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Macroscopic random Paschen-Back effect in ultracold atomic gases
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We consider spin- and density-related properties of single-particle states in a one-dimensional system with
random spin-orbit coupling. We show that the presence of an additional Zeeman field � induces both nonlinear
spin polarization and delocalization of states localized at � = 0, corresponding to a random macroscopic analog
of the Paschen-Back effect. While the conventional Paschen-Back effect corresponds to a saturated � dependence
of the spin polarization, here the gradual suppression of the spin-orbit coupling effects by the Zeeman field is
responsible both for the spin saturation and delocalization of the particles.
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I. INTRODUCTION

Spin and mass dynamics caused by spin-orbit coupling
(SOC) constitute one of the most important and interesting
topics in modern solid-state and condensed-matter physics
[1–3]. Recent experiments with ultracold atomic gases have
greatly extended the frontiers of this field, by realizing tunable
artificial SOC, as well Zeeman fields, for Bose-Einstein
condensates [4] and Fermi gases [5,6]. The possibility of
studying the effects of strong SOC both experimentally and
theoretically has revealed a rich phenomenology of these
systems (see, e.g., Refs. [7–11]). In one-dimensional settings
this phenomenology has been enhanced by the presence of
additional potentials, such as lattices [12–14] or artificial
defects in the SOC [15].

A key topic in low-dimensional solid state [16,17] and
cold atomic [18–21] systems is the localization of particles by
disorder. In the presence of SOC, the localization was studied
in Ref. [22] and in a quasiperiodic potential in Ref. [23], where
a mobility edge was observed. Short-term spin and density
dynamics were considered in Ref. [24]. Yet another type of
SOC—the random one—is naturally present in solids [25–27].
It can also be designed in cold atomic matter by randomizing
the field producing the SOC.

The combined effect of spin-independent disorder and
random SOC on the localization in two-dimensional lattices
has been studied in Refs. [28,29] and the orbital effect of the
magnetic field in these systems was addressed in Ref. [30].
In this paper we consider a continuous one-dimensional
system with randomness solely in the SOC realization, and
investigate the effect of the Zeeman field on the particle spins
and localization. We show that similar to the conventional
random potentials, SOC can lead to localization, here strongly
dependent on the Zeeman field. In particular, we show that
as the Zeeman splitting increases, the spin expectation values
change strongly and, more importantly, the fraction of the
localized states rapidly decreases. This offers the ability
to localize or delocalize the states solely by acting at the
particle spin. The weakening of the SOC effects in sufficiently
strong Zeeman fields is known in atomic physics as the
Paschen-Back (alias nonlinear Zeeman) effect [31–33]. Here

we study the appearance of the Paschen-Back effect in a
random macroscopic system, where, along with the spin
dependence, the SOC effective weakening manifests itself
as the delocalization of the states under increasing Zeeman
splitting.

This paper is organized as follows. In Sec. II we introduce
the random SOC field and present its main characteristics.
In Sec. III we describe a general picture of the macroscopic
random Paschen-Back effect. In Sec. IV this approach will be
applied to the ground state of the system. Section V provides
conclusions and outlook for future research. Some details
of calculations and additional information are given in the
Appendixes.

II. HAMILTONIAN, RANDOM FIELDS, AND THEIR
CORRELATORS

We consider a system described by the following
Hamiltonian with a spatially random SOC α(x):

H0 = k2

2
+ 1

2
[α(x)k + kα(x)]σz + �σx, (1)

where k = −i∂/∂x, 2� is the Zeeman splitting, and σx,z are
the Pauli matrices [34]. We use units h̄ ≡ 1 and particle mass
≡ 1, so that from now on all the quantities are expressed
in dimensionless units. Since our results will be based on
the probability and the spin density distributions, they are
independent of the Zeeman field direction, provided that it
is orthogonal to the z axis.

To emphasize the physical mechanism of the delocalization
in the Paschen-Back effect, we use unitary transformation
[35] Htr = S−1H0S with S = exp [−iA(x)σz] to reduce the
Hamiltonian to the form

Htr = k2

2
− 1

2
α2(x) + �[σx cos 2A(x) − σy sin 2A(x)],

(2)

where

A(x) ≡
∫ x

−L

α(x ′)dx ′, (3)

as we study a system of size 2L, with x ∈ [−L,L] [36].
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FIG. 1. Model distribution of SOC impurities corresponding to
the disorder in Eq. (4).

At � = 0, the Hamiltonian (2) describes two decoupled
spin components in the random potential −α2(x)/2. The case
of not random α(x) has been studied in Refs. [37–39]. The
Zeeman coupling in Eq. (2) gives rise to an effective magnetic
field which has a constant amplitude � and randomly varying
direction: m(x) = (cos 2A(x),− sin 2A(x),0).

As a model of disorder we consider the following:

α(x) = α0

N∑
j=1

γje
−(x−xj )2/2ξ 2

. (4)

Here j = 1, . . . ,N labels N “impurities” having equal widths
ξ and located at points xj = Xj + d(rj + 1/2), where Xj ≡
−L + d(j − 1), the impurity concentration is 1/d, where
d = 2L/N, and α0γj are their strengths, as shown in Fig. 1.
The statistics is described by independent uniform random
distributions of γj and rj , both in the range [−0.5,0.5]. The
resulting potential is bounded, α2(x) � α2

max, and resembles
optical speckles [40].

At L � max (ξ,d), the random SOC is characterized by
two main parameters. The first one is the mean square
〈〈α2〉〉, where 〈〈. . .〉〉 stands for the statistical averaging with
the distributions of rj and γj . The second parameter is
the correlation length lα of α(x). In the model of Eq. (4),
〈〈α2〉〉 = √

πα2
0ξ/12 d and lα = √

πξ , as can be proven
by straightforward calculations (e.g., by integration of the
corresponding range function [26,27]).

To describe the spatial scale of the random Zeeman field,
we introduce the correlator Kmm(x,x ′) ≡ 〈〈m(x)m(x ′)〉〉 and
define the characteristic length lm on which the direction
m(x) varies significantly. This is the distance at which the
correlation between m(x) and m(x + lm) becomes weak,
that is |Kmm(x,x ′)| 	 1 for |x − x ′| � lm. The respective
calculations can be done by taking into account that A(x)
is a random walk [41] in the (x,A(x)) space with small
uncorrelated “steps” of the order of 〈〈α2〉〉1/2lα 	 1 at the
length scale of lα. In this way we obtain (see Appendix A)

lm = 1

4〈〈α2〉〉lα . (5)

III. ZEEMAN FIELD DEPENDENCE:
A GENERAL PICTURE

For � 
= 0 the eigenstates of the Hamiltonian (1) are
nondegenerate (except for accidental events). Such states are

characterized by spinors ψn(x) = [ψn1(x),ψn2(x)]T, where
the number n = 0,1, . . . labels their energies En. The spatial
extension of state n is characterized by the inverse participation
ratio (IPR) [42]:

ζn =
∫ L

−L

[|ψn1(x)|2 + |ψn2(x)|2]2dx. (6)

The symmetry of the Hamiltonian (1) implies that the only
nonzero mean spin component is given by

〈σx〉n = 2Re
∫ L

−L

ψ∗
n1(x)ψn2(x)dx. (7)

Note that the eigenfunctions of (1) and (2) are mixed states
in the spin subspace resulting in 〈σx〉2

n � 1 with 〈σx〉2
n = 1

for a pure and 〈σx〉2
n = 0 for the maximally mixed state,

respectively.
Figure 2 presents the spin (a) and the IPR (b) as a

function of n, for a single realization of the random potential,
which is shown in Fig. 2(c). In Fig. 2(a) we observe that
at small � most of the states are strongly mixed in spin
subspace with |〈σx〉n| 	 1. By increasing �, high-purity
states appear at energies close to ±� with 〈σx〉n increasing
from approximately −1 to 1 with the energy increase from
−� to �. The IPR of well-localized states, namely those with
ζn � 0.7, strongly varies as a function of the state number [43]
and reaches the disorder-free value ζL = 3/4L at sufficiently
large n. For nonzero �, the n dependence of the IPR becomes
more narrow, corresponding to the delocalization.

Figure 3 shows the disorder-averaged spin (a), the IPR (b),
and the density of states (c) as a function of the energy. The
IPR shows an effective mobility edge [44], which sharpens
and shifts approximately to −� as � increases. As shown
in the panel (c), at � = 0 one observes a strong low-energy
tail in the density of localized states. By increasing �, the
number of the states in the tail decreases, demonstrating the
delocalization, as clearly seen also in the inset of the panel (b).

To understand qualitatively the effect of the Zeeman field
on delocalization, let us denote by ls the distance that a
particle can travel under the influence of the random magnetic
field before its spin becomes uncorrelated with the initial
one. By using again the random-walk approach, now in the
coordinate-spin space, for a semiclassical particle moving with
the velocity v, we obtain that ls is determined by the condition
�2(lm/v)2ls/ lm ∼ 1, so that it is natural to define

ls ≡ v2

�2lm
= 4

v2〈〈α2〉〉lα
�2

, (8)

where lm is given by Eq. (5). For states with energies En close
to zero such that |En| 	 〈〈α2〉〉, we can make a semiclassical
estimate v2 ∼ 〈〈α2〉〉 and obtain ls ∼ 〈〈α2〉〉2lα/�2.

Because long-range localization with ζn 	 lα occurs as a
result of interference of waves with the same spin scattered
by disorder [16,17], these localized states should have the
characteristic length 1/ζn � ls . Thus the random Zeeman field
can destroy the localization [45]. On qualitative level, the
destructive effect of decrease in ls with � is seen in Figs. 2(b)
and 3(b). Here, the states with ζn � l−1

s are still localized,
while the higher-energy states are already delocalized, leading
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FIG. 2. (a) Spin component 〈σx〉n and (b) log scale of the IPR
as a function of the state number for different Zeeman fields [the
legend is shown in (b)]. To avoid degeneracy, we use here 0+ = 10−3.

The horizontal dash-dotted line corresponds to ζL = 3/4L value.
(c) Actual realization of the random potential (solid line) and three
densities corresponding to the energies En = E0,−1, and 0. Here
α0 = 4, d = ξ = 0.5, and L = 40.

to the observed sharpening of the effective mobility edge and
shifting it to lower energies.

Since Hamiltonian (1) depends on spin randomly, in
addition to the above argument based on comparison of the
scales of ζ−1

n and ls , the delocalization and the dependence of
〈σx〉n on � can be obtained as follows. Let us consider the
matrix form Hpq of Hamiltonian (1) in the representation of
the degenerate basis states at � = 0 defined as

ψ̃2m ≡
[
φm(x)

0

]
e−iA(x), ψ̃2m+1 ≡

[
0

φm(x)

]
eiA(x), (9)

where φm(x) (m = 0,1, . . .) are the real eigenfunctions with
φ′′

m(x) = −[α2(x) + 2εm]φm(x), and eigenenergies εm. In this
basis the diagonal components are H2m,2m=H2m+1,2m+1=εm
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FIG. 3. Disorder-averaged quantities as a function of the state
energy for different Zeeman �’s [the legend is shown in (a)].
(a) Expectation value 〈σx〉n, (b) the IPR, where the inset shows
the fraction f of localized states (out of 300 lowest eigenstates)
with the ζn > 2ζL (dash-dot horizontal line), and (c) the density of
states. The averaging is performed over 103α(x) realizations with the
parameters same as in Fig. 2.

and the off-diagonal ones are expressed as

H∗
2m+1,2l = H2m,2l+1 ≡ �

∫ L

−L

φm(x)φl(x)e2iA(x)dx. (10)

A broad Fourier spectrum of random A(x) leads to appreciable
transition coefficients Hpq/� for localized states, which
would be negligibly small otherwise even if such states have
a considerable spatial overlap. This possibility of particle
transfer between different states leads to delocalization at
sufficiently strong �.

Now we can consider strong Zeeman field in more detail
by addressing the source of suppression of the spin-conserving
backscattering with the increase in �. At sufficiently large �,
neglecting the SOC, the single particle states can be presented
as |k,〈σx〉〉, with 〈σx〉 = ± 1, corresponding to the eigenstates
of σx in Eq. (1), momentum k, and energy k2/2 + 〈σx〉�. We
consider the random SOC as a perturbation, which, however,
prohibits the spin-conserving backscattering as the first-order
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FIG. 4. Schematic illustration of the spin-conserving backscat-
tering caused by the random SOC. Lower and upper parabolas
correspond to k2/2 − � and k2/2 + � branches, respectively, with
the virtual transitions shown by dashed lines.

process. Here this scattering |k,−1〉 → |−k,−1〉 occurs only
by involving intermediate |k′,1〉 states with the opposite spin,
as schematically illustrated in Fig. 4. The corresponding spin-
conserving backscattering matrix element behaves for k2 	
4� as ∼1/�, strongly decreasing the scattering probability
for low-energy states (see Appendix B) with the increase in �

and thus leading to the delocalization.

IV. GROUND-STATE DEPENDENCE ON
THE ZEEMAN FIELD

Now we consider how the developed approach can be
applied to the properties of the ground state. According to
the Hellmann-Feynman theorem [46], the expectation value of
the spin of the ground state can be written as 〈σx(� = 0)〉0 =
(dE0/d�)�=0 and, therefore, obtained by the �-perturbation
theory for the ground-state energy.

We begin by assuming that the Zeeman field is sufficiently
weak such that the ground-state spin can be written as
〈σx(�)〉0 = 〈σx(0)〉0 + �d〈σx(�)〉0/d�, where the deriva-
tive is calculated at � = 0. Here the spin-split ground state
forms a doublet well separated from the rest of the states. By
using perturbation theory for degenerate states [32] in the basis
of Eq. (9) we obtain the ground state:

ψ0(x) = 1√
2
φ0(x)

[
exp [−i(A(x) − χ0/2)]

− exp [i(A(x) − χ0/2)]

]
, (11)

where the phase χ0 is defined by H01 ≡ |H01| exp (iχ0).
The condition of this weak-field approximation is
max [|H0,2m+1|/(εm − ε0)] 	 1 for m � 1.

To find 〈σx(0)〉0, we assume that the ground-state
wave function is localized near a point x0 and can be
approximated by a Gaussian of width l0 as φ2

0(x) ≈
exp [−(x − x0)2/l2

0]/π1/2l0. Next, by using ψ0(x) in Eq. (11)
and approximating A(x) ≈ A(x0) + α(x0)(x − x0) we obtain
by Eq. (7):

〈σx(0)〉0 = − exp
[−α2(x0)l2

0

]
. (12)

This value, being exponentially dependent on the ground-state
parameters, strongly varies from realization to realization (see
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FIG. 5. Dependence of the ground state 〈σx(�)〉0 (main plot) and
the IPR (inset) for two typical realizations of the random potential
(see Appendix C for more details). As expected for low purity spin
states, |〈σx(0)〉0| 	 1, corresponding to typical l0|α(x0)| � 1 for the
chosen parameters of disorder, here the same as in Fig. 2.

Fig. 5). To get an order-of-magnitude estimate of 〈σx(0)〉0 we
consider a model ground state in the potential characterized
by γj = rj = 0.5 and γj+1 = −rj+1 = 0.5. This state has the
width l0 = √

ξ/α0 yielding 〈σx(0)〉0 = − exp (−α0ξ ). Next,
we calculate the inverse participation ratio for this state as

ζ0(0) =
√

α0

2πξ
. (13)

For given system parameters this yields ζ0(0) ≈ 1.12, similar
to the numerical results in the inset of Fig. 5.

Next, by means of the second-order perturbation theory and
the Hellmann-Feynman theorem, one can obtain the linear in �

term in 〈σx(�)〉0. To this end, we calculate �2 correction to the
energy by summing up over all transitions to the higher-energy
states in the Eq. (9) basis. The maximal contribution to
the energy correction is achieved at the states with energies
2α2(x0), lying high above the effective mobility edge. Such
states can be accurately approximated as sin(kx + δ)/

√
L,

extended to the total length of the system with a slowly varying
phase δ. The energy calculation can be done analytically
by using the steepest descent method [47] [provided that
2α(x0) l0 � 1] resulting in

d〈σx(�)〉0

d�
= − 2

|ε0| + 2α2(x0)
. (14)

This value is less sensitive to the disorder realization than
〈σx(0)〉0, as can be seen from the slope of 〈σx(�)〉0 in Fig. 5,
presenting the numerical evidence for the random Paschen-
Back effect. As it is seen in the main plot, 〈σx(�)〉0 tends to
−1 at sufficiently large �, as expected for the conventional
Paschen-Back effect [31]. Note that even at rather small �,
the linear term greatly exceeds 〈σx(0)〉0. The IPR shown in the
inset initially increases (see the Appendixes), corresponding to
a stronger localization, and then decreases to the values ∼ζL,
demonstrating the delocalization.

V. CONCLUSIONS AND OUTLOOK

We have studied the dependence of single-particle states on
the Zeeman field in a one-dimensional system with random
spin-orbit coupling. The observed dependence of the spin
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is nonlinear with the saturation at a sufficiently strong field,
corresponding to a macroscopic random Paschen-Back effect.
In such a system, the spin saturation is accompanied by particle
delocalization as both effects are due to suppression of the
role of the random spin-orbit coupling. These effects could
be engineered in a broad range of parameters in experimental
setups for cold atomic gases, therefore permitting a variety of
studies of this fundamental quantum effect at a macroscopic
level. Although the calculated quantities are based on a
particular model of disorder, our main estimates and qualitative
results, being obtained by means of general arguments, are not
restricted to the chosen model.
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APPENDIX A: CORRELATOR OF THE RANDOM
MAGNETIC FIELD

We present the correlator of the directions of the random
magnetic field Kmm(x ′,x) ≡ 〈〈m(x ′)m(x)〉〉 as

Kmm(x ′,x) = 〈〈cos[2(A(x ′) − A(x))]〉〉

= Re

〈〈∏
j

exp

[
2i

∫ Xj +d

Xj

α(y)dy

]〉〉
, (A1)

using the product over single-impurity intervals (Xj,Xj + d)
(as shown in Fig. 1), located between points x ′ and x and
note that the distribution in Eq. (4) allows one to separate
calculations of products and averaging. Taking a single interval
and assuming for simplicity ξ 	 d with

Jj ≡ 2
∫ Xj +d

Xj

α(y)dy = 2
√

2πγjα0ξ (A2)

yields

eiJj = cos(2
√

2πγjα0ξ ) + i sin(2
√

2πγjα0ξ ). (A3)

Since in the model of disorder we are considering, the ex-
pectation value 〈γj 〉 = 0, one obtains 〈〈sin(2

√
2πγjα0ξ )〉〉 =

0. Employing a “small change” approximation α0ξ 	 1 we
obtain

〈〈cos(2
√

2πγjα0ξ )〉〉 = 1 − 4π
〈
γ 2

j

〉
(α0ξ )2 + O((α0ξ )4).

(A4)

Making γj averaging with 〈γ 2
j 〉 = 1/12 and taking into

account that 〈〈α2〉〉 = √
π/12 × α2

0ξ/d yields with the same
accuracy

〈〈cos(2
√

2πγjα0ξ )〉〉 = 1 − 4
√

π〈〈α2〉〉ξd. (A5)
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FIG. 6. Correlator Kmm(0,x) (averaged over 103 realizations) for
two random potentials, both with d = 0.5. (a) α0 = 1, ξ = d/4, and
best-fitting parameter β = 0.03; (b) α0 = 0.06125, ξ = 4d , and best-
fitting parameter β = 0.026.

Next, we build the product over the intervals and obtain for
x ′ = 0 and d 	 |x| 	 L (2L is the total system length)

Kmm(0,x) = (1 − 4
√

π〈〈α2〉〉ξd)|x|/d ≈ exp(−β|x|), (A6)

where β = 4
√

π〈〈α2〉〉ξ. The corresponding correlation length
can be defined as

lm =
∫ ∞

0
Kmm(0,x)dx = 1

4
√

π〈〈α2〉〉ξ , (A7)

where we put the upper integration limit to infinity and the
lower limit to zero since we assume that lα 	 lm 	 L. By
noting that in our model of disorder the correlation length
of the spin-orbit coupling lα = √

πξ , we arrive at Eq. (5).
While the coefficient 4

√
π in Eq. (A7) depends on the details

of the model of disorder, the lm ∼ 1/〈〈α2〉〉ξ scaling is model
independent. The numerical results are presented in Fig. 6 for
two different sets of parameters. Note that at these values of
α0, ξ, and d one obtains β ≈ 0.033 in agreement with the best
fit of Kmm(0,x) (see caption of Fig. 6).

Having established the long-range behavior of the cor-
relator, it would be of interest to obtain its short-distance
behavior at |x − x ′| 	 lα . Taking into account that at these
short distances A(x) − A(x ′) ≈ α(x)(x − x ′), we obtain after
averaging of 〈〈cos [2(A(x ′) − A(x))]〉〉 in Eq. (A1)

Kmm(x ′,x) = 1 − 2〈〈α2〉〉(x − x ′)2. (A8)

Note that short- and long-range behavior ofKmm(x,x ′) is due to
different spatial scales. The long-range behavior is determined
by lm in Eq. (A7) while the short-range one (A8) is determined
by the length 1/〈〈α2〉〉1/2

. For the choice of parameters in Fig. 6
we have lm � 1/〈〈α2〉〉1/2

, leading to a cusplike dependence
presented in this figure.
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APPENDIX B: SPIN-CONSERVING BACKSCATTERING
MATRIX ELEMENT: SPIN-ORBIT COUPLING

AS A PERTURBATION

Here we illustrate the � dependence of the spin-conserving
backscattering in the random spin-orbit coupling field and
demonstrate that its probability rapidly decreases with the
increase in �. We assume strong Zeeman field limit, which
determines the spin states and the scattering due to the random
spin-orbit coupling.

We consider spin-conserving transition |k,σx = −1〉 →
|−k,σx = −1〉, which occurs at k2 < 4� via virtual transitions
to intermediate |k′,σx = 1〉 states, as shown in Fig. 4. Using
second-order perturbation theory we obtain for the spin-
conserving backscattering matrix element Mk resulting from
interactions with random spin-orbit coupling impurities

Mk = 1

4

∫ ∞

−∞
αqα2k+q

(2k + q)q

2� + (k + q)2/2 − k2/2

dq

2π
, (B1)

where q = k′ − k, and we have taken into account that the
single spin-flip scattering matrix element between k and
k′ states is equal to αk′−k(k + k′)2 [48], with the Fourier
component

αp ≡
∫ ∞

−∞
α(x)e−ipxdx. (B2)

The impurities have a Gaussian shape with the amplitude
|γj | = 1 resulting in αp = √

2πα0ξ e−p2/2ξ 2
with αqα2k+q =

2πα2
0ξ

2e−[q2+(2k+q)2]ξ 2/2. Assuming a sufficiently large width
ξ such that exp (−�ξ 2) 	 1, we can use the steepest descent
method to calculate the integral in Eq. (B1), where the
maximum backscattering probability is due the “symmetric”
transition with the momentum of the intermediate state
k + q = 0. As a result, we obtain for the matrix element for
the states near the bottom of the −� subband

Mk = −
√

π

8
α2

0
ξ

�
k2e−k2ξ 2

. (B3)

This value of |Mk|2 rapidly decreases with the increase in �

leading to delocalization by the Zeeman field.

APPENDIX C: � DEPENDENCE OF THE INVERSE
PARTICIPATION RATIO

We begin with the study of the � dependence of the ground-
state inverse participation ratio (IPR) in the limit of weak
Zeeman field, where the analysis can be done perturbatively.
We seek for the ground state ψ̃0(x) in the form

ψ̃0(x) =
√

1 − ν√
2

[
ψ0(x)eiχ0/2

−ψ∗
0 (x)e−iχ0/2

]
+ 1√

2

∑
k

[
pkψk(x)eiχk/2

−p∗
kψ

∗
k (x)e−iχk/2

]
, (C1)

where ψ0 is the ground-state wave function in the � = 0 limit
with the energy ε0 [cf. Eq. (9)] and the functions ψk(x) are
extended over the system length 2L wave functions of the
quasicontinuous spectrum with εk = k2/2. Small coefficients

pk can be obtained by perturbation theory as

pk = �

εk − ε0
ηk, (C2)

where

ηk = e−i(χ0+χk )/2
∫ L

−L

ψ∗
0 (x)ψ∗

k (x)dx. (C3)

The parameter ν is a small probability to find the particle in a
delocalized state:

ν =
∑

k

∣∣p2
k

∣∣ = L

π

∫ ∞

−∞

∣∣p2
k

∣∣dk, (C4)

to conserve the total norm of the wave function. The probability
ν can be calculated by the steepest descent method similarly
to the second-order correction to the ground-state energy
assuming the Gaussian ground state with the maximum
probability density at x0 point as

ν = �2

[|ε0| + 2α2(x0)]2
. (C5)

Function |ψ̃0(x)|4 has a complex structure, with, however,
only two terms giving finite contribution to the IPR in the
L → ∞ limit, as can be seen by counting the powers of L

in the corresponding terms. The relevant contributions can be
presented in the form:

|ψ̃0(x)|4 = (1 − ν)2[|ψ0(x)|4 + 2|ψ0(x)|2
×(ψ∗

0 (x)ψk(x)e−iχ0/2eiχk/2p∗
k + c.c.)]. (C6)

Here we concentrate on these terms having different orders in
� and present the inverse participation ratio in the form of the
� expansion:

ζ0(�) = ζ0(0) + ζ ′
0(0)� + 1

2ζ ′′
0 (0)�2. (C7)
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FIG. 7. Dependence of the ground-state spin on the Zeeman �

for random (solid line) and regular [as in Eq. (C11), dashed line]
SOC. These dependences are very similar for both types of coupling.
Inset shows the qualitative difference between the IPR for the random
and the regular realizations. While at small � the behavior of the IPR
is the same, their large � dependences are different: the IPR rapidly
decreases for the random SOC and returns to its value at � = 0 for
the regular one.
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By using Eq. (C6), the term quadratic in � can be rewritten as
1
2ζ ′′

0 (0)�2 = −2ζ0(0)ν, (C8)

leading to a decrease in ζ0(�) with the increase in the Zeeman
field, as expected in the delocalization scenario.

The term linear in � has the form

ζ ′
0(0)� = 2

∑
k

∫ L

−L

|ψ0(x)|2(ψ∗
0 (x)ψk(x)

× e−i(χ0−χk )/2p∗
k + c.c.)dx. (C9)

Note that, while ψ0(x) and ψk(x) are orthogonal,
|ψ0(x)|2ψ0(x) and ψk(x) are, in general, not. As a result we
obtain the linear correction to the IPR in the form

ζ ′
0(0) = 4 Re

∑
k

e−iχ0

εk − ε0

∫ L

−L

ψ∗
0 (x)ψ∗

k (x)dx

×
∫ L

−L

|ψ0(x)|2ψ∗
0 (x)ψk(x)dx, (C10)

demonstrating that IPR can behave linearly with �, as
presented in Fig. 7, due to change in the shape of the
ground-state wave function by adding strongly x-dependent
functions varying on the spatial scale less than the spatial
scale of ψ0(x).

One more point on the importance of disorder deserves to
be mentioned here. To demonstrate its role, we have chosen
a realization of α(x) and performed a calculation of the �-
dependent IPR of the ground state with the Hamiltonian

H = k2

2
+ V (x) + α(x0)kσz + �σz, (C11)

where V (x) = −α2(x)/2 and x0 is the position of the maxi-
mum of the ground-state density in this potential. Note that
Hamiltonian (C11) resembles the Hamiltonian (1), but has a
constant SOC. At sufficiently small � the properties of the
ground state are determined mostly by local SOC α(x0). The
effect of the randomness becomes visible only at relatively
large �, where the ground state is already modified by a
contribution of the extended states. Although in both cases
the value of spin saturates at 〈σx〉 = −1, as expected in the
conventional Paschen-Back effect, the localization is restored
for a constant SOC and disappears for a random one, as can
be seen in Fig. 7. This is due to different properties of the
interstate transition matrix elements [see Eq. (10)], where the
broad Fourier spectrum of random A(x) extends the set of
transitions while for a regular coupling this set is strongly
restricted and delocalization does not occur.
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