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Tunable spin-orbit coupling for ultracold atoms in two-dimensional optical lattices
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Spin-orbit coupling (SOC) is at the heart of many exotic band structures and can give rise to many-body states
with topological order. Here we present a general scheme based on a combination of microwave driving and lattice
shaking for the realization of two-dimensional SOC with ultracold atoms in systems with inversion symmetry.
We show that the strengths of Rashba and Dresselhaus SOC can be independently tuned in a spin-dependent
square lattice. More generally, our method can be used to open gaps between different spin states without
breaking time-reversal symmetry. We demonstrate that this allows for the realization of topological insulators
with nontrivial spin textures closely related to the Kane-Mele model.
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I. INTRODUCTION

The coupling between a particle’s spin and its momentum
plays an important role in many aspects of modern physics.
It is responsible for the familiar fine-structure splitting of
atomic levels [1], central to the rapidly growing field of
spin-orbitronics [2], and a key requirement for realizing
time-reversal (TR) invariant topological insulators [3–11].

When interactions are added to the mix, the physics can
become even richer. For example, it has been suggested that
interacting bosons subject to spin-orbit coupling (SOC) can
fermionize in two dimensions and form exotic many-body
states [12]. In topological insulators, strong interactions are
predicted to give rise to the topological Mott insulator phase,
where the electron spin acquires the nontrivial band topology
[13]. However, the physics of strongly interacting particles in
the presence of large SOC has not yet been experimentally
explored in depth, partly due to the relatively weak SOC
achievable in solids.

Ultracold atoms provide a promising alternative platform
for studying this situation [14]. In these systems, strong
interactions are routinely obtained by increasing the depth
of optical lattices or utilizing Feshbach resonances [15,16].
However, since atoms are neutral and experience no Lorentz
force, SOC does not naturally occur and must be engineered.

The SOC Hamiltonians of interest are the Rashba [17] and
Dresselhaus [18] couplings, which take the form

ĤR,D = αR,D(σ̂ xky ∓ σ̂ ykx). (1)

In solid-state systems, SOC is always TR invariant because
the Dirac equation describing the underlying electron orbits
respects TR symmetry—consequently, any generic SOC can
be described by a linear combination of ĤR and ĤD.

In cold atom systems, a common technique to generate
SOC is to couple an atom’s momentum to its hyperfine state,
which acts as a pseudospin, with Raman lasers [19–22]. Using
this method, equal weights of Rashba and Dresselhaus SOC
[23–26] and pure Dresselhaus SOC [27] have been experimen-
tally realized in the absence of an optical lattice.

Implementing SOC in optical lattices has proven to be
more challenging. Although SOC with equal Rashba and

Dresselhaus magnitudes has been proposed [28–30] and
realized [31,32], to access more general forms of SOC, most
proposals [33–37] and recent experimental work [38] focus on
generating non-Abelian gauge fields, which can be considered
as TR-breaking forms of SOC. There exist only a few proposals
for specific forms of (TR invariant) SOC [39,40] and, thus far,
no experimental realization.

Here, we introduce a general scheme for realizing generic
SOC in two-dimensional (2D) optical lattices. We apply it to
spin-dependent square lattices and show that independently
tunable Rashba and Dresselhaus SOC can be implemented.
Our method relies on a combination of microwave (MW)
drives to change the spin states and lattice shaking [29]
to couple the spins with the atomic motion. If the optical
lattice is inversion symmetric, the resulting SOC can be TR
invariant. We show that this allows for the realization of TR
invariant topological insulators with nontrivial spin textures in
the presence of spin-dependent magnetic fields [41].

II. GENERAL PROCEDURE

We consider two independent (pseudo) spin states |↑〉 and
|↓〉 in two dimensions, both of which are subject to the same
dispersion relation ε(k). We assume that the corresponding
Hamiltonian is invariant under the antiunitary TR operator θ̂ :

Ĥ(k) = θ̂ †Ĥ(−k)θ̂ , (2)

which implies that ε(−k) = ε(k) is symmetric.
In Fig. 1(a) we show the specific model which we use to

derive SOC in a square lattice, where the energy of identical
Bloch wave functions is reversed for different spin states. In
this case θ̂ = Kiσ̂ y ⊗ τ̂ x consists of a spin flip (iσ̂ y) and a
simultaneous change of the Bloch band described by τ̂ x =
|+〉〈−| + H.c., where K denotes complex conjugation. Our
basis states are labeled by the pseudospin σ =↑ , ↓ and the
two motional degrees of freedom τ = ± associated with the
band structure.

Our goal is to engineer SOC, which mixes the two
pseudospin states |↑〉,|↓〉 while preserving TR. That is, the
resulting Hamiltonian should be TR invariant and should not
commute with σ̂z. In general, we need to engineer terms of the
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FIG. 1. SOC in optical lattices: (a) Starting with two pseudospins
|↑〉 and |↓〉 with band structures related by reversing their order and
offsetting them by energy h̄ω0, tunable SOC is realized for states
|⇑〉 = |↑,+〉 and |⇓〉 = |↓ ,−〉 by a combination of microwave driv-
ing and lattice shaking. The latter depends on the Berry connection
Â [see Eq. (6)] and can be implemented by an oscillatory force
F(t) with frequency ω. The scheme can be realized, e.g., in an
inversion-symmetric, spin-dependent square lattice (b), and lifts the
spin degeneracy in the band structure up to Kramers degeneracies (c).

form

ĤSOC(k) = f (k) · σ̂ , (3)

which are TR invariant if f (k) is an odd function of k,
i.e., f (k) = − f (−k). The lattice versions of Rashba and
Dresselhaus SOC are obtained by choosing

f R,D(k) = αR,D(sin ky, ∓ sin kx)T . (4)

To engineer the terms in Eq. (3), we consider a second-
order Raman transition as shown in Fig. 1(a), which resonantly
couples |⇑〉 = |↑ ,+〉 to |⇓〉 = |↓ ,−〉 through the virtually
excited states |↓ ,+〉 and |↑ ,−〉. While the specific model
considered so far guarantees an ideal Franck-Condon overlap
for this process, it is not a strictly necessary condition for our
protocol to work.

Spin flips between |↑〉 and |↓〉, with energy cost h̄ω0, are
achieved by two direct MW transitions j = 1,2 with Rabi
frequencies �

(j )
MW. The second leg of the Raman transition

between bands |+〉 and |−〉 of the same spin state is realized by
near-resonant lattice shaking with frequency ω. This coupling
is described by [42–44]

ĤF (k,t) = F(t) · Â(k), (5)

where F(t) = (Fx cos(ωt),Fy cos(ωt + φF ))T is an oscillatory
force, which we assume to be weak: Fa 
 h̄ω, where a is
the lattice constant. Without loss of generality, we fix the
overall phase of lattice shaking. The elements of the U (2)
Berry connection are

Aμ,ν(k) = 〈uμ(k)|i∇k|uν(k)〉, (6)

with μ,ν = ± and where |uμ(k)〉 denotes the cell-periodic
Bloch wave function corresponding to the state |μ〉 at quasi-
momentum k.

For two-photon resonance, the MW frequencies are ω1,2 =
ω0 ± ω. Assuming ω0 � ω we obtain an effective Rabi
coupling between |⇑〉 and |⇓〉 of the form

ĤSOC(k) ∝
∑

j

h̄�
(j )
MW

�k
F · A−,+(k)|⇓〉〈⇑| + H.c. (7)

The k-dependent detuning from the intermediate state is given
by �k = 2ε(k) + h̄ω if the band structure is particle-hole
symmetric, as in Fig. 1(a). Note that Eq. (7) is in the form
of Eq. (3), where σ̂ is defined in the basis of |⇑〉,|⇓〉 and

f (k) ≡ h̄�
(j )
MW

�k
F · A−,+(k).

Equation (7) is TR invariant and thus realizes synthetic SOC
if A−,+(k) = −A−,+(−k). To guarantee this symmetry, we
consider systems which are invariant under spatial inversion,
P̂ Ĥ(k)P̂ = Ĥ(−k). Consequently, cell-periodic Bloch states
|uμ(±k)〉 are related by

P̂ |uμ(k)〉 = eiχμ(k)|uμ(−k)〉, (8)

where χμ(k) is determined by the gauge choice. It follows that

Aμ,ν(−k) = −ei[χμ(k)−χν (k)]Aμ,ν(k). (9)

If we can make a gauge choice where χμ(k) = χν(k) for
all relevant bands μ,ν, then A−,+(k) is an antisymmetric
function, as required for TR invariance. Note, however, that
the value of χμ(kTR) = 0,π at TR invariant momenta kTR ≡
−kTRmodG, with G a reciprocal-lattice vector, is fixed and
cannot be changed by gauge transformations. In this case,
eiχμ(kTR) = ξμ(kTR) = ±1 denotes the parity eigenvalues at
kTR. Therefore, in addition to inversion symmetry, we require
that

ξμ(kTR) = ξν(kTR) for all μ,ν, (10)

at TR invariant momenta. As we later show, this condition can
be dropped for particles in a spin-dependent artificial magnetic
field.

The effective Hamiltonian in the |⇑〉-|⇓〉 subspace is derived
in detail in Appendix A. When only MW beam j (with phase
φ

(j )
MW) is switched on, we obtain

Ĥ(j ) = ε(k) + |R1(k)|2|⇓〉〈⇓| + |R2(k)|2|⇑〉〈⇑|
�k

+
(
h̄�

(j )
MW

)2

4�k
(δj,1|⇓〉〈⇓| + δj,2|⇑〉〈⇑|)

+ h̄�
(j )
MW

2�k

[|⇓〉〈⇑|e−iφ
(j )
MWR∗

j (k) + H.c.
]
, (11)

where Rj = 1
2 [FxA+,−

x + Fye
iφ

(j )
F A+,−

y ] with φ
(1)
F = φF =

−φ
(2)
F . The first two lines in Eq. (11) describe the free

dispersion, which is renormalized by spin-dependent ac Stark
shifts. If A+,−(k) is antisymmetric, the last line in Eq. (11)
describes the desired TR invariant SOC.

III. SOC IN A SPIN-DEPENDENT SQUARE LATTICE

We proceed by considering the specific Berry connection
for a spin-dependent square lattice:

A+,−(k) = (Ax sin kx,Ay sin ky)T , Ax,y ∈ R. (12)
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Note that |R1(k)|2 = |R2(k)|2 = |R(k)|2 in this case. The last
line of Eq. (11) now becomes

Ĥ(j )
SOC(k) = h̄�

(j )
MW

4�k
(sin kx, sin ky)

(
g

(j )
x −f

(j )
y

f
(j )
x −g

(j )
y

)(
σ̂ x

σ̂ y

)
,

(13)

with tunable amplitudes given by

g(j )
x = FxAxcos

(
φ

(j )
MW

)
, f (j )

x = FyAycos
(
φ

(j )
MW + φ

(j )
F

)
,

f (j )
y = FxAxsin

(
φ

(j )
MW

)
, g(j )

y = FyAysin
(
φ

(j )
MW + φ

(j )
F

)
.

With only one microwave drive, the spin-dependent ac Stark
shifts in Eq. (11) break TR invariance. The simplest way to
restore TR symmetry is to switch on both MW beams with
equal Rabi frequencies �

(1)
MW = �

(2)
MW. In this case, however,

we can realize only equal-strength Rashba and Dresselhaus
SOC due to interference effects between the two paths j = 1
and 2 (see Appendix B).

Alternatively, TR symmetry can be restored for an effective
Floquet Hamiltonian when the two MW beams are switched
on and off in an alternating fashion with frequency ωs . By
choosing equal MW parameters (φ(1)

MW = φ
(2)
MW,�

(1)
MW = �

(2)
MW)

and switching the phase of the lattice shaking φF between φ0
F

while �
(1)
MW �= 0 is on, and −φ0

F while �
(2)
MW �= 0 is on, the spin-

orbit part of the Hamiltonian becomes time independent. For
the choice φMW = −φ0

F = π/2, this realizes tunable Rashba
and Dresselhaus couplings

αR,D = h̄�MW

8�

(
FxAx ± FyAy

)
, (14)

where we approximated �k ≈ �.
To lowest order in 1/ωs , the effective Floquet Hamiltonian

contains SOC with amplitudes αR,D given in Eq. (14), and the
ac Stark shift becomes (|R(k)|2 + |h̄�MW|2/8)/�k, indepen-
dent of the spin. More generally, we show in Appendix A that
the effective Floquet Hamiltonian is TR invariant to all orders
in 1/ωs .

A realistic implementation of our scheme is possible using a
square optical lattice with hopping amplitude J , superimposed
by a spin-dependent superlattice with offset ±δσ̂ z on the
respective sublattices [see Fig. 1(b)]. A similar case has been
considered in Ref. [34]. The resulting Bloch Hamiltonian is
particle-hole symmetric and reads Ĥ0(k) = ε(k)τ̂ z ⊗ σ̂ z. In
the limit of a deep superlattice (δ � J ) this realizes a reversed
band structure, and we obtain ε(k) = −(δ + β2

k4J 2/δ), where
βk = cos(kx) + cos(ky), and the Berry connection becomes
spin dependent, i.e., A+,−(k) ∝ σ̂ z (see Appendix B). In the
limit δ � J we obtain A+,−(k) = σ̂ z(sin kx, sin ky)T J/δ, as
anticipated in Eq. (12).

Tunable Rashba and Dresselhaus SOC can be implemented
as previously described using the model shown in Fig. 1(a).
To account for the additional minus sign due to the σ̂ z term
in A+,−, the phase φ

(1)
MW = φ

(2)
MW + π needs to be shifted. The

resulting SOC amplitudes are αR,D = λSOC(Fx ± Fy), where
λSOC = h̄�MWJ/(8δ�).

In Fig. 2 we present an exact calculation of the effective Flo-
quet Hamiltonian in the square lattice for realistic experimental
parameters. The band structure in Fig. 2(a) shows Kramers

Floquet
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FIG. 2. SOC in a spin-dependent square lattice: (a) We show
the full band structure of the Floquet Hamiltonian (in units of
h̄ωs = h̄ω/4 = 4J ). Kramers degeneracies at TR invariant momenta
[crosses in (c)] are a direct consequence of the TR invariance of the
system. (b) The bands of the free Hamiltonian are shown for δ = 6J ,
as chosen in the numerics. Curves for all values of ky are plotted on
top of each other. In (c), we compare the value of the gap between
the lowest two bands �SOC (due to SOC) obtained from the exact
Floquet calculation and from the perturbative result in Eq. (11). We
set h̄�MW = 5J and ω0 = 100ω.

degeneracies as a consequence of TR symmetry. The exact
result closely resembles the perturbative calculation [based on
Eq. (11)] shown on the same scale in Fig. 1(c). This agreement
is confirmed by the comparison of the gap �SOC between the
two lowest-lying bands in Fig. 2(c).

IV. SOC IN THE PRESENCE OF MAGNETIC FIELDS

Now we demonstrate how SOC can be generated in more
general situations. Our starting point is two identical but
time-reversed copies of a Chern insulator (|↑〉 and |↓〉)
with opposite Chern numbers C = ±1. This situation was
considered by Kane and Mele [3], who showed that even
when SOC mixes the two systems a Z2 topological invariant
characterizing the topological insulator remains quantized as
long as TR symmetry is retained. While two time-reversed
copies of a system with equal but opposite Chern numbers
have been realized experimentally using ultracold atoms [41],
the effect of SOC has not yet been investigated in this context.

A direct generalization of our scheme is shown in Fig. 3.
As before, TR invariant SOC between the Bloch band
|⇑〉 = |u1(k),↑〉 and its TR partner |⇓〉 = K|u1(−k), ↓〉 at
quasimomentum k is generated by a combination of MW
transitions and lattice shaking. In contrast to the case of the
reversed Bloch bands in the simplified model of Fig. 1(a),
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FIG. 3. SOC in magnetic fields: Two identical but time-reversed
band structures, with opposite Chern numbers [41] for spins |↑〉
and |↓〉 (indicated by opposite cyclotron orbits), can be coupled by
microwave beams and lattice shaking. A two-photon process through
a virtually excited state allows for the realization of TR invariant
SOC.

the MW transitions are renormalized by a gauge-dependent
Franck-Condon overlap Km,n(k) = 〈Kum(−k)|un(k)〉. This
allows us to drop condition (10) and assume only that the
system has inversion symmetry [see Eq. (8)]. As a result (see
Appendix C for details) the effective Rabi coupling between
|⇑〉 and |⇓〉 is an antisymmetric function of k, independent of
the gauge choice.

Here we only consider the case when both MW beams
�

(1,2)
MW = �MW are switched on simultaneously. To avoid spin-

dependent ac Stark shifts, we make the choice φF = 0, corre-
sponding to linear lattice shaking. These conditions guarantee
TR invariance of the resulting Hamiltonian (see Appendix C
and Ref. [45]). Furthermore, we choose φ

(1)
MW = φ

(2)
MW + π to

obtain constructive interference between the two pathways.
In Fig. 4, we present an exact calculation of the band

structure in a Hofstadter model [41,46]. When MW coupling

FIG. 4. SOC in the Hofstadter model: (a) We start from two
spin-degenerate time-reversed bands in the Hofstadter model (dashed
lines) at magnetic flux per plaquette α = ±1/4. Coupling the bands
by MW beams and lattice shaking leads to TR invariant SOC,
which partly lifts the spin degeneracy (solid lines). The two lowest
bands are a Z2 topological insulator, which can be seen from the
eigenvalues exp(iϕW ) of the U (2) Wilson loop (b). Parameters
are h̄ω = 6J,h̄ω0 = 100J,h̄�MW = 5J,φMW = π , and Fx = Fy =
5J/a, where J is the tunneling amplitude.

and lattice shaking are switched on, the initial spin degeneracy
is lifted by the presence of synthetic SOC. At TR invariant
momenta, we obtain Kramers degeneracies as a consequence
of the symmetry. The resulting band structure is a Z2

topological insulator, which can be checked by calculating
the winding of the U (2) Wilson loops [47] (see Fig. 4). Wilson
loops can be directly measured [42,44] to experimentally test
our prediction. Our scheme can also be applied to add SOC
to the Haldane model [48,49] more closely resembling the
situation considered in the Kane-Mele model [3].

V. SUMMARY AND OUTLOOK

In this paper we introduced a general scheme for realizing
TR invariant synthetic 2D SOC in optical lattices. We made use
of a combination of direct MW transitions and near-resonant
lattice shaking, which provides the required momentum de-
pendence in the effective Hamiltonian. Spin-dependent optical
lattices provide a realistic platform where our scheme can
be used to implement Rashba and Dresselhaus SOC with
fully tunable strengths. We expect that this will not only
enable quantum simulations of ubiquitous model Hamiltonians
known from solid-state physics but will also allow for an
experimental investigation of exotic physics related to SOC,
ranging from studies of supersymmetric Hamiltonians [50] to
statistical transmutations induced by strong interactions [12].

Our scheme can also be used to introduce SOC in the
presence of magnetic fields. In particular, it allows for the
realization of TR invariant Z2 topological insulators with
nontrivial spin textures, as in the celebrated Kane-Mele model
[3]. This will enable experiments with ultracold atoms to
explore topologically protected edge states, in a situation
closely resembling realistic solids with strong interactions in
the presence of SOC.
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APPENDIX A: SOC HAMILTONIAN FOR THE MODEL
WITH REVERSED BLOCH BANDS

In this appendix we present a detailed derivation of the
effective SOC Hamiltonian explained in the main text. We
consider the idealized situation shown in Fig. 1(a), where
the Bloch bands corresponding to spin-up (|↑〉) particles are
obtained by reversing the order of the Bloch bands associated
with the spin-down (|↓〉) degrees of freedom and shifting them
in energy by an amount h̄ω0. Without the additional couplings,
the free Hamiltonian reads (we use h̄ = 1 in all appendices)

Ĥ0(k) = ε(k)σ̂ z ⊗ τ̂ z + ω0

2
(1 − σ̂ z). (A1)
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Here σ̂ z = |↑〉〈↑| − |↓〉〈↓| acts on (pseudo) spin degrees of
freedom, and τ̂ z = |+〉〈+| − |−〉〈−| labels motional degrees
of freedom associated with the band structure; The correspond-
ing cell-periodic Bloch wave functions are |u±(k)〉.

We assume that pseudospins are offset in energy by ω0. To
eliminate ω0 from the Hamiltonian, we introduce a rotating
basis |↓̃〉 = e−iω0t |↓〉. In the new frame the free part becomes

Ĥ0(k) = ε(k)σ̂ z ⊗ τ̂ z, (A2)

and to keep the notation compact we replace |↓̃〉 by |↓〉.

1. Lattice shaking

As a first step towards SOC, we introduce couplings
between the two bands |u±(k)〉 by lattice shaking. To this
end an oscillating force is applied, which will be parametrized
by

F(t) = exFx cos(ωt) + eyFy cos[ωt + φF (t)]. (A3)

We assume that the driving frequency ω is close to, but not in
resonance with, the band gap 2|ε(k)|; φF (t) denotes the phase
of the driving. As a result of this force, the quasimomentum
of particles in the Brillouin zone changes in time:

k(t) = k(0) −
∫ t

0
dτ F(τ ). (A4)

For simplicity we assume that the Bloch oscillation fre-
quency is small compared to the shaking frequency,

|F|a 
 ω, (A5)

allowing us to approximate k(t) ≈ k(0) ≡ k. Then we obtain
the following Hamiltonian describing the effect of the oscilla-
tory force (see, e.g., Refs. [42–44]):

ĤF (k,t) = F(t) · Â(k). (A6)

Next we make use of the rotating wave approximation
(RWA), which is justified because |Â · F| � |F|a 
 ω and
since we assume that ω ≈ 2|ε(k)| is comparable to the band
gap. We use the decomposition

Â(k) = Ax(k)τ̂ x + Ay(k)τ̂ y + Az(k)τ̂ z, (A7)

where Aμ are real vectors (μ = x,y,z) with components Aμ

i

(i = x,y). For spin |↑〉, where |+〉 is lower in energy than |−〉,
the RWA result is

F(t) · Â(k)
RWA≈ R(k,φF (t))eiωt | + , ↑〉〈−, ↑ | + H.c.,

(A8)

where R(k,φF ) is defined by

R(k,φF ) = 1
2

[
Fx

(
Ax

x − iAy
x

) + Fye
iφF

(
Ax

y − iAy
y

)]
. (A9)

For spin |↓〉 on the other hand, where |+〉 is higher in energy
than |−〉, the RWA result is

F(t) · Â(k)
RWA≈ R(k, − φF (t))e−iωt | + , ↓〉〈−, ↓ | + H.c.

(A10)

Note that within the RWA we may also neglect the terms
F(t) · Az(k) which are oscillating at frequency ω.

2. MW couplings

To obtain an effective SOC Hamiltonian for the two
pseudospin states

|⇑ ,k〉 = |↑〉|u+(k)〉, |⇓ ,k〉 = |↓〉|u−(k)〉, (A11)

we include MW couplings between different spins. They will
only be switched on one at a time to avoid interference
effects, and their frequencies are chosen such that |⇑〉 and
|⇓〉 are resonantly coupled by a second-order process. The
Hamiltonians for these two processes (j = 1,2) are given by

Ĥ(j )
MW(t) = �

(j )
MW cos

(
ωj t + φ

(j )
MW

)
σ̂ x, (A12)

where ω1 = ω0 + ω and ω2 = ω0 − ω. We assume that

ω0 � ω (A13)

such that ω1,2 > 0 before going to the frame rotating with
frequency ω0.

In the frame rotating with frequency ω0, on the other hand,
ω1,2 are replaced by ω1,2 = ±ω. The last condition Eq. (A13)
together with the assumption∣∣�(j )

MW

∣∣ 
 ω, j = 1,2 (A14)

justifies using the RWA, from which we obtain

Ĥ(1)
MW(t)

RWA≈ �
(1)
MW

2
ei(ω1t+φ

(1)
MW)| + , ↑〉〈+, ↓| + H.c., (A15)

Ĥ(2)
MW(t)

RWA≈ �
(2)
MW

2
ei(ω2t+φ

(2)
MW)| − , ↑〉〈−, ↓| + H.c. (A16)

3. Hamiltonian in the RWA

Combining the terms derived above by applying the RWA
leads to the following Hamiltonian, formulated in the frame
rotating at frequency ω0. If the MW beam j = 1 is switched
on we obtain

Ĥ(1)
tot (k) = Ĥ0(k) +

[
�

(1)
MW

2
ei(ω1t+φ

(1)
MW)| + , ↑〉〈+, ↓|

+R(k,φF (t))eiωt | + , ↑〉〈−, ↑ |

+ R(k, − φF (t))e−iωt | + , ↓〉〈−, ↓ | + H.c.

]
,

(A17)

and a similar expression is derived when MW beam j = 2 is
switched on.

4. Effective Hamiltonian

When both lattice shaking and one of the MW drivings (j )
is switched on, we obtain an effective Hamiltonian coupling
|⇑〉 and |⇓〉 from second-order perturbation theory and within
the RWA. In the frame rotating with frequency ω0 it reads

Ĥ(j ) = ε(k) + |R1(k)|2|⇓〉〈⇓| + |R2(k)|2|⇑〉〈⇑|
�k

+
(
�

(j )
MW

)2

4�k
(δj,1|⇓〉〈⇓| + δj,2|⇑〉〈⇑|)

+ �
(j )
MW

2�k
[|⇓〉〈⇑|e−iφ

(j )
MWR∗

j (k) + H.c.]. (A18)
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Here �k = 2ε(k) + ω and we introduced R1(k) = R(k,φF (t))
and R2(k) = R(k, − φF (t)). The first line includes the bare
dispersion ε(k), ac Stark shifts for both pseudospins from
lattice shaking, as well as MW driving.

5. Floquet Hamiltonian

The spin-dependent ac Stark shift corresponds to a broken
TR symmetry. In order to eliminate it, we consider a pulsed
sequence where the two MW beams j = 1,2 are switched on
and off in an alternating fashion. In the first interval, from
t = 0 to Ts/2, only the j = 1 beam is operating, and from
t = Ts/2 to t = Ts only the j = 2 beam is switched on. When
j = 2 is acting on the system, the phase of the driving force
is reversed, i.e., φF (t) = −φ0

F for Ts/2 < t < Ts and φF (t) =
φ0

F for 0 < t < Ts/2. The switching frequency is defined by
ωs = 2π/Ts . These dynamics give rise to an effective Floquet
Hamiltonian Ĥeff which we calculate in the limit of large ωs

using the Magnus expansion. To lowest order we obtain for
�

(1)
MW = �

(2)
MW = �MW and φ

(1)
MW = φ

(2)
MW = φMW

Ĥ(0)
eff (k) = ε(k) + |R1(k)|2 + |R2(k)|2 + (�MW)2/4

2�k

+ �MW

2�k

[|⇓〉〈⇑|e−iφMWR∗(k,φ0
F

) + H.c.
]
, (A19)

where the first line describes how the dispersion relation is
renormalized. The second line represents SOC and can be
written as

ĤSOC(k) = �MW

2�k

{
σ̂ xRe

[
eiφMWR

(
k,φ0

F

)]
− σ̂ yIm

[
eiφMWR

(
k,φ0

F

)]}
. (A20)

This term is TR invariant in the presence of the following
symmetry,

R
(−k,φ0

F

) = −R
(
k,φ0

F

)
, (A21)

as discussed in the main text. The properties of the resulting
SOC depend on off-diagonal elements of the Berry connection
Â(k) and can be tuned by the phases φ0

F of the shaking and
φMW of the MW beams.

Higher-order terms in the Magnus expansion give rise to
corrections in the effective Floquet Hamiltonian, that may be
relevant for the effective band structure. Now we prove that
such corrections are TR invariant to all orders if the SOC
Hamiltonian has this property. The effective Hamiltonian Ĥ(∞)

eff
is defined as

Ûk = e−iTsĤ(∞)
eff (k) = e−iĤ(2)(k)Ts/2e−iĤ(1)(k)Ts/2, (A22)

and it is TR invariant if θ̂ †Ĥ(∞)
eff (k)θ̂ = Ĥ(∞)

eff (−k), i.e.,
for θ̂ †Ûk θ̂ = Û

†
−k. Because by construction θ̂ †Ĥ(2)(k)θ̂ =

Ĥ(1)(−k) it follows that

θ̂ †Ûk θ̂ = eiĤ(1)(−k)Ts/2eiĤ(2)(−k)Ts/2 = Û
†
−k. (A23)

APPENDIX B: SOC IN A SPIN-DEPENDENT
SQUARE LATTICE

In this Appendix we apply our idealized scheme to the
realistic situation of a spin-dependent square lattice. As

described in the main text, the Hamiltonian consists of nearest-
neighbor hopping with amplitude J , and a spin-dependent
superlattice potential generating energy offsets ±δ for opposite
spins and different sublattices. In second quantization, the
Hamiltonian reads

Ĥ = −J
∑
〈i,j〉

(â†
i,σ âj,σ + H.c.) + δ

∑
j

(−1)σ (−1)j â†
j,σ âj,σ ,

(B1)

where (−1)j = −1(+1) for j from the A (B) sublattice, and
similarly (−1)↓ = −1 and (−1)↑ = 1.

1. Band structure

The Bloch Hamiltonian can conveniently be written

Ĥ0(k) = δσ̂ z ⊗ τ̃ z − 2Jβk τ̃
x, (B2)

where βk = cos(kx) + cos(ky) and the Pauli matrix τ̃ z is
defined in the basis |A〉,|B〉 of the A and B sublattice. Because
{Ĥ0(k),τ̃ y} = 0, the Hamiltonian is particle-hole symmetric
and we can write Ĥ0(k) = ε(k,σ )τ̂ z, where τ̂ z is defined in
the eigenbasis.

The cell-periodic Bloch states |u±
k,σ 〉, with τ̂ z|u±

k,σ 〉 =
±|u±

k,σ 〉, can conveniently be written in the eigenbasis |±y〉
of τ̂ y ≡ τ̃ y :

|u±
k,σ 〉 = (|+y〉 ± eiϑk,σ |−y〉)/

√
2. (B3)

The equation ε(k,σ ) = −σ̂ zδ cos ϑk,σ + 2Jβk sin ϑk,σ holds,
where the mixing angle is given by tan ϑk,σ = −σ̂ z2Jβk/δ.
Hence we can write the Hamiltonian as

Ĥ0(k) = ε(k)σ̂ z ⊗ τ̂ z, (B4)

where we defined

ε(k) = −δ cos ϑk + 2Jβk sin ϑk, (B5)

tan ϑk = −2Jβk/δ. (B6)

This shows that the band energies are completely inverted for
different spins.

The Bloch wave functions are completely inverted, |u+
k,↑〉 =

|u+
k,↓〉, only for a deep superlattice δ � J . In the other limit

J � δ there is no inversion and the equation |u+
k,↑〉 = |u−

k,↓〉
holds. As a consequence, the U (2) Berry connection becomes
spin dependent. From Eq. (B3) we obtain the exact result

A+,−(k) = −σ̂ z J

δ
cos2 ϑk∇kβk. (B7)

Using this gauge choice, it follows immediately that
A+,−(k) = −A+,−(−k) is antisymmetric. Thus ξ+(kTR) =
ξ−(kTR) as required for TR invariance of the effective SOC
Hamiltonian. We also note that A+,−(k) ∝ σ̂ z to all orders in
J/δ. Because cos ϑk = 1 + O(J/δ)2 we obtain

A+,−(k) = σ̂ z J

δ
(sin kx, sin ky)T + O(J/δ)3. (B8)

2. Effective SOC

As described in the main text, our method for generating
tunable SOC can be applied to the spin-dependent square

063617-6
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lattice. Taking into account the additional spin dependence of
the Bloch states leads to the following effective Hamiltonian:

Ĥ(j ) = ε(k) + |R1(k)|2|⇓〉〈⇓| + |R2(k)|2|⇑〉〈⇑|
�k

+
(
�

(j )
MW

)2|λ|2
4�k

(δj,1|⇓〉〈⇓| + δj,2|⇑〉〈⇑|)

+ (−1)j
�

(j )
MW

2�k

[|⇓〉〈⇑|e−iφ
(j )
MWλR∗

j (k) + H.c.
]
. (B9)

The only difference to Eq. (A18) is the additional minus sign in
the last line, due to the factor σ̂ z in Eq. (B7), and the appearance
of Franck-Condon factors:

λ = 〈u±
k,↓|u±

k,↑〉 = 1
2 (1 + e2iϑk ). (B10)

Note that we defined Rj (k) using the expression for A+,−(k)
with σ̂ z = 1.

Because λ is independent of the path j , the methods
discussed for the idealized situation still guarantee a TR
symmetric effective Hamiltonian. To leading order in J/δ the
Franck-Condon factors are equal to 1, λ = 1 − 2iβkJ/δ +
O(J/δ)2. Therefore in the limit J 
 δ the results from
Appendix A carry over directly, if φ

(1)
MW → φ

(1)
MW + π is shifted

by π to compensate for the additional minus sign (−1)j in
the last line of Eq. (B9). λ merely renormalizes the coupling
strength of SOC.

3. Equal Rashba and Dresselhaus SOC

Here we discuss how equal Rashba and Dresselhaus SOC
can be generated in the spin-dependent square optical lattice.
To this end both MW beams are switched on with equal
strengths, �

(1,2)
MW = �MW. For simplicity we work in the limit

J 
 δ, where A+,−(k) is real [see Eq. (B8)], ac Stark shifts
are independent of the spin, and λ ≈ 1.

The effective Hamiltonian becomes

Ĥeff = ε(k) + |R(k)|2 + (�MW)2/4

�k
+ ĤSOC(k), (B11)

where the SOC is described by

ĤSOC(k) = �MW

2�k
[σ̂ xRe(ηk) − σ̂ yIm(ηk)], (B12)

ηk = eiφ
(2)
MWR(k,−φF ) − eiφ

(1)
MWR(k,φF ). (B13)

Due to interference effects between the two beams, only equal
Rashba-Dresselhaus SOC can be generated in this way. For
example, the choice φ

(1)
MW = φ

(2)
MW = φMW leads to

ĤSOC(k) = �MW

2�k

J

δ
Fy sin(φF )

× sin(ky)[cos(φMW)σ̂ y + sin(φMW)σ̂ x]. (B14)

APPENDIX C: SOC IN THE PRESENCE
OF MAGNETIC FIELDS

In this Appendix we present a detailed derivation of the
effective SOC Hamiltonian in the presence of (artificial)
magnetic fields. We consider the situation shown in Fig. 3,
where the band structure of spin-down (|↓〉) particles is

obtained from the up-spins (|↑〉) by time reversal (i.e., complex
conjugation in this case). Without the additional couplings, the
free Hamiltonian reads (h̄ = 1)

Ĥ0(k) = |↑〉〈↑|
∑

n

εn(k)|un(k)〉〈un(k)|

+ |↓〉〈↓|
∑

n

εn(k)K|un(−k)〉〈Kun(−k)|, (C1)

where |un(k)〉 denotes the magnetic Bloch wave functions of
Ĥ↑(k) with energies εn(k). For example, we can choose Ĥ↑(k)
to describe the Haldane [48] or the Hofstadter model [46]. The
Hamiltonian for spin-down states is obtained by TR,

Ĥ↓(k) = KĤ↑(−k)K, (C2)

and the corresponding eigenfunctions at energy εn(k) are given
by K|un(−k)〉. As in the construction by Kane and Mele [3],
the Hamiltonian Ĥ0 is TR invariant:

θ̂ †Ĥ0(k)θ̂ = Ĥ0(−k), (C3)

where θ̂ = Kiσ̂ y .

1. Lattice shaking

Next we introduce lattice shaking by applying an oscillatory
force F(t) parametrized as in Eq. (A3). It couples the lowest
band n = 1, which we are interested in, to higher bands n:

ĤF (k,t) = F(t) · Â(k)
RWA≈

∑
n>1

[Rn(k)eiωt |↑〉〈↑| ⊗ |1〉〈n| + H.c.]

+
∑
n>1

[R∗n(k)eiωt |↓〉〈↓| ⊗ |1〉〈n| + H.c.]. (C4)

The k-dependent couplings are given by

Rn(k) = 1
2

[
FxA1,n

x (k) + Fye
iφF A1,n

y (k)
]
, (C5)

R∗n(k) = 1
2

[
FxA1,n

∗,x(k) + Fye
iφF A1,n

∗,y(k)
]
, (C6)

where the Berry connection in the ↑ sector is

An,m(k) = 〈un(k)|i∇k|um(k)〉 (C7)

and in the |↓〉 sector it is given by

An,m
∗ (k) = 〈Kun(−k)|i∇kK|um(−k)〉 = (An,m(−k))∗.

(C8)

2. MW coupling

To obtain an effective SOC Hamiltonian for the two
pseudospin states

|⇑ ,k〉 = |↑〉|u1(k)〉, |⇓ ,k〉 = |↓〉K|u1(−k)〉, (C9)

we introduce MW transitions �
(1,2)
MW between |↑〉 and |↓〉 states

with frequencies ω1,2 = ω0 ± ω as shown in Fig. 3. Assuming
that ω0 � ω we obtain within the RWA

Ĥ(j )
MW

RWA≈ �
(j )
MW

2
ei(ωj t+φ

(j )
MW)|↑〉〈↓| + H.c. (C10)
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Projection onto the band eigenstates gives rise to the following
effective MW couplings,

Ĥ(j )
MW =

∑
n,m

�
(j )
MW

2
(Km,n(k))∗ei(ωj t+φ

(j )
MW)|↑ ,n〉〈↓ ,m| + H.c.,

(C11)
which are renormalized by Franck-Condon factors:

Km,n(k) = 〈Kum(−k)|un(k)〉. (C12)

3. Symmetries

Before deriving the effective Hamiltonian, we make some
symmetry considerations that will allow us to understand under
which conditions the system is TR invariant. We will assume
that the system is inversion symmetric and we make a gauge
choice respecting this symmetry. Hence P̂ Ĥ0(k)P̂ = Ĥ0(−k)
and Bloch states at ±k are related by

P̂ |un(k)〉 = eiχn(k)|un(−k)〉, (C13)

where χn(k) is a gauge degree of freedom. It follows that

An,m(−k) = −e−i[χn(k)−χm(k)]An,m(k), (C14)

and from Eq. (C8) we derive that

An,m
∗ (k) = −e−i[χn(k)−χm(k)]Am,n(k). (C15)

For the lattice shaking matrix elements we obtain the
relation

R∗,n(k,φF ) = −[Rn(k, − φF )]∗e−i[χ1(k)−χn(k)] (C16)

and it follows that

|Rn(−k,φF )|2 = |Rn(k,φF )|2, (C17)

|R∗,n(−k,φF )|2 = |Rn(k, − φF )|2. (C18)

These expressions appear in the ac Stark shifts caused by
lattice shaking. Unless φF = −φF the amplitudes for |↑〉
states (|Rn|2) and for |↓〉 states (|R∗,n|2) differ, breaking TR
invariance. Hence we will restrict ourselves to values

φF = 0,π. (C19)

For the matrix elements associated with MW transitions,
we obtain from P̂KP̂ = K that

Kn,m(−k) = ei[χn(k)−χm(k)]Kn,m(k). (C20)

Notably, the following product is an antisymmetric function
of k independent of the gauge choice χn(k):

R∗
n(k)K1,n(k) = −R∗

n(−k)K1,n(−k). (C21)

As will be shown next, this symmetry leads to a TR invariant
effective Hamiltonian.

4. Effective SOC

From second-order perturbation theory, in F and �MW, we
derive the effective Hamiltonian in the subspace spanned by
|⇑〉 and |⇓〉. As explained around Eq. (C19) we consider the
case when φF = −φF and �

(1)
MW = �

(2)
MW = �MW to avoid TR

breaking by spin-dependent ac Stark shifts from lattice shaking
and MW transitions, respectively. As a result we obtain for
φ

(1)
MW = φMW + π and φ

(2)
MW = φMW

Ĥeff(k) = ε1(k) +
∑
n>1

(�MW)2|Kn,1(k)|2
4�n(k)

+ |Rn(k)|2
�n(k)

+
∑
n>1

�MW

�n(k)
[|⇓〉〈⇑|e−iφMWR∗

n(k)K1,n(k) + H.c.].

(C22)

The detuning �n(k) = ε1(k) − εn(k) + ω is symmetric in k,
i.e., �n(−k) = �n(k).

Using the symmetry in Eq. (C21) it follows that the effective
Hamiltonian in Eq. (C22) is TR invariant and represents an
effective spin-orbit interaction. The first line of Ĥeff(k) denotes
the spin-independent dispersion relation, renormalized by ac
Stark shifts. An alternative way to check TR invariance of the
effective Hamiltonian is to study the original time-dependent
Hamiltonian H (t) (before applying the RWA and perturbation
theory). As shown in Ref. [45] it is sufficient to prove that it
is time-reversal invariant, H (t0 + t) = H (t0 − t) for some t0.
We checked that this is the case for the situation discussed in
this part of the appendix.
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