0

2Y
�ex1 (8)

and the remainder R contains higher-order derivative terms.
The first two terms are merely constants but we keep them
here for the sake of the argument given below. As discussed in
Refs. [24,26,27], vanishing of the phase stiffness ρ0,⊥ in the
directions perpendicular to �Q0 is a peculiarity of the FF state
and clearly amplifies the role played by fluctuations.

The full RG analysis will be carried out in Secs. IV–VI.
For d = 2 one may however infer important information from
the very structure of Eq. (7) invoking known statistical physics
facts. Let us therefore now examine the structure of Eq. (7) in
d = 2 from the point of view of scaling and renormalization
theory. At high RG scales (k) the coefficient

m2
0 ≡ m2 + 1

2
�Q0

2(
Z − 1

2

(
Z + X�2

0

))
(9)

of �2
0 is negative, but increases towards zero when the scale is

lowered. This is because fluctuation effects generically tend to
reduce ordering tendencies. If m2

0 crosses zero at a finite RG
scale, the system goes into the normal (i.e., nonsuperfluid)
phase. The other possibility is that m0

2 approaches zero
from below asymptotically. The scenario where m2

0 neither
crosses nor approaches zero would imply the presence of
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long-range order and therefore contradict the Mermin-Wagner
theorem [35]. The asymptotic vanishing of m2

0 for k → 0
does not yet imply the independent vanishing of each of
the two terms composing it. However, there is no obvious
reason for any cancellation in the flow of these two quantities
and it is most natural to assume that each of them vanishes
independently during the RG flow. This is also confirmed in
numerical solutions of the flow equations (see Sec. VI). We
therefore write

lim
k→0

[ �Q0
2(

Z − 1
2

(
Z + X�2

0

))] = 0. (10)

Now observe that by Eq. (7) the quantity ρ0,‖ ≡ −(Z +
X�2

0)�2
0 is the phase stiffness along �Q0, which under RG

flow must approach a constant to support a superfluid phase
in d = 2. Since (due to Mermin-Wagner theorem) �0 → 0 as
k → 0, one has −(Z + X�2

0) → ∞. Assuming no unexpected
cancellations in Eq. (10), this suffices for writing

lim
k→0

�Q0
2 = 0, (11)

which is the way of avoiding violation of Eq. (10) and implies
the unavoidable renormalization of the ordering wave vector
�Q0 to zero. The argument does not use the “anisotropic”

feature of Eq. (7) inherited from the specific character of
the FF state and holds equally well for other cases such as
the LO state discussed below. It is however crucial to restrict
to d = 2, since otherwise �2

0 remains positive, −(Z + X�2
0)

does not diverge in the low-T phase, and, in consequence,
the above argument gets spoiled. In fact, as we see in the RG
theory, the physics underlying the above argument is governed
by the anomalous dimension η, since �2

0 ∼ kη and therefore
(Z + X�2

0) ∼ k−η alike in the standard Kosterlitz-Thouless
theory. The other important point to note for future reference
is that, by Eq. (8), the vanishing of �Q0 under the RG flow
is possible only if (Z + X�2

0) → 0 or Y → ∞ as k → 0.

Observe also that �Q0
2

must vanish faster than kη as a function
of k.

B. LO states

The Larkin-Ovchinnikov ansatz restricts the order-
parameter configurations to standing waves

φLO(�x) = �(�x) cos( �Q�x + γ (�x))eiθ(�x). (12)

In comparison to the FF case one anticipates here the presence
of an extra Goldstone mode (γ ) related to spontaneous break-
ing of translational symmetry. The MF analysis parallels the
FF case. Assuming �(�x),γ (�x),θ (�x) to be constant, plugging
φLO into Eq. (1), and minimizing the result yields

�Q0
2 = − Z

2Y
�[−Z]. (13)

There is however a crucial difference in the structure of the
effective action for the Goldstone modes. By assuming a frozen
amplitude �(�x) = �0 we plug φLO into Eq. (1). Executing
the derivatives and dropping subleading oscillatory terms we

obtain

SFl
LO[θ,γ ] = β

∫
�x

[
Ũ

(
�2

0

) + ρ0,‖
(
∂x1θ

)2 + ρ0,⊥(∂⊥θ )2

− 1

2
Z�2

0

(
∂x1γ

)2 + 1

4
Y�2

0(∇2γ )2 + R
]
.

(14)

Here Ũ (�2
0) is a constant. The superfluid stiffness ρ0,‖ =

f (Z,X)�2
0 along �Q0 is controlled by both Z and X, while the

perpendicular phase stiffness ρ0,⊥ ∼ X�4
0 is fully determined

by the X term. The precise form of the function f (Z,X) is not
important for us now. Notably, the fluctuations of the γ mode
are controlled by terms quartic in derivatives in the direction
orthogonal to �Q0. The implications of this fact for the LO state
are discussed in detail in Ref. [27].

Clearly, the fluctuation properties of the competing super-
fluid density wave phases (such as the FF and LO states) are
sensitive to the particular forms of these ground states. The
LO state hosts two Goldstone modes, while the FF state is
characterized by a vanishing stiffness ρ0,⊥ in the perpendicular
directions. In the following sections we will show, however,
that the superfluid order-parameter fluctuations may lead to an
instability of the FFLO-type states even in the absence of such
special features (i.e., for models with one Goldstone mode
characterized by quadratic spectrum in all directions) at any
finite temperature T > 0 in d ∈ {2,3}. This is in line with the
argument presented in Sec. III A.

III. MODEL

We now introduce a simplified effective model that en-
compasses features of both the FF and LO states, but is
characterized by weaker fluctuation effects compared to those
occurring in the models discussed above. We describe in detail
its relation to the FF model from the previous section, and then
also discuss its connection to the LO state.

Consider first the FF ansatz with both amplitude and phase
fluctuations

φ(�x) = [α + σ (�x)]ei �Q�xeiθ(�x). (15)

Plugging this into Eq. (1) and proceeding along the line of
Sec. II yields the effective action for the σ and θ modes:

S[σ,θ ] = β

∫
�x

{[
m2 + 1

2
Z �Q0

2 + 1

2
Y �Q0

4
]

(α + σ )2

+
[
u + 1

2
X �Q0

2
]

(α + σ )4

+ Z̃(α + σ )2(∂x1θ )2 + Z̃(∂x1σ )2 + 1

2
Z(∇⊥σ )2

+ 1

2
Y [(α + σ )2(∇2θ )2 + (∇2σ )2]

}
, (16)

where �Q0
2 = −Z+X(α+σ )2

2Y
≈ −Z+Xα2

2Y
is assumed positive and

Z̃ = −[Z + X(α + σ )2] ≈ −[Z + Xα2] > 0. We now trade
the θ mode for the transverse mode (π ) by writing

φ(�x) ≈ [α + σ (�x) + iαθ (�x)]ei �Q�x = [α + σ (�x) + iπ (x)]ei �Q�x,

(17)
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with π (�x) = αθ (�x). We now additionally simplify the model
by neglecting the anisotropy of the amplitude stiffness and
reduce the phase fluctuations by assuming a finite stiffness Z̃

both along and perpendicular to �Q0. Recalling that (α + σ )2 =
|φ|2, we introduce ρ ≡ 1

2 |φ|2 and reparametrize the uniform
(Mexican-hat shaped) part of the action. This leads us to the
following form:

Seff[σ,π ] = β

∫
�x

{
λ

2
(ρ − ρ0)2 + 1

2
Zπ (∇π )2 + 1

2
Zσ (∇σ )2

+ 1

2
Y [(∇2π )2 + (∇2σ )2]

}
, (18)

which is parametrized by the interaction coupling λ, the
effective potential minimum ρ0 = 1

2α2, and the three (positive)
gradient coefficients. In the present calculation we have Zσ =
Zπ = 2Z̃. Crucially, the ordering wave vector is given by

�Q0
2 = Z̃

2Y
= Zπ

Y
. (19)

The above shows that Eq. (18) may be considered as a variation
of the FF action from the previous section, where the Goldstone
mode becomes weakened by assuming a finite stiffness ρ0,⊥
in the direction orthogonal to �Q0. The presence of the massive
amplitude mode σ has a minor effect on our further results.

We additionally observe that Eq. (18) may also be in-
terpreted as a modification of the LO action, where the
translational Goldstone mode γ is disregarded together with
the anisotropy of the superfluid stiffness coefficients. The
relation Eq. (19) is valid also for the LO system. One may
reliably assume that fluctuation effects are again reduced as
compared to SFl

LO since we take out one massless mode.
The structure of the action given by Eq. (18) is typical for
order-parameter theories with a U (1) symmetry, which are
well studied in many contexts. The present problem requires
however an analysis of the RG flow of the Laplacian coefficient
Y in order to access the impact of the order-parameter
fluctuations on the ordering wave vector �Q0 given by Eq. (19).

IV. RG THEORY

The action defined in Eq. (18) is the starting point of
the RG analysis. We derive the relevant flow equations for
the set of couplings {ρ0,λ,Zπ,Y } from the functional RG in
the one-particle irreducible formulation [36]. The flow of the
ordering wave vector �Q0 is then extracted from Eq. (19). As
already remarked, we put Zσ = Zπ . The central object of the
formalism is the scale (k) dependent effective action �k[φ]
which interpolates between the bare action Eq. (18) at high
momentum scales (k = k0) and the full free energy for k → 0.
The functional flow upon varying the scale k is governed by
the Wetterich equation [36]

∂k�k[φ] = 1
2 Tr

{
∂kRk(q)

[
�

(2)
k [φ] + Rk(q)

]−1}
. (20)

Here the trace (Tr) sums over momenta (�q) and the field
components ({σ,π}), �

(2)
k [φ] is the second functional deriva-

tive of �k[φ], and the cutoff function Rk(q) is an artificial
mass term added to the inverse propagators (both in the σ

and π directions) to suppress the modes below the scale k.
It adds a mass ∼k2 to modes with q ≡ |�q| � k, but leaves

the modes with q 
 k unaffected. The quantity �k[φ] may
be understood as the free energy including fluctuation modes
between k and the highest cutoff scale k0. For k = k0 all
fluctuations are frozen [Rk→k0 (q) → ∞] and in consequence
�k[φ] → Seff[φ]. In the opposite limit we have Rk→0(q) → 0
and all fluctuations are included into the partition function.
The Wetterich framework was successfully used in a diver-
sity of contexts over the past years (for reviews see, e.g.,
Refs. [37–41]). The imbalanced Fermi gases were addressed
with this approach in Refs. [19,42–46].

In what follows we promote the set of couplings
{ρ0,λ,Zπ,Y } to functions {ρ0,k,λk,Zπ,k,Yk} of the cutoff scale
k and parametrize the flowing action �k[φ] with the form
given by Eq. (18). By plugging this parametrization into
Eq. (20), we project the functional flow onto a finite set of
flow equations describing the evolution of the couplings. This
modest approximation captures the effect of the wave-vector
renormalization, which is at present our main interest. Note
that the calculation requires accounting for terms that are
fourth order in the derivative expansion [47] (∼q4), but does
not treat contributions ∼q4 which are not captured by the two-
point function. In addition there is an important assumption
underlying the calculation: that the two-point function may
be parametrized by the quartic form for all the scales k and
within the whole relevant domain of momenta q. Observe that
the argument given in Sec. II A relies on this parametrization
as well. For the imbalanced Fermi gases at T > 0 this appears
plausible in view of the MF results [14]. However, the
present calculation may not be understood as a first step in
a systematic procedure of expanding the two-point function
in momenta around the flowing ordering wave vector. Indeed,
going to higher orders in gradients would lead to increasingly
inaccurate parametrization of the two-point function except for
the immediate vicinity of Q0. This is an important point of the
analysis, since we are dealing with nonuniversal properties
governed to a large extent (within the present truncation)
by the irrelevant coupling Y . We expect that the present
approximation may break down if �Q0 is located sufficiently
far from zero. Within a more accurate treatment one might
employ the so-called BMW scheme [48–50] of functional RG.
In that framework the flow of the full momentum dependence
of the two-point function is computed without a recourse
to any expansions. We believe this is the most appropri-
ate way to address the problem (in d = 3 in particular).
We notice, however, that the BMW procedure suffers sub-
stantial numerical difficulties deep in the low-T phases.

The technical details of the projection of the flow are
described in Sec. V, which is followed by a numerical
integration of the resulting flow equations in Sec. VI.

V. RG FLOW EQUATIONS

Here we describe the procedure to derive the flow equations,
first focusing on the uniform part characterized by {ρ0,k,λk}
and subsequently analyzing the gradient parameters {Zπ,k,Yk}.
Our parametrization implies that the σ and π inverse propa-
gators take the following form:

G−1
σ (q) ≡ �(2)

σσ (q) = m2
k + Zσ,kq

2 + Ykq
4 + Rk(q) (21)
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and

G−1
π (q) ≡ �(2)

ππ (q) = Zπ,kq
2 + Ykq

4 + Rk(q). (22)

The longitudinal mass m2
k is given by m2

k = 2ρ0,kλk and
q = |�q|.

A. Effective potential flow

The flow of the effective potential is extracted by the
standard procedure [37] of evaluating Eq. (20) on a uniform
field configuration, ρ = const > 0. This reads

∂kUk(ρ) = 1

2

∫
�q
∂kRk(q)Gπ (q,ρ) + 1

2

∫
�q
∂kRk(q)Gσ (q,ρ),

(23)

where

G−1
σ (q,ρ) = U ′

k(ρ) + 2ρU ′′
k (ρ) + Zσ,kq

2 + Ykq
4 + Rk(q),

(24)

G−1
π (q,ρ) = U ′

k(ρ) + Zπ,kq
2 + Ykq

4 + Rk(q), (25)

and ∫
�q
= T

∫
ddq

(2π )d
. (26)

We extract the flow of the quartic coupling λk by differentiating
Eq. (23) twice with respect to ρ and evaluating at ρ = ρ0. The
observation that λk = U ′′

k (ρ = ρ0) leads to

∂kλk = λ2
k

∫
�q
∂kRk(q)G3

π (q) + 9λ2
k

∫
�q
∂kRk(q)G3

σ (q). (27)

The flow of ρ0,k is obtained from

0 = d

dk
U ′

k(ρ)|ρ=ρ0 = ∂U ′
k(ρ)

∂k

∣∣∣∣
ρ=ρ0

+ ∂U ′
k(ρ)

∂ρ

∣∣∣∣
ρ=ρ0

dρ0

dk
,

(28)

where the term ∂U ′
k(ρ)
∂ρ

|ρ=ρ0
follows from executing the deriva-

tive of Eq. (23) with respect to ρ and evaluating at ρ = ρ0.
This gives

∂kρ0,k = 1

2

∫
�q
∂kRk(q)G2

π (q) + 3

2

∫
�q
∂kRk(q)G2

σ (q). (29)

Equations (27) and (29) describe the flow of the effective
potential within the present truncation and need to be sup-
plemented by the flow equations for the gradient coefficients,
which are derived below.

B. Propagator flow

The flow equation for the inverse propagator is derived by
taking the second functional derivative of Eq. (20), which is
then evaluated at φ = const > 0. The first step leads to

∂k�
(2)

φ
j
q2 φi

q1

=Tr
{ − S�

(3)

φ
j
q2 φφ

(
�

(2)
φφ

)−1
�

(3)
φi

q1
φφ

+ 1
2S�

(4)

φ
j
q2 φi

q1
φφ

}
,

(30)

with the single-scale propagator S ≡ −(�(2))
−1

∂kRk(�(2))
−1

.
We dropped the scale and internal momentum dependencies

for clarity and φ ∈ {σ,π} is summed over. In addition
i,j ∈ {1,2}, and φ1 = σ,φ2 = π . Equation (30) has a clear
diagrammatic interpretation. We extract the flow of the π mode
propagator by specifying to i = j = 2, evaluating at a constant
field configuration, and choosing ρ = ρ0. This yields

∂k�
(2)
ππ (q1) = 2ρ0,kλ

2
k

∫
�q
∂kRk(q)

[
G2

σ (q)Gπ (|�q + �q1|)

+G2
π (q)Gσ (|�q + �q1|)

]
. (31)

We now expand Gσ (|�q + �q1|) and Gπ (|�q + �q1|) around �q1 =
0, retaining terms up to order ∼ �q1

4 and subsequently perform
the angular integrations on the right-hand side of Eq. (31). This
calculation yields the flow equations for Zπ,k and Yk , which
are extracted as the �q1

2 and ( �q1
2)2 coefficients of the resulting

expression. The obtained flow equations read

∂kZπ =2ρ0λ
2T

∫ ∞

0
dq(∂kR)G2

σG2
π

{
[−8Y +4(Zπ + 2Yq2)2

× (Gπ + Gσ )]Cdq
d+1 − (Zπ + 2Yq2)

1

πd−1
qd−1

}
(32)

and

∂kY = 2ρ0λ
2T

∫ ∞

0
dq(∂kR)G2

σG2
π

×
{

[−2Y + (Zπ + 2Yq2)2(Gπ + Gσ )]
1

2πd−1
qd−1

+ [
(Gπ + Gσ )24Y (Zπ + 2Yq2)

− (
G2

π + G2
σ

)
12(Zπ + 2Yq2)3

]
Cdq

d+1

+ [
(Gπ + Gσ )16Y 2

− (
G2

π + G2
σ

)
12(Zπ + 2Yq2)2(4Y )

+ (
G3

π + G3
σ

)
16(Zπ + 2Yq2)4

]
Ddq

d+3

}
. (33)

To gain some notational clarity we dropped the
scale and momentum dependencies and introduced
Cd = 1

2dπd−1 , D2 = 3
16π

, and D3 = 1
10π2 , originating

from
∫

�q f (q)(�q �q1)2 = T Cd

∫ ∞
0 dq qd+1f (q) �q1

2 and∫
�q f (q)(�q �q1)4 = T Dd

∫ ∞
0 dq qd+3f (q)( �q1

2)2. The above
equations together with Eq. (27) and Eq. (29) form the set
of coupled flow equations to be studied numerically in the
subsequent section. We may however already at this point
observe that the right-hand side of Eq. (33) contains terms
with the momentum power lower by 2 as compared to the
corresponding terms in Eq. (32). One then naively anticipates

∂kYk ∼ (∂kZπ,k)k−2, leading to �Q0
2 → 0 for k → 0 by virtue

of Eq. (19) under the condition that the flowing anomalous
dimension η ∼ k∂kZπ,k does not vanish too fast for k → 0.
This is always the case in d = 2, since η > 0 in the infrared
limit k → 0 in the entire low-temperature phase. Note that
the picture is in perfect line with the argument from Sec. II A.
As it turns out, the above condition remains fulfilled also for
d = 3. From this point of view the numerical results of the
next section may appear expected.
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C. Remarks on the functional RG truncation

The projection of the Wetterich equation [Eq. (20)] de-
scribed above goes along the path of earlier works and
it is worthwhile discussing the anticipated accuracy of the
results together with potential artifacts of the approximation.
In d = 3 the situation is rather simple (see, e.g., Ref. [37])
and one recovers the picture displaying a symmetry-broken
phase separated from the normal phase by a phase transition.
The properties of the transition itself (for example the
values of the critical exponents) are captured at a qualitative
level. Recovering numerically exact values requires a more
sophisticated approximation level. We stress however that
the present calculation does not require knowledge concerning
the transition itself, since we are interested almost exclusively
in the properties of the low-T phase. The situation in d = 2
is somewhat more subtle, since the low-T phase of relevance
is the algebraic Kosterlitz-Thouless phase [51,52]. This may
be relatively easily obtained from the Gaussian theory of
phase fluctuations [53]. It is somewhat striking that rather
sophisticated functional RG truncations find it hard to exactly
recover this result. This issue is discussed in detail in
Ref. [54]. At the present truncation level, the line of RG
fixed points characterizing the Kosterlitz-Thouless phase is
recovered approximately (see the next section), such that
the phase stiffness and anomalous dimension exhibit only
very slow, logarithmic flow. The quality of the approximation
improves when the temperature is lowered. As concerns the
transition itself, the presently applied truncation level [55] may
serve to give an estimate of the transition temperature and
the anomalous dimension. More sophisticated functional RG
calculations, retaining terms up to infinite order in the order
parameter field [56,57] reproduce accurately the universal
properties (such as the phase stiffness jump, the anomalous
dimension, or the essential scaling of the correlation length
in the high-T phase), and even nonuniversal thermodynamics
of specific microscopic models [58]. We stress again that the
properties of the Kosterlitz-Thouless transition are not of major
focus for us now, since we are most interested in the region of
the phase diagram occupied by the low-T phase.

VI. NUMERICAL INTEGRATION OF THE RG FLOW

A practical numerical solution of the flow equations
requires specifying the cutoff function Rk(q). Here we make
the choice [59]

Rk(q) = [Zπ,k(k2 − q2) + Yk(k4 − q4)]�[Zπ,k(k2 − q2)

+Yk(k4 − q4)], (34)

which displays the properties required by the formalism and,
in addition, allows for executing the integrals in the flow
equations analytically. We introduce the logarithmic scale
s = − ln(k/kUV ). Of major interest to us are the parameters
corresponding to the thermodynamic state located in the low-T
phase. The physical situation is very different for d = 2 and
d = 3, which is reflected in the character of the obtained
solutions to the RG flow equations. We therefore discuss the
two cases separately in the two distinct subsections below.
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FIG. 1. Flowing anomalous dimension η as a function of the
logarithmic scale parameter s for a sequence of temperatures in
the low-temperature phase in d = 2. The quasiplateaus reached in
the infrared (large s) demonstrate the occurrence of the Kosterlitz-
Thouless phase. The exponent η grows as a function of temperature.

A. d = 2

In d = 2 order-parameter fluctuations destroy the long-
range order in accord with the Mermin-Wagner theorem.
A superfluid state may however still exist as a Kosterlitz-
Thouless phase [51,52] characterized by algebraically de-
caying order-parameter correlations and finite phase stiffness
persisting despite vanishing of the expectation value of the
order-parameter field. In the RG flow the Kosterlitz-Thouless
phase is characterized by a line of fixed points parametrized
by temperature. The superfluid stiffness and the anomalous
exponent exhibit jumps (to zero) of universal magnitude as
the system crosses the transition temperature TKT and goes
into the normal state. In Figs. 1 and 2 we demonstrate the
occurrence of the Kosterlitz-Thouless phase by plotting the
flow of the anomalous dimension η = − k

Zπ
∂kZπ and the

superfluid stiffness ρs = 2Zπρ0 for low temperatures. Within
the present truncation the line of fixed points is recovered
approximately and is manifested by the occurrence of the
quasiplateaus persisting down to extremely low scales (i.e.,
large s) [55–58]. The deviation from the ideal fixed-point
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 0.8

 0.9

 1
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ρ s
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s(s
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s
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FIG. 2. Flowing phase stiffness ρs = 2Zπρ0 as a function of the
logarithmic scale parameter s for a sequence of temperatures in the
low-temperature phase in d = 2. The divergence of Zπ (implied
by Fig. 1 since Zπ ∼ k−η) is compensated by the vanishing of the
order parameter ρ0 ∼ kη so that ρs = 2Zπρ0 attains fixed-point-like
behavior in the infrared (for large s) apart from the artificial
logarithmic running discussed in Ref. [54].
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FIG. 3. Flowing ordering wave vector �Q0
2

as a function of the
logarithmic scale parameter s for a sequence of temperatures in the

low-temperature phase in d = 2. The collapse of �Q0
2

in the infrared
(for large s) reflects the flow properties inferred in Sec. V and implies
an instability of the FFLO-type state to order-parameter fluctuations.

behavior is diminished upon lowering T (see Ref. [54]). The
presence of the Laplacian (Y ) term has, as expected, only
minor impact on the flow of the couplings ρ0,λ,Zπ and the
universal properties of the Kosterlitz-Thouless phase are the
same as obtained in the earlier studies. In all the presented
plots the parameters of the initial action are as follows:
Zπ = Y = 1, ρ0 = 1

2α0 = 1
2 , and λ = 1

4 . The initial scale s0

of the flow is chosen so that the propagators are well gapped
by the cutoff and the flow becomes completely suppressed at
the initial stage. We take s0 = −5.

In Fig. 3 we illustrate the collapse of the ordering wave
vector �Q0 as anticipated from the structure of the flow
equations in Sec. V and also in full agreement with the
reasoning from Sec. II. Within the range of temperatures
used for the plots, the scale of this collapse depends relatively
weakly on the temperature T and is comparable to the scale
where the Kosterlitz-Thouless scaling sets in (see Figs. 1 and
2). The emergent picture also does not strongly depend on the
initial choice of the magnitude of �Q0.

B. d = 3

The physical situation in d = 3 is quite distinct as compared
to d = 2, since the system admits true long-range order in
the low-temperature phase. This is reflected in Zπ and the
order parameter ρ0 being renormalized towards constant,
positive values. We demonstrate this in Figs. 4 and 5. As
in the previous section, the initial parameters are taken to be
Zπ = Y = 1, ρ0 = 1

2α0 = 1
2 , and λ = 1

4 . The presented plots
correspond to the system being located deep in the FFLO
phase at the mean-field level. The precise structure of the
effective potential (e.g., the presence of competing minima
describing metastable states) is irrelevant for the conclusion.
A choice of the initial condition sufficiently close to the normal
state (e.g., at higher T ) would lead to a renormalization flow
into the normal (i.e., nonsuperfluid) phase with ρ0 = 0. The
effect of renormalizing �Q0 to zero is exhibited in Fig. 6. Due
to the divergence of Y in the infrared limit, the FFLO-type
state cannot be maintained and the wave vector �Q0 becomes
robustly renormalized to zero as in d = 2. We note, however,

that the scale where �Q0
2

vanishes becomes significantly shifted
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FIG. 4. Flowing anomalous dimension η as a function of the
logarithmic scale parameter s for a sequence of temperatures in the
low-temperature phase in d = 3. The quantity Zπ attains a constant
value in the infrared (for large s), which is signaled by vanishing of
η in contrast to the corresponding behavior in d = 2. The magnitude
of the peak grows upon increasing T . At the transition to the normal
state, the observed behavior would gradually transform into a fixed
point reflecting the universal behavior specific to the classical XY

model in d = 3.

to lower values of k (larger s). In a realistic situation this may
be of some relevance since a finite �Q0 may remain observed
as long as the system size remains sufficiently small. Observe

also that the �Q0
2

collapse scale is by far lower than the scale
where the flow of ρ0 freezes in Fig. 2, which also distinguishes
d = 3 from d = 2.

We would like to emphasize at this point that the mechanism
leading to the collapse of �Q0 is very generic and the calculation
may well be relevant also to other instabilities occurring at
nonzero �Q0. An obvious example are spin-density waves.
One should however realize the limitations of the present
approach, which may, perhaps, not be immediately visible.
Indeed, as already emphasized, the calculation relies on the
derivative expansion, which should, in the limit of k small, be
viewed as a fully trustworthy treatment only for sufficiently
small momenta. In consequence, considering Q0 large at the
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FIG. 5. Flowing order parameter ρ0 as a function of the loga-
rithmic scale parameter s for a sequence of temperatures in the low-
temperature phase in d = 3. The quantity ρ0 becomes renormalized to
a reduced, but positive value, unlike for d = 2, where it vanishes at any
T > 0. The renormalized value decreases upon rising T and would
finally disappear for higher T upon crossing the critical temperature
Tc.
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FIG. 6. Flowing ordering wave vector �Q0
2

as a function of the
logarithmic scale parameter s for a sequence of temperatures in the

low-temperature phase in d = 3. The collapse of �Q0
2

in the infrared
(for large s) reflects the flow properties inferred in Sec. V and implies
an instability of the FFLO-type state to order-parameter fluctuations.
As compared to d = 2, we observe a significant shift of the collapse
scale towards lower values of k (larger s).

beginning of the flow may lead to a situation where the theory
would be used beyond its applicability range in the limit of k

small. The BMW framework, which treats the full momentum
dependence of the two-point function at a functional level, is a
natural candidate for an extension of the present study, which
should be free of this limitation.

VII. CONCLUSION

In this paper we have studied the effect of order-parameter
fluctuations on the superfluid density wave states known
as Fulde-Ferrell-Larkin-Ovchinnikov phases. We set out by
reviewing the mean-field theory together with the effective
theory for the Goldstone fluctuations. The structure of this
effective action is different for the distinct competing ground
states (for example, for the FF and LO states). We therefore
introduced a simplified model exhibiting weaker fluctuation

effects as compared to both the FF and LO situations. We
argued that in d = 2 the necessity of �Q0 being renormalized
to zero by fluctuations is implicit in the very structure of the
effective action. We subsequently employed renormalization-
group theory to analyze the system. From the approximate
RG flow equations we derived an effect of renormalizing
the ordering wave vector to zero for both d = 2 and d = 3.
The effect persists at arbitrarily low (but finite) temperature
T . The calculation indicates that in these situations the
FFLO-type states may be unstable as thermodynamic phases.
The mechanism leading to the collapse of the ordering wave
vector is distinct from those invoked in earlier studies and
makes no reference to the specific forms of Goldstone spectra
present in the FF and LO states, which amplify fluctuation
effects. Importantly, the scale of vanishing of �Q0 is much
lower in d = 3 as compared to d = 2 and it may be that the
FFLO states are detected in different contexts and identified
as true thermodynamic phases due to insufficient system sizes.
Remarkably, the experimental evidence for the FFLO type
states seems to be available only for charged systems, where
the Goldstone mode acquires a gap due to the presence of
the magnetic field, and to which our study does not apply. There
seems to be no indication of the FFLO phases in experiments
on cold atoms. Our results seem fully in line with this state
of the art. We make here no claims concerning T = 0, where
the FFLO phases presumably exist even for neutral systems.
This is a promising direction for future studies. In realistic
situations signatures of such ground states might certainly be
detectable also at T > 0.
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